首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Magnetically induced electric fields and currents in the circulatory system   总被引:7,自引:0,他引:7  
Blood flow in an applied magnetic field gives rise to induced voltages in the aorta and other major arteries of the central circulatory system that can be observed as superimposed electrical signals in the electrocardiogram (ECG). The largest magnetically induced voltage occurs during pulsatile blood flow into the aorta, and results in an increased signal at the location of the T-wave in the ECG. Studies involving the measurement of blood pressure, blood flow rate, heart sounds, and cardiac valve displacements have been conducted with monkeys and dogs exposed to static fields up to 1.5 tesla (T) under conditions producing maximum induced voltages in the aorta. Results of these studies gave no indication of alterations in cardiac functions or hemodynamic parameters. Cardiac activity monitored by ECG biotelemetry during continuous exposure of rats to a 1.5-T field for 10 days gave no evidence for any significant changes relative to the 10 days prior to and following exposure. Theoretical modeling of magnetic field interactions with blood flow has included a complete solution of the equation describing the flow of an electrically conductive fluid in the presence of a magnetic field (the Navier–Stokes equation) using the finite element technique. Magnetically induced voltages and current densities as a function of the applied magnetic field strength have been calculated for the aorta and surrounding tissues structures, including the sinoatrial node. Induced current densities in the region of the sinoatrial node are predicted to be >100 mA/m2 at field levels >5 T in an adult human under conditions of maximum electrodynamic coupling with aortic blood flow. Magnetohydrodynamic interactions are predicted to reduce the volume flow rate of blood in the human aorta by a maximum of 1.3%, 4.9%, and 10.4% at field levels of 5, 10, and 15 T, respectively.  相似文献   

2.
A field strength dependent increase in the amplitude of the T-wave signal in the rat electrocardiogram (ECG) was observed during exposure to homogeneous, stationary magnetic fields. For 24 adult Sprague-Dawley and Buffalo rats of both sexes, the T-wave amplitude was found to increase by an average of 408% in a 2.0 Tesla (1 Tesla = 104 Gauss) field. No significant magnetically induced changes were observed in other components of the ECG record, including the P wave and the QRS complex. The minimum field level at which augmentation of the T wave could be detected was 0.3 Tesla. The magnetically induced increase in T-wave amplitude occurred instantaneously, and was immediately reversible after exposure to fields as high as 2.0 Tesla. No abnormalities in any component of the ECG record, including the T wave, were noted during a period of 3 weeks following cessation of a continuous 5-h exposure of rats to a 1.5-Tesla field. The heart rate and breathing rate of adult rats were not altered during, or subsequent to, application of fields up to 2.0 Tesla. The effect of animal orientation within the field was tested using juvenile rats 3–14 days old. The maximum increase in T-wave amplitude was observed when subjects were placed with the long axis of the body perpendicular to the lines of magnetic induction. These experimental observations, as well as theoretical considerations, suggest that augmentation of the signal amplitude in the T-wave segment of the ECG may result from a superimposed electrical potential generated by aortic blood flow in the presence of a stationary magnetic field.  相似文献   

3.
This investigation studied the effects of 50-Hz electric and magnetic fields on the pulse rate and blood pressure in humans. Electrocardiograms (ECG) and the blood pressure of 41 male volunteers were recorded using ambulatory methods. Twenty-six subjects were measured in and outside real fields and 15 subjects in and outside `sham' fields. The results of the ECG recordings have been presented earlier. This article deals with the analysis of the blood pressure measurements. Measurement took 3 hrs. First, the subjects spent 1 h outside the fields, then 1 h in real or `sham' fields, followed by 1 h outside the fields. The electric field strength varied from 3.5 to 4.3 kV/m and the magnetic flux density from 1.4 to 6.6 μT. When analysing the blood pressure, which was measured with a non-invasive cuff method, it could not be shown that the fields (<4.3 kV/m and <6.6 μT) affected diastolic or systolic blood pressure. Received: 6 June 1994 / Accepted in revised form: 11 March 1996  相似文献   

4.
Functional mapping in the human brain using high magnetic fields.   总被引:4,自引:0,他引:4  
An avidly pursued new dimension in magnetic resonance imaging (MRI) research is the acquisition of physiological and biochemical information non-invasively using the nuclear spins of the water molecules in the human body. In this trial, a recent and unique accomplishment was the introduction of the ability to map human brain function non-invasively. Today, functional images with subcentimetre resolution of the entire human brain can be generated in single subjects and in data acquisition times of several minutes using 1.5 tesla (T) MRI scanners that are often used in hospitals for clinical purposes. However, there have been accomplishments beyond this type of imaging using significantly higher magnetic fields such as 4 T. Efforts for developing high magnetic field human brain imaging and functional mapping using MRI (fMRI) were undertaken at about the same time. It has been demonstrated that high magnetic fields result in improved contrast and, more importantly, in elevated sensitivity to capillary level changes coupled to neuronal activity in the blood oxygenation level dependent (BOLD) contrast mechanism used in fMRI. These advantages have been used to generate, for example, high resolution functional maps of ocular dominance columns, retinotopy within the small lateral geniculate nucleus, true single-trial fMRI and early negative signal changes in the temporal evolution of the BOLD signal. So far these have not been duplicated or have been observed as significantly weaker effects at much lower field strengths. Some of these high-field advantages and accomplishments are reviewed in this paper.  相似文献   

5.
This investigation studied the effects of 50 Hz electric and magnetic fields on the pulse rate of the human heart. The ECG (electrocardiograms) of 41 male volunteers were recorded with a Holter recorder. Twenty-six subjects were measured in and outside real fields, and 15 subjects were measured in and outside “sham” fields. The blood pressure and EEG (electroencephalogram) were also measured, but this article presents only the results of ECG recordings. The measurements took 3 h. The subjects were first sitting for 1 h outside the fields, then 1 h in the real or “sham” fields, and then, again, 1 h outside the fields. The electric field strength varied from 3.5 to 4.3 kV/m and the magnetic flux density from 1.4 to 6.6 μT. An analysis of the ECG recordings showed that the subjects' pulse rates were the same in and outside the fields. No response occurred when the subjects were exposed to real or “sham” fields. © 1994 Wiley-Liss, Inc.  相似文献   

6.
The saturation magnetizations of the three iron cluster of ferredoxin II of Desulfovibrio gigas in both the oxidized and reduced states have been studied at fixed magnetic fields up to 4.5 tesla over the temperature range from 1.8 to 200 K. The low field (0.3 tesla) susceptibility of oxidized ferredoxin II obeys the Curie law over this entire temperature range. This establishes -2Jox greater than 200 cm-1 as the lower limit for the antiferromagnetic exchange coupling of oxidized ferredoxin II. The saturation magnetizations of reduced ferredoxin II at several fixed fields yield a nested family of curves which can be fit with spin S = 2 and D = -2.7(4) cm-1 (with E/D assigned the value 0.23 as determined by M?ssbauer and EPR spectra). The low field susceptibility of reduced ferredoxin II also obeys the Curie law from approximately 4 up to 200 K. This establishes -2Jred greater than 40 cm-1 as the lower limit for the antiferromagnetic coupling of reduced ferredoxin II.  相似文献   

7.
Biological effects of magnetic field and their safety criteria, especially effects of gradient magnetic field on the cerebral and pulmonary circulation during functional brain mapping are still unclear. Here we estimated that magnetically induced artifacts for the blood oxygenation level- and flow- based functional magnetic resonance imaging are less than 0.1%, and disturbance in the pulmonary circulation is less than 1.3% even if the field strength of magnetic resonance system is risen up to 10 tesla. These paramagnetic effects are considered to be small and harmless during human brain mapping.  相似文献   

8.
Goal: This paper reviews recent studies evaluating human subjects for physiologic or neuro-cognitive function adverse effects resulting from exposure to static magnetic fields of magnetic resonance imaging systems.

Materials and Methods: The results of three studies are summarized. Two studies evaluated exposure to a maximum of 8 Tesla (T). The first series studied 25 normal human subjects’ sequential vital signs (heart rate, blood pressure, blood oxygenation, core temperature, ECG, respiratory rate) measured at different magnetic field strengths to a maximum of 8 T. A second series of 25 subjects were studied at 0.05 and 8 T (out and in the bore of the magnet), performing 12 different standardized neuro-psychological tests and auditory–motor reaction times. The subjects’ comments were recorded immediately following the study and after a three-month interval. The third study contained 17 subjects, placed near the bore of a 1.5 T magnet, and it used six different cognitive, cognitive–motor, or sensory tests.

Results: There were no clinically significant changes in the subjects’ physiologic measurements at 8 T. There was a slight increase in the systolic blood pressure with increasing magnetic field strength. There did not appear to be any adverse effect on the cognitive performance of the subjects at 8 T. A few subjects commented at the time of initial exposure on dizziness, metallic taste in the mouth, or discomfort related to the measurement instruments or the head coil. There were no adverse comments at 3 months. The 1.5 T study had two of the four neuro-behavioral domains exhibiting adverse effects (sensory and cognitive–motor).

Conclusions: These studies did not demonstrate any clinically relevant adverse effects on neuro-cognitive testing or vital sign changes. One short-term memory, one sensory, and one cognitive–motor test demonstrated adverse effects, but the significance is not clear.  相似文献   


9.
In this work the effect of sinusoidal 50 Hz, 0.2 mT magnetic fields on the red blood cells (RBCs) and heart functions of Albino rats were investigated. Twenty-four male Albino rats were equally divided into four groups, A, B, C, and D. Animals from groups B were continuously exposed to the magnetic field for 15 days; and groups C and D, for 30 days. Group A was used as control. Animals from group D were kept after exposure to the magnetic field for a period of 45 days for delayed effect studies. The osmotic fragility and shape of RBCs' membrane and hemoglobin (Hb) structure tests were carried out for all groups. The dielectric relaxation of Hb molecules was measured in the frequency range of 0.1-10 MHz and the dielectric increment (Deltaepsilon), relaxation time (tau), molecular radius (r), and Cole-Cole parameter (alpha) were calculated for all groups. The ECG was measured for all animals before and after exposure to the magnetic field. The results indicated that exposure of the animals to 50 Hz, 0.2 mT magnetic fields resulted in the decrease of RBCs membrane elasticity and permeability and changes in the molecular structure of Hb. The ECG of the exposed animals was considerably altered. The data also indicated that there was no sign of repair in the newly generated RBCs structure and the ECG after removing the animals from the magnetic field, which indicates that the blood generating system was severely injured. The injuries in the heart of the animals were attributed to the loss of some physiological functions of the RBCs as a result of exposures of the rats to the magnetic field.  相似文献   

10.
Blood flow in a steady magnetic field has been of great interest over recent years. Many researchers have examined the effects of magnetic fields on velocity profiles and arterial pressure, and major studies have focused on steady or sinusoidal flows. In this paper, we present a solution for pulsed magnetohydrodynamic blood flow with a somewhat realistic physiological pressure wave obtained using a Windkessel lumped model. A pressure gradient is derived along a rigid vessel placed at the output of a compliant module which receives the ventricle outflow. Then, velocity profile and flow rate expressions are derived in the rigid vessel in the presence of a steady transverse magnetic field. As expected, results showed flow retardation and flattening. The adaptability of our solution approach allowed a comparison with previously addressed flow cases and calculations presented a good coherence with those well established solutions.  相似文献   

11.
The incorporation of 45Ca in mixed human lymphocytes was measured following one-hour exposures of the cells to combined steady and periodic magnetic fields designed to probe for cyclotron resonance response in calcium incorporation. Measurements were made as a function of magnetic field frequency, up to 30 Hz, and as a function of magnetic field amplitude, up to 1.5 x 10(-4) Trms. The amplitude measurements demonstrated that the relative 45Ca uptake at resonance follows different mechanisms of interaction above and below 0.2 x 10(-4) Trms. After adjusting the magnetic field configuration for maximum incorporation, we then determined the effects of the calcium influx blocker nifedipine on 45Ca incorporation, with and without simultaneous exposure to this specific magnetic field combination. The presence of nifedipine in both unexposed and exposed cell suspensions resulted in decreased 45Ca uptake, presumably through the slow inward calcium channels. Evidence was found suggesting that nifedipine acts antagonistically to the 45Ca cyclotron resonance tuning signal.  相似文献   

12.
The magnetic circular dichroism (MCD) spectra of the 4Fe clusters in the iron-sulphur proteins high-potential iron protein from Chromatium and the 8Fe ferredoxin from Clostridium pasteurianum have been measured over the wavelength range 300-800 nm at temperatures between approx. 1.5 and 50 K and at magnetic fields up to 5 tesla. In both cases the proteins have been studied in the oxidized and reduced states. The reduced state of high-potential iron protein gives a temperature-independent MCD spectrum up to 20 K, confirming the diamagetism of this state at low temperature. The MCD spectrum of samples of oxidized ferredoxin invariably show the presence of a low concentration of a paramagnetic species, in agreement with the observation that the EPR spectrum always shows a signal at g = 2.01. The paramagnetic MCD spectrum runs across the whole of the wavelength range studied and therefore most probably originates from an iron-sulphur centre. The diamagnetic component of the MCD spectrum of oxidized ferredoxin is very similar to that of reduced high-potential iron protein. The low-temperature MCD spectra of oxidized high-potential iron protein and reduced ferredoxin reveal intense, temperature-dependent bands. The spectra are highly structured with that of high-potential iron protein showing a large number of electronic transitions across the visible region. The MCD spectra of the two different oxidation levels are quite distinctive and should provide a means of establishing the identity of these state of 4Fe clusters in more complex proteins. MCD magnetisation curves have been constructed from detailed studies of the field and temperature dependence of the MCD spectra of the two paramagnetic oxidation states. These plots can be satisfactorily fitted to the theoretically computed curves for an S = 1/2 ground state with the g factors experimentally determined by EPR spectroscopy. The low-temperature MCD spectra of the reduced 2Fe-2S ferredoxin from Spirulina maxima are also presented and MCD magnetisation curves plotted and fitted to the experimentally determined g factors.  相似文献   

13.
We investigated the acute effect of static magnetic fields of up to 8 T on skin blood flow and body temperature in anesthetized rats. These variables were measured prior to, during, and following exposure to a magnetic field in a superconducting magnet with a horizontal bore. The dorsal skin was transversely incised for 1 cm to make a subcutaneous pocket. Probes of a laser Doppler flowmeter and a thermistor were inserted into the pocket and positioned at mid-dorsum to measure skin blood flow and temperature. Another thermistor probe was put into the rectum to monitor rectal temperature. After baseline measurement outside the magnet, the rat was inserted into the bore for 20 min so that mid-dorsum was exactly positioned at the center, where the magnetic field was nearly homogeneous. Post-exposure changes were then recorded for 20 min outside the bore. Sham-exposed animals were submitted to exactly the same conditions, except that the superconducting magnet was not energized. Skin blood flow and temperature decreased significantly during magnetic field exposure and recovered after removal of the animal from the magnet. The rectal temperature showed a tendency to decrease while the animal was in the magnet. The microcirculatory and thermal reactions in the present study were consistent and agreed with some of the predictions based on mathematical simulations and model experiments.  相似文献   

14.
Mathematical modelling of the cardiovascular system (CVS) can help in understanding the complex interactions between both the ventricles and the septum. By describing the behaviour of the left (right) ventricular free wall, atria and septum using the variable elastance models, it is possible to reproduce their interactions. By relating the mechanical properties of both atria and both ventricles to the electrocardiogram (ECG) signal, it is possible to analyse the effects produced by different ECG delay on haemodynamic parameters. In the cardiovascular field, the incorrect interactions between septum and both ventricular free walls are based on many pathological conditions, i.e. symptomatic heart failure resulting from systolic dysfunction, ischemic dilated cardiomyopathy, and so on. The possible corrections that can be induced on the QRS complex duration in the ECG signal (i.e. cardiac resynchronisation therapy, CRT) can produce benefits improving the clinical status of the patient. The aim of this work was to evaluate, using our numerical simulator of the CVS, the effects induced on coronary blood flow (CBF) and aortic pressure using different ECG times, intra-ventricular and inter-ventricular delays. The results were obtained by reproducing the circulatory baseline and CRT conditions of seven patients described in literature. Haemodynamic simulated results are in accordance with literature data. Also the controversial results on CBF, in presence of CRT, are consistent with those described in the literature.  相似文献   

15.
Functional MRI (fMRI) using the blood oxygenation level dependent (BOLD) signal is a common technique in the study of brain function. The BOLD signal is sensitive to the complex interaction of physiological changes including cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral oxygen metabolism (CMRO2). A primary goal of quantitative fMRI methods is to combine BOLD imaging with other measurements (such as CBF measured with arterial spin labeling) to derive information about CMRO2. This requires an accurate mathematical model to relate the BOLD signal to the physiological and hemodynamic changes; the most commonly used of these is the Davis model. Here, we propose a new nonlinear model that is straightforward and shows heuristic value in clearly relating the BOLD signal to blood flow, blood volume and the blood flow-oxygen metabolism coupling ratio. The model was tested for accuracy against a more detailed model adapted for magnetic fields of 1.5, 3 and 7T. The mathematical form of the heuristic model suggests a new ratio method for comparing combined BOLD and CBF data from two different stimulus responses to determine whether CBF and CMRO2 coupling differs. The method does not require a calibration experiment or knowledge of parameter values as long as the exponential parameter describing the CBF-CBV relationship remains constant between stimuli. The method was found to work well for 1.5 and 3T but is prone to systematic error at 7T. If more specific information regarding changes in CMRO2 is required, then with accuracy similar to that of the Davis model, the heuristic model can be applied to calibrated BOLD data at 1.5T, 3T and 7T. Both models work well over a reasonable range of blood flow and oxygen metabolism changes but are less accurate when applied to a simulated caffeine experiment in which CBF decreases and CMRO2 increases.  相似文献   

16.
Mathematical modelling of the cardiovascular system (CVS) can help in understanding the complex interactions between both the ventricles and the septum. By describing the behaviour of the left (right) ventricular free wall, atria and septum using the variable elastance models, it is possible to reproduce their interactions. By relating the mechanical properties of both atria and both ventricles to the electrocardiogram (ECG) signal, it is possible to analyse the effects produced by different ECG delay on haemodynamic parameters. In the cardiovascular field, the incorrect interactions between septum and both ventricular free walls are based on many pathological conditions, i.e. symptomatic heart failure resulting from systolic dysfunction, ischemic dilated cardiomyopathy, and so on. The possible corrections that can be induced on the QRS complex duration in the ECG signal (i.e. cardiac resynchronisation therapy, CRT) can produce benefits improving the clinical status of the patient. The aim of this work was to evaluate, using our numerical simulator of the CVS, the effects induced on coronary blood flow (CBF) and aortic pressure using different ECG times, intra-ventricular and inter-ventricular delays. The results were obtained by reproducing the circulatory baseline and CRT conditions of seven patients described in literature. Haemodynamic simulated results are in accordance with literature data. Also the controversial results on CBF, in presence of CRT, are consistent with those described in the literature.  相似文献   

17.
We report the development of a novel technology that enables the wireless transmission of sufficient amounts of power to implantable physiological devices. The system involves a primary unit generating the magnetic field and a secondary pickup unit deriving power from the magnetic field and a power conditioner. The inductively coupled system was able to supply a minimum of 20 mW at all locations and pickup orientations across a rat cage, although much higher power of up to 10 W could be achieved. We hypothesized that it would be possible to use this technology to record a high-fidelity ECG signal in a conscious rat. A device was constructed in which power was utilized to recharge a battery contained within a telemetry device recording ECG signal sampled at 2,000 Hz in conscious rats (200-350 g) living in their home cage. Attributes of the ECG signal (QT, QRS, and PR interval) could be obtained with a high degree of accuracy (<1 ms). ECG and heart rate changes in response to treatment with the beta blocker propranolol and the proarrhythmic alkaloid aconitine were measured. Transmitters were implanted for up to 4 mo, and the characteristic circadian variation in heart rate was recorded. Such technology allows potentially lifetime monitoring without the need for implant refurbishment. The ability to provide suitable power levels to implanted devices without concern to the orientation of the device and without causing heating provides the basis for the development of new devices to record or influence physiological signals in animals or humans over significantly longer time periods than can currently be accommodated.  相似文献   

18.
This investigation studied the effect of 50 Hz electric and magnetic fields on the human heart. The electrocardiograms of 27 transmission-line workers and 26 male volunteers were recorded with a Holter recorder both in and outside the fields. The measurements took from half an hour to a few hours. The electric field strength varied from 0.14 to 10.21 kV/m and the magnetic flux density from 1.02 to 15.43 μT. Analysis of the ECG recordings showed that extrasystoles or arrhythmias were as frequent outside the field as in the field. In some cases a small decrease in heart rate was observed after field exposure. © 1993 Wiley-Liss, Inc.  相似文献   

19.
Oxidized rubredoxin from Clostridium pasteurianum has been investigated by magnetic circular dichroism (MCD) spectroscopy over the temperature range 1.5 to 150 K and at magnetic fields between 0 and 4.5 tesla. The results show that studies of the temperature and field dependence of MCD transitions afford insight into the polarization of electronic transitions for ground states with large g-value anisotropy, in addition to estimates of ground-state g values and zero-field splitting parameters. In agreement with the assignment made by Eaton and Lovenberg (Eaton, W.A. and Lovenberg, W. (1973) in Iron-Sulfur Proteins, Vol. II (Lovenberg, W., ed.), pp. 131-162, Academic Press, New York), the ultraviolet-visible spectrum of oxidized rubredoxin is assigned to two S----Fe(III) charge transfer transitions (both 6A1----6T2 under tetrahedral symmetry), each spanning a range of 650-430 nm and 430-330 nm, respectively. The observed splitting in each of these transitions is attributed to a predominant axial distortion in the excited state resulting in effective D2d symmetry.  相似文献   

20.
The flow of blood in the presence of a magnetic field gives rise to induced voltages in the major arteries of the central circulatory system. Under certain simplifying conditions, such as the assumption that the length of major arteries (e.g., the aorta) is infinite and that the vessel walls are not electrically conductive, the distribution of induced voltages and currents within these blood vessels can be calculated with reasonable precision. However, the propagation of magnetically induced voltages and currents from the aorta into neighboring tissue structures such as the sinuatrial node of the heart has not been previously determined by any experimental or theoretical technique. In the analysis presented in this paper, a solution of the complete Navier-Stokes equation was obtained by the finite element technique for blood flow through the ascending and descending aortic vessels in the presence of a uniform static magnetic field. Spatial distributions of the magnetically induced voltage and current were obtained for the aortic vessel and surrounding tissues under the assumption that the wall of the aorta is electrically conductive. Results are presented for the calculated values of magnetically induced voltages and current densities in the aorta and surrounding tissue structures, including the sinuatrial node, and for their field-strength dependence. In addition, an analysis is presented of magnetohydrodynamic interactions that lead to a small reduction of blood volume flow at high field levels above approximately 10 tesla (T). Quantitative results are presented on the offsetting effects of oppositely directed blood flows in the ascending and descending aortic segments, and a quantitative estimate is made of the effects of assuming an infinite vs. a finite length of the aortic vessel in calculating the magnetically induced voltage and current density distribution in tissue. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号