首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have examined a cDNA displacement synthesis procedure in which the extent of precursor incorporation and the unusual kinetics of displacement synthesis suggest a unique replicative form of DNA and the occurrence of multiple rounds of displacement synthesis, leading to amplification of mRNA sequences. Globin double-stranded DNA containing a hairpin loop was extended by the addition of a homopolymer to the 3' end. This was followed by displacement synthesis with the Klenow fragment of DNA polymerase I that was primed by an oligonucleotide hybridized to the homopolymer. Thus, the hairpin cDNA was copied to form an open duplex with an inverted repetition of globin sequences. These molecules can then serve as templates for additional synthesis which would be primed from oligomers bound the homopolymer. Globin cDNA sequences appear to be amplified 10-fold or more by this procedure. Globin cDNA obtained by displacement synthesis was similar in size to the original template. However, displaced molecules associate to the extent that they are not readily resolved by electrophoresis or sedimentation under nondenaturing conditions. Restriction endonuclease digests of 32P-labeled displaced strands gave fragment patterns similar to rabbit globin cDNA hairpin molecules. S1 nuclease studies demonstrated that displaced complexes and replication intermediates are partially single stranded, which might account for their aggregation properties.  相似文献   

2.
We have examined a cDNA displacement synthesis procedure in which the extent of precursor incorporation and the unusual kinetics of displacement synthesis suggest a unique replicative form of DNA and the occurrence of multiple rounds of displacement synthesis, leading to amplification of mRNA sequences. Globin double-stranded DNA containing a hairpin loop was extended by the addition of a homopolymer to the 3′ end. This was followed by displacement synthesis with the Klenow fragment of DNA polymerase I that was primed by an oligonucleotide hybridized to the homopolymer. Thus, the hairpin cDNA was copied to form an open duplex with an inverted repetition of globin sequences. These molecules can then serve as templates for additional synthesis which would be primed from oligomers bound the homopolymer. Globin cDNA sequences appear to be amplified 10-fold or more by this procedure. Globin cDNA obtained by displacement synthesis was similar in size to the original template. However, displaced molecules associate to the extent that they are not readily resolved by electrophoresis or sedimentation under nondenaturing conditions. Restriction endonuclease digests of 32P-labeled displaced strands gave fragment patterns similar to rabbit globin cDNA hairpin molecules. S1 nuclease studies demonstrated that displaced complexes and replication intermediates are partially single stranded, which might account for their aggregation properties.  相似文献   

3.
Escherichia coli cells whose chromosome replication has been terminated in vivo, either by growth into stationary phase or by incubation of a mutant carrying a temperature-sensitive initiation mutation under restrictive conditions, are inactive in in vitro DNA synthesis as measured in toluene-treated cells. Addition of the non-ionic detergent Triton X-100 to such inactive systems results in a marked stimulation of ATP-dependent in vitro DNA synthesis. This Triton-stimulated DNA synthesis appears to proceed by a semi-conservative mechanism, in that DNA synthesized in vitro in the presence of a density labeled precursor bands in CsCl equilibrium centrifugation at a hybrid density. Neutral sucrose gradient centrifugation demonstrates that most of this hybrid material exhibits a molecular weight in excess of 1 X 10(7). Triton-stimulated synthesis requires the presence of DNA polymerase III, as does normal in vivo replication. We show here, however, several anomalous properties of the DNA synthesis in the Triton/toluene system. In particular, Triton-stimulated synthesis is absent in cells harboring a recB mutation which lack the ATP-dependent exonuclease V, an enzyme implicated in recombinational repair synthesis in vivo. Furthermore, the ATP requirement for Triton-stimulated synthesis is relatively non-sepcific, and a variety of nucleoside triphosphates can effectively substitute for ATP. Finally, despite their high molecular weight in neutral sucrose gradient centrifugation, Triton-stimulated DNA synthesis generates DNA molecules of low molecular weight (less than 500 000) as determined by alkaline sucrose gradient centrifugation. In contrast, DNA synthesis in the normal toluene-treated cell system is not dependent on recB activity, shows a nearly absolute requirement for ATP which cannot be replaced by other nucleoside triphosphates, and produces molecules of far greater molecular weight as measured on alkaline sucrose gradients. Taken altogether the data strongly suggest that Triton activates an unusual form of DNA synthesis in toluene-treated cells which shows both repair and replicative aspects. These results caution against the use of Triton-activated toluene-treated cells system, for studying simple replicative DNA synthesis.  相似文献   

4.
The molecular structure, packing properties, and intermolecular interactions of two structural polymorphs of N-palmitoylethanolamine (NPEA) have been determined by single-crystal X-ray diffraction. Polymorphs alpha and beta crystallized in monoclinic space group P2(1)/c and orthorhombic space group Pbca, respectively. In both polymorphs, NPEA molecules are organized in a tail-to-tail manner, resembling a bilayer membrane. Although the molecular packing in polymorph alpha is similar to that in N-myristoylethanolamine and N-stearoylethanolamine, polymorph beta is a new form. The acyl chains in both polymorphs are tilted by approximately 35 degrees with respect to the bilayer normal, with their hydrocarbon moieties packed in an orthorhombic subcell. In both structures, the hydroxy group of NPEA forms two hydrogen bonds with the hydroxy groups of molecules in the opposite leaflet, resulting in extended, zig-zag type H-bonded networks along the b-axis in polymorph alpha and along the a-axis in polymorph beta. Additionally, the amide N-H and carbonyl groups of adjacent molecules are involved in N-H...O hydrogen bonds that connect adjacent molecules along the b-axis and a-axis, respectively, in alpha and beta. Whereas in polymorph alpha the L-shaped NPEA molecules in opposite layers are arranged to yield a Z-like organization, in polymorph beta one of the two NPEA molecules is rotated 180 degrees , leading to a W-like arrangement. Lattice energy calculations indicate that polymorph alpha is more stable than polymorph beta by approximately 2.65 kcal/mol.  相似文献   

5.
The formation of self-associates of glycyrrhetinic acid (GLA), an aglycone of glycyrrhizic acid (GA), has been studied by electrospray ionization mass spectrometry. It has been shown for the first time that, analogously to triterpene saponins having free carboxyl groups, GLA stereoisomers can form self-associates. The capacity of GLA to form self-associates has been confirmed by the mass spectrometry data. It has been found that the ionization of GLA self-associates with the formation of an anion proceeds rather weakly. The ionization of GLA in the positive ion mode goes on effectively and makes it possible to record multidimensional structures of one to eight 18α-GLA molecules and from one to nine 18β-GLA molecules. The structure of GLA associates and their stability are demonstrated most comprehensively in positive ion mass spectra. As a whole, the sets and intensity of peaks for 18α- and 18β-GLA correlate well. The results of the mass spectrometry study show the capacity of 18α- and 18β-GLA stereoisomers to form self-associates, which indicates a high potentiality of GLA in providing noncovalent interactions during the formation of supramolecular complexes. Similarly to the saponins of licorice and ivy, GLA stereoisomers may form a potential basis for the synthesis of a new generation of noncovalent molecular complexes and novel highly effective medicinal substances owing to a possible improvement in bioaccessibility and possible synergistic effects.  相似文献   

6.
All proteins undergo a dramatic change in their dynamical properties at approximately 200 K. Above this temperature, their dynamic behavior is dominated by large-scale collective motions of bonded and nonbonded groups of atoms. At lower temperatures, simple harmonic vibrations predominate. The transition has been described as a 'glass transition' to emphasize certain similarities between the change in dynamic behavior of individual protein molecules and the changes in viscosity and other properties of liquids when they form a glass. The glass transition may reflect the intrinsic temperature dependence of the motions of atoms in the protein itself, in the bound solvent on the surface of the protein, or it may reflect contributions from both. Protein function is significantly altered below this transition temperature; a fact that can be exploited to trap normally unstable intermediates in enzyme-catalyzed reactions and stabilize them for periods long enough to permit their characterization by high-resolution protein crystallography.  相似文献   

7.
Double-forked circular molecules of mitochondrial DNA (mtDNA) from rat tissues, indicated by their form and size to be replicative intermediates, are of two structurally distinct classes. Molecules of the first class are totally double stranded. Molecules of the second class are defined by one daughter segment being totally or partially single stranded. Length histograms of daughter segments measuring between 2% and 44% of the total 5-µm molecular contour were constructed from samples of both classes of replicating molecules derived from mtDNA or Novikoff rat ascites hepatoma cells. For single strand-containing molecules, the lengths fell into eight distinct, reproducible groups with mean values separated by 4.1–7.6% of the circular contour length. For totally double stranded molecules, the lengths fell into seven groups, corresponding to seven of the groups found for single strand-containing molecules. These results suggest that along at least 44% of the contour of mtDNA molecules there exist discrete points at which DNA synthesis tends to be arrested. This may indicate that there are pauses in normal mtDNA synthesis. However, as the DNA used in these experiments was isolated from mitochondrial fractions, the findings may indicate that continuation of synthesis beyond specific points on the nucleotide strands requires a factor which is not available after cell disruption.  相似文献   

8.
Steroidal compounds have been utilized as carriers and for modification of physico-chemical properties of model biologically active secondary alcohols - juvenoids. Juvenoids are juvenile hormone analogues - environmentally safe insecticides, possessing significant biological activity towards different arthropods groups in focus on insect pest species. Structure modification of juvenoids plays important role to control the rate of liberation and decomposition of juvenoid in digestive system and can also play important role in the mode of action towards selected insect. This study presents an approach to the synthesis of steroidal monomers and dimers carrying one and two molecules of a juvenoid in their structures. The prepared compounds were tested for their inhibition activity on reproduction of the blowfly Neobellieria (Sarcophaga) bullata. These steroid-juvenoid conjugates showed promising possibilities in synthesis of new unique biochemical insecticides. Preliminary biological test results of prepared compounds are presented.  相似文献   

9.
‘Chemical ligation’ – the regioselective and chemoselective covalent condensation of unprotected peptide segments – has enabled the synthesis of polypeptide chains of more than 200 amino acids. An efficient total chemical synthesis of the insulin molecule has been devised on the basis of a key ester‐linked intermediate that is chemically converted to fully active human insulin. Enzyme molecules of defined covalent structure and with full enzymatic activity have been prepared and characterized by high‐resolution X‐ray crystallography. A ‘glycoprotein mimetic’ of defined chemical structure and with a mass of 50,825 Da, has been prepared and shown to have full biological activity and improved pharmacokinetic properties. d ‐Protein molecules that are the mirror images of proteins found in the natural world have been prepared by total chemical synthesis. Racemic protein mixtures, consisting of the d ‐enantiomers and l ‐enantiomers of a protein molecule, form highly ordered centrosymmetric crystals with great ease; this has enabled the determination of the crystal structures of recalcitrant protein molecules. A protein with a novel linear‐loop covalent topology of the peptide chain has been designed and synthesized and its structure determined by facile crystallization as the quasi‐racemate with the d ‐form of the native protein molecule. We have developed an optimized total chemical synthesis of biologically active vascular endothelial growth factor‐A; total synthesis of the mirror‐image protein will be used to systematically develop d ‐protein antagonists of this important growth factor. The total chemical synthesis of proteins is now a practical reality and enables access to a new world of protein molecules. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
Matta CF  Bader RF 《Proteins》2000,40(2):310-329
The theory of Atoms-In-Molecules (AIM) is a partitioning of the real space of a molecule into disjoint atomic constituents as determined by the topology of the electron density, rho(r). This theory identifies an atom in a molecule with a quantum mechanical open system and, consequently, all of the atom's properties are unambiguously defined. AIM recovers the basic empirical cornerstone of chemistry: that atoms and functional groups possess characteristic and additive properties that in many cases exhibit a remarkable transferability between different molecules. As a result, the theory enables the theoretical synthesis of a large molecule and the prediction of its properties by joining fragments that are predetermined as open systems. The present article is the first of a series (in preparation) that explore this possibility for polypeptides by determining the transferability of the building blocks: the amino acid residues. Transferability of group properties requires transferability of the electron density rho(r), which in turn requires the transferability of the geometric parameters. This article demonstrates that these parameters are conformation-insensitive for a representative amino acid, leucine, and that the atomic and bond properties exhibit a corresponding transferability. The effects of hydrogen bonding are determined and a set of geometrical conditions for the occurrence of such bonding is identified. The effects of transforming neutral leucine into its zwitter-ionic form on its atomic and bond properties are shown to be localized primarily to the sites of ionization.  相似文献   

11.
The continuous bed technique with its attractive features, such as fritless design, one-step in situ synthesis, low back pressure and no need for pressurising the electrode vessels to suppress bubble formation was applied to form polyrotaxane-based stationary phases for capillary electrochromatography (CEC). Rotaxanes are synthesized from two classes of substances, namely linear reactive monomers and inert cyclic compounds. Upon polymerisation, a gel forms with the cyclic molecules mechanically immobilized (see Fig. 1). We have employed this simple approach, using charged derivatives of cyclodextrins in order to introduce charged groups into continuous beds and thus render them appropriate for electrochromatography. The self-assembly of supramolecular structures to form rotaxanes during the synthesis of the continuous beds is treated. The electroosmotic and chromatographic properties of the various polyrotaxane-based stationary phases synthesized are discussed, as well as the synthesis of the continuous beds, including how to affect their porosity and its influence on the efficiency of the electrokinetic separation. The applicability of the rotaxane-based continuous bed is demonstrated by separation of model compounds by reversed- and normal-phase chromatography. A separation of enantiomers is also presented. This experiment is of particular interest because it indicates that the interaction with the cavity of beta-cyclodextrin (beta-CD) is not a fundamental requirement for enantioseparations.  相似文献   

12.
Groups exhibit properties that either are not perceived to exist, or perhaps cannot exist, at the individual level. Such ‘emergent’ properties depend on how individuals interact, both among themselves and with their surroundings. The world of everyday objects consists of material entities. These are, ultimately, groups of elementary particles that organize themselves into atoms and molecules, occupy space, and so on. It turns out that an explanation of even the most commonplace features of this world requires relativistic quantum field theory and the fact that Planck’s constant is discrete, not zero. Groups of molecules in solution, in particular polymers (‘sols’), can form viscous clusters that behave like elastic solids (‘gels’). Sol-gel transitions are examples of cooperative phenomena. Their occurrence is explained by modelling the statistics of inter-unit interactions: the likelihood of either state varies sharply as a critical parameter crosses a threshold value. Group behaviour among cells or organisms is often heritable and therefore can evolve. This permits an additional, typically biological, explanation for it in terms of reproductive advantage, whether of the individual or of the group. There is no general agreement on the appropriate explanatory framework for understanding group-level phenomena in biology.  相似文献   

13.
Although a variety of oxidation products of cholesterol occur in vitro, enzyme-catalyzed oxidations can occur at only 5 sites on the cholesterol molecule: C7alpha, C22R, C24S, C25, and C27. The genes coding for the synthesis of these enzymes were cloned, the tissue expressions of the mRNAs were identified, and the enzymes were characterized. The biologic properties of the hydroxycholesterol molecules that are initially generated and their metabolites are under study. Downregulation of cholesterol synthesis via the SREBP/SCAP regulatory pathway is common to the initial hydroxycholesterols, but more variations exist with respect to these intermediates functioning as ligands for the nuclear receptor LXRalpha. Because this receptor regulates the expression of cholesterol 7alpha-hydroxylase and ABC transporter proteins, hydroxycholesterols and their intermediate steroid metabolites modulate a number of biologic processes. Metabolism of 22S-hydroxycholesterol to steroid hormones differs from that of the other hydroxycholesterols which form mostly steroid acidic products, otherwise known as bile acids. In vivo estimates of their production rates in intact humans indicate that 24S and 25-hydroxycholesterol account for no more than 7% of total bile acid production per day. Current evidence indicates that cholesterol 7alpha-hydroxycholesterol generated in the liver is the major source of bile acids in older adults. It is also known that the cholesterol 27-hydroxylation pathway is the only one expressed in fetal and neonatal life. Precisely when the proportions contributed by these two metabolic pathways to bile acid synthesis begin to shift and the role of the cholesterol 27-hydroxylase pathway in reverse cholesterol transport mandate further study.  相似文献   

14.
N-Acylethanolamines elicited much interest in recent years owing to their occurrence in biological membranes under conditions of stress as well as under normal conditions. The molecular conformation, packing properties and intermolecular interactions of N-myristoylethanolamine (NMEA) have been determined by single crystal X-ray diffraction analysis. The lipid crystallized in the space group P21/a with unit cell dimensions: a=9.001, b=4.8761, c=39. 080. There are four symmetry-related molecules in the monoclinic unit cell. The molecules are organized in a tail-to-tail fashion, similar to the arrangement in a bilayer membrane. The hydrophobic acyl chain of the NMEA molecule is tilted with respect to the bilayer normal by an angle of 37 degrees. Each hydroxy group forms two hydrogen bonds, one as a donor and the other as an acceptor, with the hydroxy groups of molecules in the opposing leaflet. These O-H...O hydrogen bonds form an extended, zig-zag type network along the b-axis. In addition, the N-H and C=O groups of adjacent molecules are involved in N-H...O hydrogen bonds, which also connect adjacent molecules along the b-axis.  相似文献   

15.
Iwamori M 《Human cell》2005,18(3):117-133
Research on glycosphingolipids has advanced with the finding of their involvement in sphingolipidoses, blood group- and differentiation-related antigens, and receptors for bacteria and viruses. Recently, the molecular cloning of genes for the synthesis of glycosphingolipids has been performed extensively, and mice without sugar transferase-genes have been generated. These transferase-null mice have shown that the complex carbohydrate structures of glycosphingolipids are not essential for the embryogenesis, morphogenesis or development of animals, but that the accumulation of an intermediate, such as GM3 or ceramide, causes significant failure of neural development in knockout mice as to the GM2, GD3 and GlcCer synthase genes. On the other hand, the nonreducing terminal carbohydrates in either glycosphingolipids or glycoproteins have been confirmed to be related to carbohydrate-mediated phenomena using the same gene-manipulation technique, indicating that glycosphingolipids are some of the carriers for functionally important carbohydrates. Glycosphingolipids are certainly small molecules with hydrophobic ceramides, which carry both donor and acceptor groups of the hydrogen-bonding region with the potential ability to interact with several proteins on the raft structure in biomembranes, and their dynamic movement in the membranes was revealed by the flip-flop regulation of their synthesis in the Golgi apparatus and the transformation-associated alteration in the reactivity of the carbohydrate moiety with several ligands. Thus, research on the functional significance of glycosphingolipids should be carried out again regarding their physicochemical properties.  相似文献   

16.
A detailed protocol for the synthesis of core/shell semiconductor nanocrystal, their encapsulation into phospholipid micelles, their purification and their coupling to a controlled number of small molecules is given. The protocol for the core/shell quantum dot (QD) CdSe/CdZnS synthesis has been specifically designed with two constraints in mind: green and reproducible core/shell QD synthesis with thick shell structure and QDs that can easily be encapsulated in poly(ethylene glycol)-phospholipid micelles with one QD per micelle. We present two procedures for the QD purification that are suitable for the use of QD micelles for in vivo imaging: ultracentrifugation and size-exclusion chromatography. We also discuss the different coupling chemistry for covalently linking a controlled number of molecules to the QD micelles. The total time durations for the different protocols are as follows: QD synthesis: 6 h; encapsulation: 15 min; purification: 1-4 h; coupling: reaction dependent.  相似文献   

17.
Reactions at the replication fork of bacteriophage T7 have been reconstituted in vitro on a preformed replication fork. A minimum of three proteins is required to catalyze leading and lagging strand synthesis. The T7 gene 4 protein, which exists in two forms of molecular weight 56,000 and 63,000, provides helicase and primase activities. A tight complex of the T7 gene 5 protein and Escherichia coli thioredoxin provides DNA polymerase activity. Gene 4 protein and DNA polymerase catalyze processive leading strand synthesis. Gene 4 protein molecules serving as helicase remain bound to the template as leading strand synthesis proceeds greater than 40 kilobases. Primer synthesis for lagging strand synthesis is catalyzed by additional gene 4 protein molecules that undergo multiple association/dissociation steps to catalyze multiple rounds of primer synthesis. The smaller molecular weight form of gene 4 protein has been purified from an equimolar mixture of both forms. Removal of the large form results in the loss of primase activity but not of helicase activity. Submolar amounts of the large form present in a mixture of both forms are sufficient to restore high specific activity of primase characteristic of an equimolar mixture of both forms. These results suggest that the gene 4 primase is an oligomer which is composed of both molecular weight forms. The large form may be the distributive component of the primase which dissociates from the template after each round of primer synthesis.  相似文献   

18.
A marked reduction in the rate of viral DNA synthesis is accompanied by an alteration to the superhelicity of progeny DNA in polyoma virus-infected cells in which protein synthesis has been inhibited by cycloheximide. Viral DNA molecules formed in the presence of cycloheximide consist predominantly of closed-circular monometric species (referred to as form Ic) characterized by a decreased superhelix density, corresponding to deltasigmao = 0.0195, as compared to form I DNA by propidium diiodide-cesium chloride isopycnic analysis. Form Ic is synthesized on pre-existing form I templates without the intervention of progeny form I as an intermediate. It is concluded that inhibition of protein synthesis results in the alteration of some process in the closure of daughter DNA that leads to a marked reduction of superhelical turns of progeny molecules. About two-thirds of form Ic molecules return to the form I conformation upon reversal of cycloheximide inhibition by a mechanism independent of DNA replication.  相似文献   

19.
The synthesis of new odorant molecules is still a challenging task for the fragrance chemist, because now as ever it is difficult to predict the odor properties of small organic molecules. Therefore, certain tools, such as, e.g., lead‐structure optimization of existing odorants, are helpful techniques. In this article, we describe the synthesis and the odor properties of a new molecule derived by the so‐called ‘seco’ lead‐structure optimization of the ambergris compound Ambroxide®. Based on these results, more representatives with similar structures have been synthesized and evaluated for their olfactory properties.  相似文献   

20.
Spectral properties (anisotropy coefficients calculated for absorption, emission and fluorescence decay time) of two stilbazolium merocyanine dyes have been determined to evaluate the applicability of these dyes as sensitizers in photodynamic therapy. The dyes were embedded in an anisotropic polymer matrix. Analysis of the emission decay components measured in polarized light provides information on the interactions of the dye molecules with the polymer matrix being a model of an anisotropic biological system. Different values of the emission anisotropies obtained from various polarized components of fluorescence decays have shown that the orientations of the dye molecules influence their interactions with the polymer. This means that differently oriented dye molecules located in biological systems should exhibit different interactions with membranes. The chain length and type of side groups attached as well as the salt form of the dye molecule were shown to influence the dye-polymer interactions and should be taken into account before the application of merocyanine dyes in medicine. These dyes seem to be promising optical sensors with spectral properties, including the calculated anisotropy coefficients, sensitive to the molecular environment, useful to study orientation and interaction with neighbouring molecules in biological membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号