首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This is the second of two papers which together are the first comprehensive ultrastructural report of meiosis in a red alga. Many details of the meiotic process in Dasya baillouviana (Gmelin) Montagne are the same as those reported previously for mitotic cells in ceramialian red algae, but several characteristics seem unique to meiotic cells. The nucleus and nucleolus of meiotic cells are larger than those of mitotic cells and large accumulations of smooth ER are often found at the division poles during meiosis 1. The function of the ER accumulations is unknown. Importantly, both interkinesis and a simultaneous division of two separate nuclei during meiosis II was demonstrated. These new observations fail to support earlier speculation on higher red algae for a “uninuclear” meiosis (both nuclear divisions within the same nuclear envelope). However, following meiosis II the four nuclei migrate centripetally and possibly fuse in the center of the tetrasporangium. This post-division nuclear maneuvering is not understood, but our interpretation accounts for the earlier and erroneous impression of “uninuclear” meiosis. Perhaps the most important aspect of meiosis observed in Dasya is its basic adherence to the pattern commonly seen in higher plants and animals. This conservatism of the meiotic process lends further skepticism to the belief that red algae are extremely “primitive” organisms, although they undoubtedly represent a very “ancient” group of eukaryotic plants.  相似文献   

2.
The process of basidiospore formation in a mutant strain Fisc of Coprinus macrorhizus, a heterothallic species of Basidiomycete, which forms monokaryotic fruiting bodies was examined. A single nucleus in a young basidium divided mitotically and two daughter nuclei were fused subsequently. The fused nucleus then divided meiotically forming four basidiospores on a basidium. The typical chromosome behaviours in the first meiotic prophase were observed. Synaptonemal complexes were observed in a basidium at the first meiotic prophase. A continuous illumination of fruiting bodies was effective to arrest meiosis in monokaryotic fruiting bodies at the particular stage of meiotic division.  相似文献   

3.
The polyene antibiotic, filipin, was used as the probe for demonstrating sterols in the freeze-fractured plasma- and cytomembranes of Pneumocystis carinii. The distribution of filipin-sterol complexes was homogeneous on the plasma membrane throughout all developmental stages from trophozoite to cyst; however, the density of the complexes gradually decreased with the progress of development. In the trophozoite, the density of the complexes was 485 +/- 42/micron2 on the P face and 341 +/- 27/micron2 on the E face. It was 249 +/- 50 on the P face and 132 +/- 48 on the E face in the precyst and 138 +/- 24 and 59 +/- 20, respectively, in the cyst. The membranes of nucleus, mitochondria, and small round bodies showed more or fewer complexes while no complexes were found in the membranes of one endoplasmic reticulum. In nuclear and mitochondrial membranes, some small scattered clusters of complexes were observed. Two types of vacuoles were distinguished: one having many complexes in its membrane and the other having none at all.  相似文献   

4.
ABSTRACT. Amblyospora californica is a polymorphic, eukaryotic microsporidian. Three types of sporogony producing three types of spores occur in male larvae and female adults of its mosquito host, Culex tarsalis , and an alternate copepod host, Acanthocyclops vernalis. Development of A. californica in male larvae includes merogony and sporogony. Karyogamy and meiosis was observed in sporogony in male larvae but not in the female adult or in the copepod. Chromosomal evidence showed that sporogony included two consecutive meiotic divisions and a subsequent mitosis forming an octosporont, ultimately containing eight haploid, uninucleate mature spores. In this species, the haploid number of chromosomes is nine. Macrosporoblasts and macrospores, containing 1, 2 or more nuclei, can be seen in infected male larvae. The stage of sporogony in which cytokinesis was arrested seems to determine the number of nuclei. Those with only one nucleus, we believe are due to failed nuclear division at meiosis. Although A. californica displayed a process of karyogamy and meiosis similar to that of the species from Cx. salinarius , they may not be the same species because of the difference in their chromosome numbers.  相似文献   

5.
Basic aspects of cell biology of Pneumocystis carinii are reviewed with major emphasis on its life cycle and the structural organization of the trophozoites and cyst forms. Initially considered as a protozoan it is now established that Pneumocystis belongs to the Fungi Kingdom. Its life cycle includes two basic forms: (a) trophozoites, which are haploid cells that divide by binary fission and may conjugate with each other forming an early procyst and (b) cysts where division takes place through a meiotic process with the formation of eight nuclei followed by cytoplasmic delimitation and formation of intracystic bodies which are subsequently released and transformed into trophozoites. Basic aspects of the structure of the two developmental stages of P. carinii are reviewed.  相似文献   

6.
Germline cysts are conserved structures in which cells initiating meiosis are interconnected by ring canals. In many species, the cyst phase is of limited duration, but the chordate, Oikopleura, maintains it throughout prophase I as a unique cell, the coenocyst. We show that despite sharing one common cytoplasm with meiotic and nurse nuclei evenly distributed in a 1:1 ratio, both entry into meiosis and subsequent endocycles of nurse nuclei were asynchronous. Coenocyst cytoskeletal elements played central roles as oogenesis progressed from a syncytial state of indistinguishable germ nuclei, to a final arrangement where the common cytoplasm had been equally partitioned into resolved, mature oocytes. During chromosomal bouquet formation in zygotene, nuclear pore complexes clustered and anchored meiotic nuclei to the coenocyst F-actin network opposite ring canals, polarizing oocytes early in prophase I. F-actin synthesis was required for oocyte growth but movement of cytoplasmic organelles into oocytes did not require cargo transport along colchicine-sensitive microtubules. Instead, microtubules maintained nurse nuclei on the F-actin scaffold and prevented their entry into growing oocytes. Finally, it was possible to both decouple meiotic progression from cellular mechanisms governing oocyte growth, and to advance the timing of oocyte growth in response to external cues.  相似文献   

7.
The polyene antibiotic, filipin, was used as the probe for demonstrating sterols in the freeze-fractured plasma- and cytomembranes of Pneumocystis carinii. The distribution of filipin-sterol complexes was homogeneous on the plasma membrane throughout all developmental stages from trophozoite to cyst; however, the density of the complexes gradually decreased with the progress of development. In the trophozoite, the density of the complexes was 485 ± 42/μm2 on the P face and 341 ± 27/μm2 on the E face. It was 249 ± 50 on the P face and 132 ± 48 on the E face in the precyst and 138 ± 24 and 59 ± 20, respectively, in the cyst. The membranes of nucleus, mitochondria, and small round bodies showed more or fewer complexes while no complexes were found in the membranes of one endoplasmic reticulum. In nuclear and mitochondrial membranes, some small scattered clusters of complexes were observed. Two types of vacuoles were distinguished: one having many complexes in its membrane and the other having none at all.  相似文献   

8.
Meiosis, a specialized cell division process, occurs in all sexually reproducing organisms. During this process a diploid cell undergoes a single round of DNA replication followed by two rounds of nuclear division to produce four haploid gametes. In yeast, the meiotic products are packaged into four spores that are enclosed in a sac known as an ascus. To enhance our understanding of the meiotic developmental pathway and spore formation, we followed differential expression of genes in meiotic versus vegetatively growing cells in the yeast Saccharomyces cerevisiae. Such comparative analyses have identified five different classes of genes that are expressed at different stages of the sporulation program. We identified several meiosis-specific genes including some already known to be induced during meiosis. Here we describe one of these previously uncharacterized genes, SSP1, which plays an essential role in meiosis and spore formation. SSP1 is induced midway through meiosis, and the homozygous mutant-diploid cells fail to sporulate. In ssp1 cells, meiosis is delayed, nuclei fragment after meiosis II, and viability declines rapidly. The ssp1 defect is not related to a microtubule-cytoskeletal-dependent event and is independent of two rounds of meiotic divisions. Our results suggest that Ssp1 is likely to function in a pathway that controls meiotic nuclear divisions and coordinates meiosis and spore formation. Functional analysis of other uncharacterized genes is underway.  相似文献   

9.
Meiotic prophase in Schizosaccharomyces pombe is characterized by striking nuclear movements and the formation of linear elements along chromosomes instead of tripartite synaptonemal complexes. We analysed the organization of nuclei and microtubules in cells of fission yeasts undergoing sexual differentiation. S. japonicus var. versatilis and S. pombe cells were studied in parallel, taking advantage of the better cytology in S. versatilis. During conjugation, microtubules were directed towards the mating projection. These microtubules seem to lead the haploid nuclei together in the zygote by interaction with the spindle pole bodies at the nuclear periphery. After karyogamy, arrays of microtubules emanating from the spindle pole body of the diploid nucleus extended to both cell poles. The same differentiated microtubule configuration was elaborated upon induction of azygotic meiosis in S. pombe. The cyclic movements of the elongated nuclei between the cell poles is reflected by a dynamic and coordinated shortening and lengthening of the two microtubule arrays. When the nucleus was at a cell end, one array was short while the other bridged the whole cell length. Experiments with inhibitors showed that microtubules are required for karyogamy and for the elongated shape and movement of nuclei during meiotic prophase. In both fission yeasts the SPBs and nucleoli are at the leading ends of the moving nuclei. Astral and cytoplasmic microtubules were also prominent during meiotic divisions and sporulation. We further show that in S. versatilis the linear elements formed during meiotic prophase are similar to those in S. pombe. Tripartite synaptonemal complexes were never detected. Taken together, these findings suggest that S. pombe and S. versatilis share basic characteristics in the organization of microtubules and the structure and behaviour of nuclei during their meiotic cell cycle. The prominent differentiations of microtubules and nuclei may be involved in the pairing, recombination, and segregation of meiotic chromosomes.  相似文献   

10.
11.
Spermatogenesis in the nematode Caenorhabditis elegans uses unusual organelles, called the fibrous body-membranous organelle (FB-MO) complexes, to prepackage and deliver macromolecules to spermatids during cytokinesis that accompanies the second meiotic division. Mutations in the spe-4 (spermatogenesis-defective) gene disrupt these organelles and prevent cytokinesis during spermatogenesis, but do not prevent completion of the meiotic nuclear divisions that normally accompany spermatid formation. We report an ultrastructural analysis of spe-4 mutant sperm where the normally close association of the FB's with the MO's and the double layered membrane surrounding the FB's are both defective. The internal membrane structure of the MO's is also disrupted in spe-4 mutant sperm. Although sperm morphogenesis in spe-4 mutants arrests prior to the formation of spermatids, meiosis can apparently be completed so that haploid nuclei reside in an arrested spermatocyte. We have cloned the spe-4 gene in order to understand its role during spermatogenesis and the molecular basis of how mutation of this gene disrupts this process. The spe-4 gene encodes an approximately 1.5-kb mRNA that is expressed during spermatogenesis, and the sequence of this gene suggests that it encodes an integral membrane protein. These data suggest that mutation of an integral membrane protein within FB-MO complexes disrupts morphogenesis and prevents formation of spermatids but does not affect completion of the meiotic nuclear divisions in C. elegans sperm.  相似文献   

12.
Lepidopteran primary spermatocytes are bipotential leading first to regular (eupyrene) and later to irregular (apyrene) meiotic divisions. The kinetics of the lysine-rich proteins during this dichotomous meiosis was studied using the fluorescent dye sulfoflavine. Throughout the spermatogonial divisions, the chromatin fluoresces while the cytoplasm remains unstained. Reversely, during the meiotic prophase, the cytoplasm fluoresces strongly while the nuclei show only a few weakly fluorescing structures. From premetaphase to telophase the meiotic chromosomes fluoresce strongly again. But during this period, only in the eupyrene cells the cytoplasm remains strongly fluorescent; the fluorescence vanishs in the cytoplasm of the apyrene spermatocytes. Thus, the regular (eupyrene) meiotic divisions and the presence of a lysine-rich protein fraction in the cytoplasm of the dividing spermatocytes of Lepidoptera, are probably related.  相似文献   

13.
Strich R  Mallory MJ  Jarnik M  Cooper KF 《Genetics》2004,167(4):1621-1628
Haploidization of gametes during meiosis requires a single round of premeiotic DNA replication (meiS) followed by two successive nuclear divisions. This study demonstrates that ectopic activation of cyclin B/cyclin-dependent kinase in budding yeast recruits up to 30% of meiotic cells to execute one to three additional rounds of meiS. Rereplication occurs prior to the meiotic nuclear divisions, indicating that this process is different from the postmeiotic mitoses observed in other fungi. The cells with overreplicated DNA produced asci containing up to 20 spores that were viable and haploid and demonstrated Mendelian marker segregation. Genetic tests indicated that these cells executed the meiosis I reductional division and possessed a spindle checkpoint. Finally, interfering with normal synaptonemal complex formation or recombination increased the efficiency of rereplication. These studies indicate that the block to rereplication is very different in meiotic and mitotic cells and suggest a negative role for the recombination machinery in allowing rereplication. Moreover, the production of haploids, regardless of the genome content, suggests that the cell counts replication cycles, not chromosomes, in determining the number of nuclear divisions to execute.  相似文献   

14.
Ellis E. Sykes  D. Porter 《Protoplasma》1981,105(3-4):307-320
Summary Catenaria allomycis Couch (Blastocladiales) is an endobiotic fungal parasite primarily of species of the genusAllomyces. The life cycle ofC. allomycis contains both sexual and asexual phases. Synaptonemal complexes have been found in young developing resistant sporangia (RS) suggesting that meiosis occurs within the thick walled RS prior to syngamy. Ultrastructural evidence suggests that meiosis proceeds through pachytene in the developing RS and is arrested in diplotene of prophase I until the sporangia are induced to germinate at which time the meiotic process is completed. Quantitative nuclear counts in developing RS support the ultrastructural observations. Meiotic nuclei are characterized by polar fenestrae in the nuclear envelope and intranuclear plaque-like microtubule organizing centers (MTOC).Portion of a Ph.D. dissertation submitted by the senior author to the Graduate School, University of Georgia.  相似文献   

15.
In the yeast Saccharomyces cerevisiae, SPC42 is an essential gene, which encodes one of the major components of the spindle pole body (SPB). We report on a mutation in the SPC42 gene (spc42-102) that results in a sporulation-specific defect. Mitotic growth of haploid and diploid spc42-102 strains is normal and both exhibit the same growth rates as the isogenic wild-type strains. Many diploid spc42-102/spc42-102 cells undergo normal meiotic nuclear divisions, producing four haploid nuclei. However, a significant fraction of meiotic spc42-102/spc42-102 cells contain two immature SPBs and aberrant nuclei that are not surrounded by a prospore membrane. Some 40% of the resultant asci contain only two spores, while wild-type diploid cells almost always produce four-spored asci. Segregation of auxotrophic markers that are tightly linked to the centromere reveals that two-spore asci formed from spc42-102/spc42-102 diploid cells exclusively contain nonsister haploid spores. Western analysis and measurements of the fluorescent signal from an Spc42p-GFP (green fluorescent protein) fusion reveal that the mutant strain fails to accumulate Spc42p at meiosis. Thus, our results suggest that insufficiency of Spc42p during meiosis results in a pair of immature nonsister SPBs that are not enclosed by prospore membrane.  相似文献   

16.
Two original mechanisms of nuclear restitution related to different processes of meiotic division of pollen mother cells (PMCs) have been found in male meiosis of the lines of maize haploids no. 2903 and no. 2904. The first mechanism, which is characteristic of haploid no. 2903, consists in spindle deformation (bend) in the conventional metaphase-anaphase I. This leads to asymmetric incomplete cytokinesis with daughter cell membranes in the form of incisions on the mother cell membrane. As a result, the chromosomes of the daughter nuclei are combined into a common spindle during the second meiotic division, and a dyad of haploid microspores is formed at the tetrad stage. The frequency of this abnormality is about 50%. The second restitution mechanism, which has been observed in PMCs of haploid no. 2904, results from disturbance of the fusion of membrane vesicles (plastosomes) at the moment of formation of daughter cell membranes and completion of cytokinesis in the first meiotic division. This type of cell division yields a binuclear monad. In the second meiotic division, the chromosomes of the daughter nuclei form a common spindle, and meiosis results in a dyad of haploid microspores. The frequency of this abnormality is as high as 15%. As a result, haploid lines no. 2903 and no. 2904 partly restore fertility.  相似文献   

17.
Meiosis produces haploid gametes by accurately reducing chromosome ploidy through one round of DNA replication and two subsequent rounds of chromosome segregation and cell division. The cell divisions of female meiosis are highly asymmetric and give rise to a large egg and two very small polar bodies that do not contribute to development. These asymmetric divisions are driven by meiotic spindles that are small relative to the size of the egg and have one pole juxtaposed against the cell cortex to promote polar body extrusion. An additional unique feature of female meiosis is that fertilization occurs before extrusion of the second polar body in nearly all animal species. Thus sperm-derived chromosomes are present in the egg during female meiosis. Here, we explore the idea that the asymmetry of female meiosis spatially separates the sperm from the meiotic spindle to prevent detrimental interactions between the spindle and the paternal chromosomes.  相似文献   

18.
Pneumocystis carinii has generally been distinguished in three developmental stages, namely, trophozoite, precyst and cyst. The fine structure of the pellicle--the plasma membrane and the outer layer existing outside this plasma membrane--of each stage was studied by freeze-fracture technique. By this technique, P. carinii was cleaved through the cytoplasm or through the hydrophobic region of the plasma membrane, and the cross-fractured face of the outer layer was revealed on the replicas. The outer layer, which is electron-dense in the thin section, consisted of numerous fine granules about 15 nm in diameter in freeze-fracture images, whereas the electron-lucent middle layer which appeared in the precyst and cyst was less granular. Measurement of the intramembranous particles (IMP) also was carried out. The number of IMP per square micrometer of the plasma membrane of the trophozoite was 1,512 +/- 125 on the P face and 417 +/- 44 on the E face. In the precyst, the IMP density decreased, and 1,037 +/- 56 on the P face and 262 +/- 22 on the E face. In the cyst, it further decreased, nd 875 +/- 59 and 150 +/- 20 respectively. It is generally assumed that the density of IMP is related to the physiological activity of the cell membrane, so that the present results obtained in P. carinii suggest that the trophozoite is the most active stage, and that metabolic activity of the pellicle gradually decreases with the progress of development to the precyst then to the cyst.  相似文献   

19.
Synaptonemal complexes and telomeric nucleoli are involved in the spatial organization and regular distribution of homologous chromosomes in meiosis of the achiasmatic female carob moth. The bivalents are held together from zygotene to metaphase by the Synaptonemal complexes. These are attached to telomeric nucleoli which appear during early meiotic prophase and are unique to the oocyte. The telomeric nucleoli fuse during prophase and the chromosomes concentrate into a small karyosphere before prometaphase. During the final stages of prophase elements of the Synaptonemal complex are found in the periphery of the fibrillar region of the telomeric nucleoli.  相似文献   

20.
Shamina NV  Shatskaia OA 《Genetika》2011,47(4):499-507
Two original mechanisms of nuclear restitution related to different processes of meiotic division of pollen mother cells (PMCs) have been found in male meiosis of the lines of maize haploids no. 2903 and no. 2904. The first mechanism, which is characteristic of haploid no. 2903, consists in spindle deformation (bend) in the conventional metaphase-anaphase I. This leads to asymmetric incomplete cytokinesis with daughter cell membranes in the form of incisions on the mother cell membrane. As a result, the chromosomes of the daughter nuclei are combined into a common spindle during the second meiotic division, and a dyad of haploid microspores is formed at the tetrad stage. The frequency of this abnormality is about 50%. The second restitution mechanism, which has been observed in PMCs of haploid no. 2904, results from disturbance of the fusion of membrane vesicles (plastosomes) at the moment of formation of daughter cell membranes and completion of cytokinesis in the first meiotic division. This type of cell division yields a binuclear monad. In the second meiotic division, the chromosomes of the daughter nuclei form a common spindle, and meiosis results in a dyad of haploid microspores. The frequency of this abnormality is as high as 15%. As a result, haploid lines no. 2903 and no. 2904 partly restore fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号