首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The osteology of the appendicular skeleton and its postnatal development are described in Bachia bicolor, a serpentiform lizard with reduced limbs. The pectoral girdle is well developed and the forelimb consists of a humerus, ulna, radius, five carpal elements (ulnare, radiale, distal carpals 4–3, centrale), four metacarpals (II, III, IV, V) and phalanges (phalangeal formula X‐2‐2‐2‐2). In the hindlimb, the femur is small and slender, and articulates distally with a series of ossified amorphous and extremely reduced elements that correspond to a fibula, tibia and proximal and distal tarsals 4 and 3. The pelvic girdle consists of ischium, pubis and ilium, but its two halves are widely separated; the ilium is the least reduced element. We describe the ossification and development during postnatal skeletal ontogeny, especially of epiphyseal secondary centres, ossifications of carpal elements, apophyseal ossifications and sesamoids. Compared to other squamates, B. bicolor shows an overall reduction in limb size, an absence of skeletal elements, a fusion of carpal elements, an early differentiation of apophyseal centres, and a low number of sesamoids and apophyseal centres. These observations suggest that the reductions are produced by heterochronic changes during postnatal development and probably during embryonic development; therefore the appendicular skeleton exhibits a pattern of paedomorphic features.  相似文献   

2.
3.
In extant birds, the hand is permanently abducted towards the ulna, and the wrist joint can bend extensively in this direction to fold the wing when not in use. Anatomically, this asymmetric mobility of the wrist results from the wedge-like shape of one carpal bone, the radiale, and from the well-developed convexity of the trochlea at the proximal end of the carpometacarpus. Among the theropod precursors of birds, a strongly convex trochlea is characteristic of Coelurosauria, a clade including the highly derived Maniraptora in addition to tyrannosaurs and compsognathids. The shape of the radiale can be quantified using a ‘radiale angle’ between the proximal and distal articular surfaces. Measurement of the radiale angle and reconstruction of ancestral states using squared-change parsimony shows that the angle was small (15°) in primitive coelurosaurs but considerably larger (25°) in primitive maniraptorans, indicating that the radiale was more wedge-shaped and the carpal joint more asymmetric. The radiale angle progressively increased still further within Maniraptora, with concurrent elongation of the forelimb feathers and the forelimb itself. Carpal asymmetry would have permitted avian-like folding of the forelimb in order to protect the plumage, an early advantage of the flexible, asymmetric wrist inherited by birds.  相似文献   

4.
目的建立中医法的简化生物力学模型,对法过程中手部主要部位的受力进行定量分析。方法应用摄像机和推拿手法测定仪实测推拿专家法推拿的运动学和力信号,建立含手部及桡骨、尺骨的简化的生物力学模型和方程,求解手部桡骨和尺骨远端点处的受力。结果 法外推时,手部桡骨和尺骨远端点处X方向(动方向)受力方向不变,出现两个峰值,近外推结束时受力最大;回收时两处受力大小和方向出现波动。手部桡骨和尺骨远端点处,Y方向和Z方向受力趋势相同,在逐步上升后出现了一个平缓变化的阶段,之后急骤下降。结论建立的简化生物力学模型可对中医法推拿手部受力进行较好的定量分析。  相似文献   

5.
Ulnar longitudinal deficiency (ULD) is a rare condition of the upper limbs. Although radius lengthening for radial longitudinal deficiencies (RLD) was found to be successful, no ulnar lengthening for ULD without RLD and hand deformities has been reported. Herein, we present a Bayne type II ULD case report of the ulnar lengthening and gradual reduction of the dislocated radial head in an 11-year-old boy using a half-ring sulcated external fixator. For ulnar lengthening/radial longitudinal traction for radial head reduction, transverse osteotomy in mid ulna was performed and half-ring sulcated external fixator was used for ulnar distraction lengthening. Radial longitudinal traction and stabilization of external fixator were achieved by transverse pins through ulna and radius. Distraction (1 mm/day) began at 5th day and was completed at 95th postoperative day. External fixator was applied for 7 months. Successful ulnar lengthening (81 mm; 62 % gain) was achieved 1-year after the surgery and the range of elbow motion at 2 years was >40°. Forearm rotation and wrist extension/flexion were also preserved with no complaints of pain. We concluded that ulnar distraction lengthening and gradual reduction of radial head could improve appearance of the arm and were of significant benefit to the patient.  相似文献   

6.
From early dinosaurs with as many as nine wrist bones, modern birds evolved to develop only four ossifications. Their identity is uncertain, with different labels used in palaeontology and developmental biology. We examined embryos of several species and studied chicken embryos in detail through a new technique allowing whole-mount immunofluorescence of the embryonic cartilaginous skeleton. Beyond previous controversy, we establish that the proximal–anterior ossification develops from a composite radiale+intermedium cartilage, consistent with fusion of radiale and intermedium observed in some theropod dinosaurs. Despite previous claims that the development of the distal–anterior ossification does not support the dinosaur–bird link, we found its embryonic precursor shows two distinct regions of both collagen type II and collagen type IX expression, resembling the composite semilunate bone of bird-like dinosaurs (distal carpal 1+distal carpal 2). The distal–posterior ossification develops from a cartilage referred to as “element x,” but its position corresponds to distal carpal 3. The proximal–posterior ossification is perhaps most controversial: It is labelled as the ulnare in palaeontology, but we confirm the embryonic ulnare is lost during development. Re-examination of the fossil evidence reveals the ulnare was actually absent in bird-like dinosaurs. We confirm the proximal–posterior bone is a pisiform in terms of embryonic position and its development as a sesamoid associated to a tendon. However, the pisiform is absent in bird-like dinosaurs, which are known from several articulated specimens. The combined data provide compelling evidence of a remarkable evolutionary reversal: A large, ossified pisiform re-evolved in the lineage leading to birds, after a period in which it was either absent, nonossified, or very small, consistently escaping fossil preservation. The bird wrist provides a modern example of how developmental and paleontological data illuminate each other. Based on all available data, we introduce a new nomenclature for bird wrist ossifications.  相似文献   

7.
A new kinematic model of pro- and supination of the human forearm   总被引:2,自引:0,他引:2  
We introduce a new kinematic model describing the motion of the human forearm bones, ulna and radius, during forearm rotation. During this motion between the two forearm extrem-positions, referred to as supination (palm up) and pronation (palm down), effects occur, that cannot be explained by the the established kinematic model of R. Fick from 1904. Especially, the motion of the ulna is not properly reproduced by Fick's model. During forearm rotation an evasive motion of the ulna is observed by various authors, using magnetic resonance imaging MRI) technology. Our new kinematic model also simulates this evasive motion. Furthermore, the model is enlarged to include angulations of the forearm bones. Using these results the influence of forearm fractures on the range of forearm motion can be predicted. This knowledge can be used by surgeons to choose the optimal therapy in re-establishing free forearm mobility.  相似文献   

8.
The earliest eutherian mammals were small-bodied locomotor generalists with a forelimb morphology that strongly resembles that of extant rats. Understanding the kinematics of the humerus, radius, and ulna of extant rats can inform and constrain hypotheses concerning typical posture and mobility in early eutherian forelimbs. The locomotion of Rattus norvegicus has been extensively studied, but the three-dimensional kinematics of the bones themselves remains under-explored. Here, for the first time, we use markerless XROMM (Scientific Rotoscoping) to explore the three-dimensional long bone movements in Rattus norvegicus during a normal, symmetrical gait (walking). Our data show a basic kinematic profile that agrees with previous studies on rats and other small therians: rats maintain a crouched forelimb posture throughout the step cycle, and the ulna is confined to flexion/extension in a parasagittal plane. However, our three-dimensional data illuminate long-axis rotation (LAR) movements for both the humerus and the radius for the first time. Medial LAR of the humerus throughout stance maintains an adducted elbow with a caudally-facing olecranon process, which in turn maintains a cranially-directed manus orientation (pronation). The radius also shows significant LAR correlated with manus pronation and supination. Moreover, we report that elbow flexion and manus orientation are correlated in R. norvegicus: as the elbow angle becomes more acute, manus supination increases. Our data also suggest that manus pronation and orientation in R. norvegicus rely on a divided system of labor between the ulna and radius. Given that the radius follows the flexion and extension trajectory of the ulna, it must rotate at the elbow (on the capitulum) so that during the stance phase its distal end lies medial to ulna, ensuring that the manus remains pronated while the forelimb is supporting the body. We suggest that forelimb posture and kinematics in Juramaia, Eomaia, and other basal eutherians were grossly similar to those of rats, and that humerus and radius LAR may have always played a significant role in forelimb and manus posture in small eutherian mammals.  相似文献   

9.
Previous approaches to measuring forces in the forearm have made the assumption that forces acting in the radius and ulna are uniaxial near the wrist and elbow. To accurately describe forces in the forearm and the forces in the interosseous ligament, we have developed a new methodology to quantitatively determine the 3-D force vectors acting in forearm structures when a compressive load is applied to the hand. A materials testing machine equipped with a six degree-of-freedom universal force–moment sensor (UFS) was employed to apply a uniaxial compressive force to cadaveric forearms gripped at the hand and humerus. Miniature UFSs were implanted into the distal radius and proximal ulna to measure force vectors there. A 3-D digitizing device was used to measure transformations between UFS coordinate systems, utilized for calculating the force vectors in the distal ulna, proximal radius, and the interosseous ligament (IOL). This method was found to be repeatable to within 3 N, and accurate to within 2 N for force magnitudes. Computer models of the forearm, generated from CT scans, were used to visualize the force vectors in 3-D. Application of this methodology to eight forearm specimens showed that the radius carries most of the load at the wrist while force in the IOL relieves load acting in the radius at the mid-forearm. For a 136 N applied hand force, the force in the IOL was 36±21 N. Advantages of this methodology include the determination of 3-D force vectors, especially those in the IOL, as well as computer generated 3-D visualization of results.  相似文献   

10.
This study describes, quantifies, and compares the growth and development of the volant forelimb morphology of Myotis lucifugus with that of the terrestrial forelimb morphology of Rattus norvegicus. In M. lucifugus there is 1) accelerated growth in forearm length after parturition, 2) cessation in growth of the midshaft diameter of the ulna just after the onset of osteogenesis, 3) proximal fusion of the radius and ulna, which results in the radius occupying 97% of the articular surface of the elbow joint in adults, 4) fusion between the cartilaginous distal epiphyses of the radius and ulna which results in formation of a radioulnar bridge that becomes fully ossified in adults, and 5) incomplete ossification of the ulna with a section of the diaphysis becoming ligamentous. None of these events occurs during development in R.norvegicus.  相似文献   

11.
A method for measuring three-dimensional kinematics that incorporates the direct cross-registration of experimental kinematics with anatomic geometry from Computed Tomography (CT) data has been developed. Plexiglas registration blocks were attached to the bones of interest and the specimen was CT scanned. Computer models of the bone surface were developed from the CT image data. Determination of discrete kinematics was accomplished by digitizing three pre-selected contiguous surfaces of each registration block using a three-dimensional point digitization system. Cross-registration of bone surface models from the CT data was accomplished by identifying the registration block surfaces within the CT images. Kinematics measured during a biomechanical experiment were applied to the computer models of the bone surface. The overall accuracy of the method was shown to be at or below the accuracy of the digitization system used. For this experimental application, the accuracy was better than +/-0.1mm for position and 0.1 degrees for orientation for linkage digitization and better than +/-0.2mm and +/-0.2 degrees for CT digitization. Surface models of the radius and ulna were constructed from CT data, as an example application. Kinematics of the bones were measured for simulated forearm rotation. Screw-displacement axis analysis showed 0.1mm (proximal) translation of the radius (with respect to the ulna) from supination to neutral (85.2 degrees rotation) and 1.4mm (proximal) translation from neutral to pronation (65.3 degrees rotation). The motion of the radius with respect to the ulna was displayed using the surface models. This methodology is a useful tool for the measurement and application of rigid-body kinematics to computer models.  相似文献   

12.
To enable a quantification of net joint moments and joint reaction forces, indicators of joint loading, this study aimed to locate the mediolateral joint axes of rotation and establish the body segment parameters of the limbs of pigs (Sus scrofa). To locate the joint axes of rotation the scapulohumeral, humeroradial, carpal complex, metacarpophalangeal, coxofemoral, femorotibial, tarsal, and metatarsophalangeal joints from 12 carcasses were studied. The joints were photographed in three positions, bisecting lines drawn at fixed landmarks with their intersection marking the joint axes of rotation. The body segment parameters, i.e. the segment mass, center of mass and moment of inertia were measured on the humerus, radius/ulna, metacarpus, forepastern, foretoe, femur, tibia, metatarsus, hindpastern, and hindtoe segments from five carcasses. The segments were weighed, and their center of mass was found by balancing them. The moments of inertia of the humerus, radius/ulna, femur and tibia were found by rotating the segments. The moments of inertia of the remaining segments were calculated. Generally, the joint axes of rotation were near the attachment site of the lateral collateral ligaments. The forelimb, with segments taken as one, was significantly lighter and shorter than the hindlimb (P < 0.001). In all segments the center of mass was located 31 to 50% distal to the proximal segment end. The segment mass decreased with distance from the trunk, as did the segment moment of inertia. The results may serve as reference on the location of the joint axes of rotation and on the body segment parameters for inverse dynamic modeling of pigs.  相似文献   

13.
The avian wing possesses the ability to synchronize flexion or extension of the elbow and wrist joints automatically. Skeletal and muscular mechanisms are involved in generating this phenomenon. The drawing-parallels action of the radius and ulna coordinates the movements of the forearm with the carpus. Movement of the radius along the length of the forearm isnot dependent on the shape disparity between the dorsal and ventral condyles of the humerus, nor is it generated by the shape of the dorsal condyle itself. Instead, shifting of the radius toward the wrist occurs during humeroulnar flexion when the radius, being pushed by muscles toward the ulna, is deflected off theIncisura radialis toward the wrist. Movement of the radius toward the elbow occurs during the latter stages of humeroulnar extension when, as the dorsal condyle of the humerus and the articular surface of the ulna's dorsal cup roll apart, the radius gets pulled by the humerus and its ligaments away from the wrist. Synchronization of the forearm with the manus is accomplished by twojoint muscles and tendons.M. extensor metacarpi radialis and the propatagial tendons act to extend the manus in unison with the forearm, whileM. extensor metacarpi ulnaris helps these limb segments flex simultaneously.M. flexor carpi ulnaris, in collaboration with the drawing-parallels mechanisms, flexes the carpus automatically when the elbow is flexed, thereby circumducting the manus from the plane of the wing toward the body. In a living bird, these skeletal and muscular coordinating mechanisms may function to automate the internal kinematics of the wing during flapping flight. A mechanized wing may also greatly facilitate the initial flight of fledgling birds. The coordinating mechanisms of the wing can be detected in a bird's osteology, thereby providing researchers with a new avenue by which to gauge the flight capabilities of avian fossil taxa.  相似文献   

14.
15.
The manus and pes were studied using whole-mount and histological preparations of ontogenetic series of Chelonia mydas and Caretta caretta. Patterns of connectivity and sequences of chondrification events are similar to those reported for other turtle species, with respect to both the primary axis and the digital arch. There is no evidence of anterior condensations in the region distal to the radius and the tibia, supporting the hypothesis that the radiale and tibiale are absent in turtles. The three middle metacarpals are the first elements to start ossification in the manus of C. mydas, while ossification has not started in the pes. In the hatchling of C. mydas, most carpals have started ossification, whereas tarsals are mostly still cartilaginous. In C. caretta, the first carpals to ossify are the ulnare and intermedium, followed by the pisiform. Among metatarsals, the fifth hooked metatarsal is the last one to start ossification. The fibulare and intermedium fuse early in chondrogenesis, later becoming the astragalocalcaneum. Ossification in the carpals of C. caretta starts while tarsals are still cartilaginous. The derived autopodial proportions in each autopodium of adults are laid out at the condensation stage, and features that were present in basal turtles are absent at all stages examined (developmental penetrance). In contrast to this, conservatism is expressed in the presence of similar patterns of connectivity during early chondrogenesis, and in the development of overall proportions of the manus versus pes. As in adult anatomy, the development of the autopodium of marine turtles is a mosaic of derived and plesiomorphic features.  相似文献   

16.
The cercopithecoid wrist joint differs from the wrist joints of hominoids in several ways. The distal ulna, the distal radius, the pisiform, the triquetrum, the hamate, and the base of the fifth metacarpal are on the one hand remarkably alike among cercopithecoid genera, and on the other remarkably distinct from homologous bones in the Hominoidea. Functionally, the triquetrum and the pisiform, in conjuction with the ulnar styloid process, check the proximal carpal row during ulnar deviation, and are possibly important in stabilizing the wrist during dorsiflexion as well. The head of the ulna almost certainly betokens a range of radioulnar supination in cercopithecoids that is substantially less than is to be found in any of the hominoid genera. The articulation between the hamate bone and the base of the fifth metacarpal allows for considerable dorsiflexion in the Cercopithecoidea; this potential was not evidenct in any of the hominoids examined. Behaviorally, the cercopithecoid wrist can most profitably be viewed as an adaptation for a quadrupedal life style involving dorsiflexion of the wrist and palmigrade/digitigrade substrate contact. The hominoid wrist joint is not adapted for such a behavioral potential.  相似文献   

17.
18.
Summary Protoplasts ofAvena sativa rotate in an alternating electric field provided that at least two cells are located close to each other. An optimum frequency range (20 to 30 kHz) exists where rotation of all cells exposed to the field is observed. Below and above this frequency range, rotation of some cells is only occasionally observed. The angular velocity of rotation depends on the square of the electric field strength. At field strengths above the value leading to electrical breakdown of the cell membrane, rotation is no longer observed due to deterioration of the cells. The absolute value of the angular velocity of rotation at a given field strength depends on the arrangement of the cells in the electric field. A maximum value is obtained if the angle between the field direction and the line connecting the two cells is 45o. With increasing distance between the two cells the rotation speed decreases. Furthermore, if two cells of different radii are positioned close to each other the cell with the smaller radius will rotate with a higher speed than the larger one. Rotation of cells in an alternating electric field is described theoretically by interaction between induced dipoles is adjacent cells. The optimum frequency range for rotation is related to the relaxation of the polarization process in the cell. The quadratic dependence of the angular velocity of rotation on the field strength results from the fact that the torque is the product of the external field and the induced dipole moment which is itself proportional to the external field. The theoretical and experimental results may be relevant for cyclosis (rotational streaming of cytoplasm) in living cells.  相似文献   

19.
Summary Axolotl (Ambystoma mexicanum) forearms were divided, by an incision between the radius and ulna, to produce anterior and posterior halves. These were prevented from fusing together again by a graft of head skin and amputated through the wrist. This procedure enabled independent regeneration from both halves of the stump. Anterior half stumps produced a single digit while the posterior halves mainly regenerated three digits, the two halves together making a single hand. Treatment with retinoic acid, injected intraperitoneally four days after amputation, abolished regeneration from the posterior half stump and produced proximo-distally duplicated regenerates from the anterior half. The duplicated regenerates had in most cases a complete four digit hand and were therefore more than proximalised regenerates from the anterior side of the limb. Replacement of anterior limb skin with head skin had no effect on the response of the regenerating limb to retinoic acid. In species where application of retinoic acid induces anterior-posterior duplications, these are always derived from the anterior side of the limb. The results presented here show that the morphogenic effects of retinoic acid in inducing proximo-distal duplications are also due to its effects on the anterior tissues of the limb.Excellent technical assistance was provided by Carole Ross and Marjory Shiach and useful discussion were had with Paul Martin, David Wilson and Gavin Swanson  相似文献   

20.
The purpose of this study was to compare passive to active testing on the kinematics of the elbow and forearm using a load-controlled testing apparatus that simulates muscle loading. Ten fresh-frozen upper extremities were tested. Active control was achieved by employing computer-controlled pneumatic actuators attached to the tendons of the brachialis, biceps, triceps, brachioradialis and pronator teres. Motion of the radius and ulna relative to the humerus was measured with an electromagnetic tracking system. Active elbow flexion produced more repeatable motion of the radius and ulna than when tested passively (p<0.05). The decrease in variability, as determined from the standard deviation of five successive trials in each specimen, was 76.5 and 58.0% for the varus-valgus and internal-external motions respectively (of the ulna relative to the humerus). The variability in flexion during simulated active forearm supination was 30.6% less than during passive testing. Thus under passive control, in the absence of stability provided by muscular loading across the joint, these uncontrolled motions produce increased variability amongst trials. The smooth and repeatable motions resulting from active control, that probably model more closely the physiologic state, appear to be beneficial in the evaluation of unconstrained kinematics of the intact elbow and forearm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号