首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The authors analyze the physical prerequisites on which the proposed stereochemical theory of the three-dimensional structure of globular proteins is based. The theory represents a stereochemical modelling of the mechanism of protein self-organization suggested earlier by one of the authors. According to this mechanism, a highly helical intermediate structure(s) is formed at first and then it passes into the native one. In the highly-helical intermediate structure the arrangement of the polypeptide chain in space is the same as in the native structure. These two structures differ mainly by the secondary structure of the chain. The transition into the native structure proceeds under the effect of long-range interactions which transform the excess alpha-helices into beta-structural and irregular conformations. The so-called s-helices are considered (the alpha-helix, whose hydrophobic groups form a separate cluster on its surface). s-Helices can be obtained on the greater part of the polypeptide chain of any globular protein. In the unfolded protein chain they are the most stable and rapidly formed structures. It has been shown that namely s-helices are the initial blocks for the formation of the highly-helical intermediate structure. Stereochemical principles of the s-helix packing that permit to predict the three-dimensional structure of highly helical proteins have been found. According to these principles the highly helical structure represents the packing of hydrophobic surfaces and s-helices. In their turn, hydrophobic surfaces are formed as a result of complementary interaction of borders of hydrophobic clusters of two s-helices according to the "knob-hole" principle.  相似文献   

4.
This work explores the effect of long-range tertiary contacts on the distribution of residual secondary structure in the unfolded state of an α-helical protein. N-terminal fragments of increasing length, in conjunction with multidimensional nuclear magnetic resonance, were employed. A protein representative of the ubiquitous globin fold was chosen as the model system. We found that, while most of the detectable α-helical population in the unfolded ensemble does not depend on the presence of the C-terminal region (corresponding to the native G and H helices), specific N-to-C long-range contacts between the H and A-B-C regions enhance the helical secondary structure content of the N terminus (A-B-C regions). The simple approach introduced here, based on the evaluation of N-terminal polypeptide fragments of increasing length, is of general applicability to identify the influence of long-range interactions in unfolded proteins.  相似文献   

5.
S Miyazawa  R L Jernigan 《Proteins》1999,36(3):347-356
Short-range interactions for secondary structures of proteins are evaluated as potentials of mean force from the observed frequencies of secondary structures in known protein structures which are assumed to have an equilibrium distribution with the Boltzmann factor of secondary structure energies. A secondary conformation at each residue position in a protein is described by a tripeptide, including one nearest neighbor on each side. The secondary structure potentials are approximated as additive contributions from neighboring residues along the sequence. These are part of an empirical potential to provide a crude estimate of protein conformational energy at a residue level. Unlike previous works, interactions are decoupled into intrinsic potentials of residues, potentials of backbone-backbone interactions, and of side chain-backbone interactions. Also interactions are decoupled into one-body, two-body, and higher order interactions between peptide backbone and side chain and between backbones. These decouplings are essential to correctly evaluate the total secondary structure energy of a protein structure without overcounting interactions. Each interaction potential is evaluated separately by taking account of the correlation in the amino acid order of protein sequences. Interactions among side chains are neglected, because of the relatively limited number of protein structures. Proteins 1999;36:347-356. Published 1999 Wiley-Liss, Inc.  相似文献   

6.
The side chain interaction index (SCII) is a method of calculating the propensity for short-range interactions among side chains within a peptide sequence. Here, it is shown that the SCII values of secondary structure elements that have been shown to fold early and independently cluster separately from those of structures that fold later and/or are dependent on long-range interactions. In addition, the SCII values of engineered peptides that spontaneously adopt a particular desired fold in solution are significantly different from those of engineered peptides that fail to exhibit a stable conformation. Thus, the SCII, as a measure of local structural stability, constitutes a useful tool in folding prediction and in protein/peptide engineering. A program that allows rapid calculation of SCII values is presented.  相似文献   

7.
Intrinsically disordered proteins (IDPs) perform their physiological role without possessing a well-defined three-dimensional structure. Still, residual structure and conformational dynamics of IDPs are crucial for the mechanisms underlying their functions. For example, regions of transient secondary structure are often involved in molecular recognition, with the structure being stabilized (or not) upon binding. Long-range interactions, on the other hand, determine the hydrodynamic radius of the IDP, and thus the distance over which the protein can catch binding partners via so-called fly-casting mechanisms. The modulation of long-range interactions also presents a convenient way of fine-tuning the protein’s interaction network, by making binding sites more or less accessible. Here we studied, mainly by nuclear magnetic resonance spectroscopy, residual secondary structure and long-range interactions in nonstructural protein 5A (NS5A) from hepatitis C virus (HCV), a typical viral IDP with multiple functions during the viral life cycle. NS5A comprises an N-terminal folded domain, followed by a large (∼250-residue) disordered C-terminal part. Comparing nuclear magnetic resonance spectra of full-length NS5A with those of a protein construct composed of only the C-terminal residues 191–447 (NS5A-D2D3) allowed us to conclude that there is no significant interaction between the globular and disordered parts of NS5A. NS5A-D2D3, despite its overall high flexibility, shows a large extent of local residual (α-helical and β-turn) structure, as well as a network of electrostatic long-range interactions. Furthermore, we could demonstrate that these long-range interactions become modulated upon binding to the host protein Bin1, as well as after NS5A phosphorylation by CK2. As the charged peptide regions involved in these interactions are well conserved among the different HCV genotypes, these transient long-range interactions may be important for some of the functions of NS5A over the course of the HCV life cycle.  相似文献   

8.
The pausing of DNA replication has been used as a tool for analyzing secondary structures in a single-stranded DNA. M13mp8 (+) single-stranded DNA was replicated in vitro by the DNA polymerase alpha from calf thymus. The positions of pausing were determined from DNA sequencing gels. All experimentally observed pausing sites could be correlated with computer-predicted secondary structures of the M13 single-stranded DNA. In the computer calculations of the secondary structures, long-range base-pairing, G.T mispairs and loop-out of bases were allowed. By using six different primers, the pausing site pattern and the corresponding secondary structure map of a region comprising 1400 nucleotides of the M13 genome has been established. Our experiments indicate that the M13 DNA is highly structured. Most of the stable structures are clustered around the origin of replication. With fragments of the M13 DNA, we show that long-range base-pairing exists in the M13 single-stranded genome and we present evidence for tertiary structure interactions. Furthermore we observe structures that form newly during the course of replication. The Escherichia coli single-stranded DNA-binding protein facilitates replication through the barriers.  相似文献   

9.
The influence of long-range residue interactions on defining secondary structure in a protein has long been discussed and is often cited as the current limitation to accurate secondary structure prediction. There are several experimental examples where a local sequence alone is not sufficient to determine its secondary structure, but a comprehensive survey on a large data set has not yet been done. Interestingly, some earlier studies denied the negative effect of long-range interactions on secondary structure prediction accuracy. Here, we have introduced the residue contact order (RCO), which directly indicates the separation of contacting residues in terms of the position in the sequence, and examined the relationship between the RCO and the prediction accuracy. A large data set of 2777 nonhomologous proteins was used in our analysis. Unlike previous studies, we do find that prediction accuracy drops as residues have contacts with more distant residues. Moreover, this negative correlation between the RCO and the prediction accuracy was found not only for beta-strands, but also for alpha-helices. The prediction accuracy of beta-strands is lower if residues have a high RCO or a low RCO, which corresponds to the situation that a beta-sheet is formed by beta-strands from different chains in a protein complex. The reason why the current study draws the opposite conclusion from the previous studies is examined. The implication for protein folding is also discussed.  相似文献   

10.
We show that long- and short-range interactions in almost all protein native structures are actually consistent with each other for coarse-grained energy scales; specifically we mean the long-range inter-residue contact energies and the short-range secondary structure energies based on peptide dihedral angles, which are potentials of mean force evaluated from residue distributions observed in protein native structures. This consistency is observed at equilibrium in sequence space rather than in conformational space. Statistical ensembles of sequences are generated by exchanging residues for each of 797 protein native structures with the Metropolis method. It is shown that adding the other category of interaction to either the short- or long-range interactions decreases the means and variances of those energies for essentially all protein native structures, indicating that both interactions consistently work by more-or-less restricting sequence spaces available to one of the interactions. In addition to this consistency, independence by these interaction classes is also indicated by the fact that there are almost no correlations between them when equilibrated using both interactions and significant but small, positive correlations at equilibrium using only one of the interactions. Evidence is provided that protein native sequences can be regarded approximately as samples from the statistical ensembles of sequences with these energy scales and that all proteins have the same effective conformational temperature. Designing protein structures and sequences to be consistent and minimally frustrated among the various interactions is a most effective way to increase protein stability and foldability.  相似文献   

11.
12.
A general and fast method for maximizing the “recognition ability” of a linear combination of an arbitrary number of various methods used to recognize protein structures and produce sequence-to-structure alignments for the structurally analogous proteins is described. It is shown that, at a low level of sequence similarity, the optimal combination of methods displays a significantly higher recognition ability than each method alone; the leading role in this combination is played by (1) pseudopotentials of long-range interactions, (2) matrices of secondary structure similarity, and (3) amino acid substitution matrices. In the case of a high sequence similarity, substitution matrices play the leading and practically the sole role in the optimal combination, although the addition of pseudopotentials of long-range interactions and matrices of secondary structure similarity somewhat increases the recognition ability of the combined method.  相似文献   

13.
Regions of secondary structure are predicted, without using information about the conformation of the protein itself, and compared with crystallographic assignments for seven proteins of recently published sequence and conformation (Table 1). It is observed in Table 3 that the prediction of helices is good (78.7% for %cor.ass.3), except for proteins having large antiparallel pleated sheets, and the prediction of β-structure is quite good (51.2% for %cor.ass.3) except for helix-rich proteins.The prediction of secondary structure from sequence, and a survey of all protein structures analysed so far by X-ray crystallography, suggest that nuceleation starts in almost all cases from interactions in the medium range between the regions having helical potential (α-candidate) and β-structural potential (β-candidate), which are very close to each other but separated by at least three hydrophilic or neutral residues in four consecutive residues on the polypeptide chain. Predictability of loops or turns is enhanced to 71.3% (%cor.ass.2) from 64.4% by taking into account the contiguous α-β interactions. Such a medium-range interaction is called here a probable nucleus. There are a lot of nuclei in large proteins such as carboxypeptidase Aα, while there exists at least one in small proteins like the trypsin inhibitor, Moreover, such an interaction could be a transitionary state towards a helix-rich protein, and towards a helix-deficient protein having a large antiparallel pleated sheet β-structure as well.The analysis of the relation between probable nuclei with regard to their mutual spatial proximity strongly suggests that the topological pathway of the polypeptide chain in three-dimensional space might be decided by the long-range interactions between an α-candidate and a β-candidate. An empirical rule is observed that almost all parallel pleated sheets are accompanied by helices in their neighbourhood. An accumulation of chemical facts, such as complementation experiments, combinations of disulphide bonds, etc., seems also to be elucidated by the proposed mechanism of protein folding.  相似文献   

14.
Protein structures are stabilized by both local and long range interactions. In this work, we analyze the residue-residue contacts and the role of medium- and long-range interactions in globular proteins belonging to different structural classes. The results show that while medium range interactions predominate in all-alpha class proteins, long-range interactions predominate in all-beta class. Based on this, we analyze the performance of several structure prediction methods in different structural classes of globular proteins and found that all the methods predict the secondary structures of all-alpha proteins more accurately than other classes. Also, we observed that the residues occurring in the range of 21-30 residues apart contributes more towards long-range contacts and about 85% of residues are involved in long-range contacts. Further, the preference of residue pairs to the folding and stability of globular proteins is discussed.  相似文献   

15.
The failure of protein secondary structural prediction is commonly attributed to the neglect of long-range interactions. The question is, what is the minimum length of subsequence required to determine the central secondary structural state, stabilized only by local interactions? In the present work, the 20 amino acids were classified into eight groups to analyze systematically the relationship between the length and secondary structural state of subsequences in the PDB database. It was found that the fraction of subsequences with a unique central secondary structural state increases with increasing length, and the minimum length of subsequence required to determine the central secondary structural state is about 14–17 residues. The low accuracy of secondary structure prediction does not result from the neglect of long-range interactions, but may result from the limitation of the available protein database size or prediction algorithm.  相似文献   

16.
1H nuclear magnetic resonance experiments indicate formation of secondary structures in water solutions of a synthetic immunogenic peptide of sequence EVVPHKKMHKDFLEKIGGL corresponding to the C-helix (residues 69 to 87) of myohemerythrin. The conformational ensemble consists of a set of turn-like structures, distributed over the C-terminal half of the peptide and rapidly interconverting by way of unfolded states. These structures, termed nascent helix, are stabilized into helical structure with long-range order in water/trifluorethanol mixtures. Circular dichroism measurements confirm the presence of 50% helix in water/trifluoroethanol but show no evidence of helicity in water solutions of the peptide. It is apparent that no one member of the transient set of helical conformations which constitutes the nascent helix is sufficiently long to be detectable by circular dichroism experiments. No preferred conformations could be detected by nuclear magnetic resonance in the N-terminal half of the peptide, either in water or water/trifluoroethanol mixtures. This region of the peptide is stabilized in helix by long-range interactions in the folded protein. The possible role of nascent secondary structure in induction of antipeptide antibodies and in initiation of protein folding is discussed.  相似文献   

17.
Recognition of protein fold from amino acid sequence is a challenging task. The structure and stability of proteins from different fold are mainly dictated by inter-residue interactions. In our earlier work, we have successfully used the medium- and long-range contacts for predicting the protein folding rates, discriminating globular and membrane proteins and for distinguishing protein structural classes. In this work, we analyze the role of inter-residue interactions in commonly occurring folds of globular proteins in order to understand their folding mechanisms. In the medium-range contacts, the globin fold and four-helical bundle proteins have more contacts than that of DNA-RNA fold although they all belong to all-alpha class. In long-range contacts, only the ribonuclease fold prefers 4-10 range and the other folding types prefer the range 21-30 in alpha/beta class proteins. Further, the preferred residues and residue pairs influenced by these different folds are discussed. The information about the preference of medium- and long-range contacts exhibited by the 20 amino acid residues can be effectively used to predict the folding type of each protein.  相似文献   

18.
Insights into the earliest events in protein folding can be obtained by analysis of the conformational propensities of unfolded or partly folded states. The structure of the acid-unfolded state of apomyoglobin has been characterized using paramagnetic spin labeling and NMR. Nitroxide side-chains, introduced by coupling to mutant cysteine residues at positions 18, 77, and 133, were used as probes of chain compaction and long-range tertiary contacts. Significant interactions are observed within and between the N and C termini, while the central region of the polypeptide chain behaves as a random polymer. Even in this highly denatured form, the protein samples transient compact states in which there are native-like contacts between the N and C-terminal regions.  相似文献   

19.
The last three C-terminal residues (129-131) of intestinal fatty acid-binding protein (IFABP) participate in four main-chain hydrogen bonds and two electrostatic interactions to sequentially distant backbone and side-chain atoms. To assess if these interactions are involved in the final adjustment of the tertiary structure during folding, we engineered an IFABP variant truncated at residue 128. An additional mutation, Trp-6-->Phe, was introduced to simplify the conformational analysis by optical methods. Although the changes were limited to a small region of the protein surface, they resulted in an IFABP with altered secondary and tertiary structure. Truncated IFABP retains some cooperativity, is monomeric, highly compact, and has the molecular dimensions and shape of the native protein. Our results indicated that residues 129-131 are part of a crucial conformational determinant in which several long-range interactions, essential for the acquisition of the native state, are established. This work suggests that carefully controlled truncation can populate equilibrium non-native states under physiological conditions. These non-native states hold a great promise as experimental models for protein folding.  相似文献   

20.
Sequence-specific 1H NMR assignments are reported for the active L-tryptophan-bound form of Escherichia coli trp repressor. The repressor is a symmetric dimer of 107 residues per monomer; thus at 25 kDa, this is the largest protein for which such detailed sequence-specific assignments have been made. At this molecular mass the broad line widths of the NMR resonances preclude the use of assignment methods based on 1H-1H scalar coupling. Our assignment strategy centers on two-dimensional nuclear Overhauser spectroscopy (NOESY) of a series of selectively deuterated repressor analogues. A new methodology was developed for analysis of the spectra on the basis of the effects of selective deuteration on cross-peak intensities in the NOESY spectra. A total of 90% of the backbone amide protons have been assigned, and 70% of the alpha and side-chain proton resonances are assigned. The local secondary structure was calculated from sequential and medium-range backbone NOEs with the double-iterated Kalman filter method [Altman, R. B., & Jardetzky, O. (1989) Methods Enzymol. 177, 218-246]. The secondary structure agrees with that of the crystal structure [Schevitz, R., Otwinowski, Z., Joachimiak, A., Lawson, C. L., & Sigler, P. B. (1985) Nature 317, 782], except that the solution state is somewhat more disordered in the DNA binding region and in the N-terminal region of the first alpha-helix. Since the repressor is a symmetric dimer, long-range intersubunit NOEs were distinguished from intrasubunit interactions by formation of heterodimers between two appropriate selectively deuterated proteins and comparison of the resulting NOESY spectrum with that of each selectively deuterated homodimer. Thus, from spectra of three heterodimers, long-range NOEs between eight pairs of residues were identified as intersubunit NOEs, and two additional long-range intrasubunits NOEs were assigned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号