首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human and bovine vascular endothelial cells from the umbilical vein and the aorta, respectively, were cultured in the presence of EDGF (a growth factor prepared from bovine retina) on plastic or on extracellular matrix (ECM). Both EDGF and ECM are required to allow the maximal proliferation of human cells and their organization in a typical monolayer. Conversely, bovine aortic endothelial cells grow perfectly in the absence of both factors in 6% fetal calf serum. However, a requirement for EDGF can also be demonstrated in low serum conditions, or in cells at high passage number. ECM had no growth promoting activity by itself. Thrombin acts similarly to EDGF on bovine serum-starved cells. EDGF prolongs the in vitro lifespan of both types of cells. Cells at all stages still synthesize factor VIII antigen as revealed by immunofluorescence. Thus EDGF, like other growth factors from brain, FGF or ECGF, may have an important role in angiogenesis, a critical problem in pathological retinas.  相似文献   

2.
Lenses in organ culture permit an analysis of factors acting on epithelial cell growth, while keeping the normal steric constraints of the cell population. By employing this technique with radioautography of epithelial whole mounts, we showed that the DNA synthesis found in the epithelia of cultured bovine lenses follows an organized spatial and temporal pattern during culture. Within the first 48 h, active cells were located at the preequatorial region ("germinative zone"), a distribution consistent with the in vivo spatial organization of multiplying cells. Starting at about 48 h, cells from the central region of the epithelium--a nonproliferating population--were triggered to synthesize DNA in the presence of eye-derived growth factor (EDGF). When cultured in serum-free medium, only a small fraction of the cells was labeled, but when a low serum concentration was present, this fraction reached 50% of the cell population. The stimulatory effect of EDGF required a lag period, but its effect reached a maximum exceeding that found for serum. However, the cells from the germinative region, having a cell density three- to four-fold higher than the central region, were not stimulated to proliferate. This occurred irrespective of the presence of EDGF or serum. If this growth-stimulatory activity derived from the retina were the actual factor controlling cell proliferation in the lens in vivo, then the results presented here would point to the presence of a regulatory mechanism similar to that known for some other hormones.  相似文献   

3.
We report a completely serum-free system for primary culture of fibroblasts from explants of adult mouse lung tissue which permits bioassays for cytokine activity to be performed using unselected populations of cells at low passage number, without interference by serum binding proteins or interacting growth factors. Cultures were established on collagen-coated surfaces in medium MCDB 201 containing albumin, transferrin, epidermal growth factor, lipids, prostaglandin E1, vitamin E, and reducing agents. The cells were morphologically and ultrastructurally typical of fibroblasts in culture and demonstrated expression of vimentin and induction of expression of desmin in culture. Proliferation of the cells was reproducible between different primary cultures and was growth factor dependent. Both cycling and growth-arrested cells exhibited increased DNA synthesis when stimulated with epidermal growth factor, platelet-derived growth factor, or basic fibroblast growth factor, which functioned as complete mitogens, but did not respond to insulin, tumor necrosis factor or interleukin-1 beta. Maximal induction of DNA synthesis by epidermal growth factor required the continued presence of the mitogen in the culture medium. These results cannot be satisfactorily explained by the competence-progression model of responses to mitogenic stimuli but support and extend the findings of other studies using diploid fibroblasts.  相似文献   

4.
Summary Mouse epidermal keratinocytes (MK cells) were grown as replicating subcultures at clonal density, in a serum-free, low calcium basal medium supplemented with seven different growth factors (Bertolero et al., Exp. Cell. Res. 155:64–80, 1984). This serum-free system was used to investigate the activity of cells. bovine serum (FBS) and of serum-derived factors on the growth and differentiation of MK cells. Unfractionated, whole FBS inhibited growth and induced terminal differentiation of normal MK cells. The growth inhibitory activity was considerably reduced by passing whole FBS over a resin (Chelex) to remove Ca2+ and other di- and trivalent cations. It is not known whether this treatment removed other factors. Addition of individual serum components either stimulated or inhibited cell-growth and differentiation. Fetuin, a major α-globulin of FBS, and high density lipoprotein strongly inhibited the colony forming efficiency (CFE) of MK cells, whereas bovine serum albumin increased the CFE 4.5-fold and stimulated the growth rate as well. The addition of impure commercial preparations of platelet-derived growth factor inhibited the CFE and induced the morphological features of squamous terminally-differentiating keratinocytes. As reported in other systems, transforming growth factor beta (TGF-β) inhibited the growth of secondary keratinocytes in a dose-dependent manner. Thus, at least three factors present in FBS inhibited growth whereas others were stimulatory. These observations explain the difficulties in obtaining replicating subcultures of mouse keratinocytes in serum-supplemented media and emphasize the importance of a serum-free system for studies on growth control and carcinogenesis in keratinocytes. Editor’s Statement This report contributes significantly to our knowledge of keratinocyte cell biology in two ways. First, a serum-free medium has been developed that can now be used by many investigators to define growth versus differentiation factors for these cells. This is important since several impure or relatively crude preparations of factors are known to influence these cells. Second, the finding that TGF-Beta is an inhibitor of keratinocyte growth opens new avenues to investigate the biochemical events leading to differentiation. David A. Sirbasku  相似文献   

5.
Summary We have investigated the response of several epithelial and fibroblastic cells to a mitogenic extract of bovine milk. Cation exchange chromatography was used to produce a mitogen-rich fraction from an industrial whey source that, although comprising only 0.5% of total whey protein, contained the bulk of the growth factor activity. This fraction was a source of potent growth promoting activity for all mesodermal-derived cells tested, including human skin and embryonic lung fibroblasts, Balb/c 3T3 fibroblasts, and rat L6 myoblasts. Maximal growth of all these cell types exceeded that observed in 10% fetal bovine serum. Feline kidney and baby hamster fibroblasts and Chinese hamster ovary cells were less responsive, achieving a maximal growth response of 50–75% that observed in 10% fetal bovine serum. Maximal growth achieved in whey-extract-supplemented cultures of Balb/c 3T3 and human skin fibroblasts, and L6 myoblast cultures exceeded that seen in response to recombinant acidic or basic fibroblast growth factor, platelet-derived growth factor, insulin-like growth factor, or epidermal growth factor. Importantly, addition of low concentrations of fetal bovine serum to the whey-derived mitogenic fraction produced an additive response. However, concentrated milk-derived factors were found to be inhibitory to the growth of all epithelial lines tested, including rat intestinal epithelial cells, canine kidney epithelial cells, and mink lung cells. It is concluded that industrial whey extracted in this form constitutes an important source of potent growth-promoting agents for the supplementation of mesodermal-derived cell cultures.  相似文献   

6.
This study demonstrates that cultivation of vascular smooth muscle cells from human artery wall is possible under completely serum-free conditions. The effects of attachment factors on cell spreading and cell proliferation are described in detail as well as routine cultivation methods under serum-free conditions (clone cultures, cell migration, subcultivation by use of an exogenous trypsin inhibitor, cryopreservation and readaptation of cells). After a careful adaptation period, only two (BMS and Ultroser G) of the four commercially available serum-free media supplements tested were used successfully for a routine cultivation of the smooth muscle cells over several passages. With both supplements cell proliferation rates were comparable with those obtained in medium containing 10% fetal calf serum. The addition of platelet-derived growth factor or transferrin to serum-free cultures had no growth-stimulating effect. The addition of endothelial cell growth factor isolated from bovine brain caused a significant increase in proliferative activity of cells cultivated with BMS, but not with Ultroser G. Moreover, we report that under the serum-free culture conditions described here, the gamma-actin content of the cells is largely reduced (51% +/- 13% (means +/- SD) for cells cultivated in Ultroser G, and 12% +/- 4% (means +/- SD) for cells cultivated in BMS) when compared with cells cultivated under serum-containing conditions (gamma-actin content = 100%). The alpha-actin content was observed to be unaltered. Even after a careful readaptation of serum-free cultured cells to serum conditions, the gamma-actin content remained reduced.  相似文献   

7.
An endothelial cell-derived growth factor   总被引:19,自引:3,他引:16       下载免费PDF全文
Cell-free plasma-derived serum (PDS) is deficient in the platelet- derived growth factor and will not support the growth of 3T3 cells, fibroblasts, or smooth muscle cells. However, when PDS-containing medium is preincubated with endothelial cells, the medium becomes modified so that it will support growth. The activity produced by the endothelial cells results from a polypeptide of 10,000 to 30,000 daltons which has several features that differ from those of the platelet-derived growth factor, including heat instability and lack of adsorption to CM Sephadex.  相似文献   

8.
The hormones which support growth, in vitro, of normal, neonatal human foreskin fibroblasts were determined. Wheresas thrombin and hydrocortisone were major growth stimulants, platelet-derived growth factor was not. Human foreskin fibroblasts grew in a serum-free, biochemically defined medium consisting of epidermal growth factor (100 ng/ml), insulin (100 ng/ml), trasferrin (10 μg/ml), thrombin (1 μg/ml), ascorbic acid (10 μg/ml), and hydrocortisone (5 × 10?5M) in a 1:1 mixture of Dulbecco's modified Eagle's medium and Ham's F-12, supplemented with ovalbumin (1 mg/ml) and trace elements. The growth achieved was comparable to that achieved with 5% fetal bovine serum. Neither platelet-derived growth factor, fibroblst growth factor, nor somatomedin activity increased proliferation. This serum-free medium designated Defined Medium F, provides a biochemically defined system for growth and limited subcultivation of human foreskin fibroblasts in vitro.  相似文献   

9.
Human mammary medullary carcinoma cells (passages 16 to 21) were cultured for 2 days to allow for attachment, followed by 6 days of culture in either fetal calf serum, human cord blood, human amniotic fluid, or growth factors in the presence or absence of purified human alpha-fetoprotein (AFP). When growth factors were tested alone, only platelet-derived growth factor produced a significant increase in cell proliferation. Although up to 40% amniotic fluid had no effect on cell proliferation, human cord blood was two-fold more potent than fetal calf serum at similar concentrations. The addition of 10 ng/ml of platelet-derived growth factor increased the proliferative activity of human cord blood 1.5- to 2.5-fold. Ablation of endogenous AFP by affinity chromatography reduced the proliferative activity of cord blood by 75%. Similarly, the mitogenic activity of cord blood plus platelet-derived growth factor was reduced by 56% when AFP was removed. Purified AFP dose-dependently enhanced the proliferative activity of platelet-derived growth factor. This synergistic effect was specific for platelet-derived growth factor. We conclude that platelet-derived growth factor is a major growth factor controlling the proliferation of these tumor cells and that AFP may enhance growth factor proliferative activity and human mammary tumor growth.  相似文献   

10.
Platelet-derived growth factor (PDGF), one of the most potent mitogens in serum for non-transformed cells, shares many biological and physical properties with fibroblast-derived growth factor (FDGF), a polypeptide produced by BHK cells transformed by SV40. Thus FDGF and PDGF have biological activity which is recoverable from sodium dodecyl sulphate (SDS) polyacrylamide gel electrophoresis, at positions indicating similar molecular weights. Further, the biological activity of both factors is heat-stable but sensitive to mercaptoethanol. FDGF and PDGF have similar abilities to induce DNA synthesis synergistically in the presence of either insulin, epidermal growth factor (EGF), vasopressin or colchicine. In contrast to other growth factors, (i) either FDGF or PDGF can induce DNA synthesis in the absence of other mitogens in 3T3 cells maintained in serum-free medium and (ii) a transient exposure of cultures to FDGF or PDGF causes a persistent stimulation of DNA synthesis. Either FDGF or PDGF enhances colony formation of non-transformed cells cultured in suspension in the presence of EGF and serum. FDGF is not PDGF adsorbed by SV40-BHK cells from serum, since SV40-BHK cells plated and grown in the absence of serum still produce FDGF. In view of the similarities between PDGF and FDGF, we suggest that they may belong to the same family of growth factors.  相似文献   

11.
Late-passage cells of a nontumorigenic and anchorage-dependent hepatic epithelial line (WB-F344), which produce insulinlike growth factor II and transforming growth factor beta constitutively, grow in serum-free medium supplemented only with transferrin. In the presence of transferrin, epidermal growth factor further augments population growth, although epidermal growth factor alone is without effect. Insulin, platelet-derived growth factor, and several inorganic iron salts are also ineffective in supporting cell growth in the absence of transferrin; furthermore, these factors do not augment the action of transferrin. The population growth-promoting effect of transferrin occurs at concentrations of 0.5 nM or greater and the maximal effect is reached with a concentration of approximately 6 nM. A lipophilic iron chelator, ferric pyridoxal isonicotinoyl hydrazone (FePIH), can fully mimic the effect of transferrin on the proliferation of WB-F344 cells, but the molar concentration of transferrin. These results suggest that the critical function of transferrin in the proliferation of WB-F344 cells may be in the delivery of iron to the cells. In the absence of transferrin the proliferation of WB-F344 cells is arrested in serum-free medium in the G0/G1 phase, and a period of protein synthesis after the addition of transferrin is necessary before the cells can proceed to S phase and initiate DNA synthesis. Replacement of transferrin causes quiescent WB-F344 cells to cycle parasynchronously. Epidermal growth factor does not alter the length of the latency period prior to S phase but appears to stimulate the uptake of [3H]thymidine subsequently. Transferrin may act as a "competence" and/or "progression" factor, allowing the replication of these epithelial cell in vitro.  相似文献   

12.
BALB/c3T3 cells are exquisitely growth regulated and require both platelet-derived growth factor and insulin-like growth factor-1 (IGF-1) for optimal proliferation. BALB/c3T3 cells that constitutively express IGF-1 and elevated levels of IGF-1 receptor (IGF-1R) are capable of growth in serum-free medium without the addition of any exogenous growth factors. BALB/c3T3 cells overexpressing only the IGF-1R plasmid required IGF-1 or insulin for serum-free growth. Antisense oligodeoxynucleotides complementary to IGF-1R mRNA inhibited IGF-1-mediated cell growth. Under these conditions, neither the epidermal growth factor receptor nor phospholipase C gamma 1 was autophosphorylated. These findings indicate that constitutive expression of IGF-1 and IGF-1R allows 3T3 cells to grow in serum-free medium without addition of those exogenous growth factors that are required by the parent cell line.  相似文献   

13.
Eye derived growth factor II (EDGF II), the retinal form of acidic fibroblast growth factor (aFGF) is present in rod outer segments (ROS) purified in the dark, which display higher EDGF specific activity than all other parts of the retina. EDGF binds to ROS disc membranes upon illumination. This binding is not reversible in the dark. ATP, but not GTP, readily releases EDGF from either dark-adapted or previously bleached ROS. The release of EDGF activity from ROS membranes would require a phosphorylation mechanism since AMP-PNP, an ATP analogue, is not efficient. ROS membranes compete with cellular EDGF receptors of retinal pigment epithelial cells in vitro for the binding of labelled EDGF II, suggesting that they also possess specific binding sites. These data suggest that EDGF II is involved in photoreceptor cell biology.  相似文献   

14.
Cytokines have been implicated in the regulation of eicosanoid synthesis and synovial cell proliferation. To further define these mechanisms, we have compared the effects of basic fibroblast growth factor and platelet-derived growth factor on cell growth, prostaglandin E2 (PGE2) production and phospholipase A2 enzyme activity in long-term cultures of synovial cells from rheumatoid arthritis (RA) patients capable of proliferating in serum-free medium. Compared with serum-free medium alone, RA synovial cell growth was significantly enhanced by adding either basic fibroblast growth factor (bFGF) or platelet-derived growth factor (PDGF) to the culture medium. Growing RA synovial cells for 14 days in serum-free medium plus bFGF caused them to spontaneously release significant amounts of PGE2, an effect not seen if cells were grown in serum-free medium alone, or serum-free medium plus PDGF. Enhanced release of PGE2 occurred when arachidonic acid was added to bFGF but not PDGF-treated RA synovial cells, suggesting that bFGF increased cyclooxygenase enzyme activity in these cells. Moreover, phospholipase A2 (PLA2) enzyme activity was found to be significantly greater in RA synovial cells grown for 14 days in serum-free medium containing bFGF alone, or bFGF plus interleukin 1 beta (IL-1 beta) compared with cells grown in either serum-free medium alone, or serum-free medium plus PDGF. Similarly, bFGF plus IL-1 beta-stimulated release of PLA2 activating protein, a novel mammalian phospholipase stimulator found in high concentrations in RA synovial fluid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The disaccharide beta-D-GlcA-(1-->4)-alpha-D-GlcNAc-1-->OMe and other small nonsulfated oligosaccharides related to heparin/heparan sulfate have been shown to bind to FGF and activated the fibroblast growth factor (FGF) signalling pathway in (F32) cells expressing the FGF receptor. Synthetic routes to beta-D-GlcA-(1-->4)-alpha-D-GlcNAc-1-->OMe and a glucose analogue beta-D-Glc-(1-->4)-alpha-D-GlcNAc-1-->OMe are described. The effects of these disaccharides on endothelial cell growth, which is relevant to angiogenesis, were evaluated and it was found they did not mimic the inhibitory effects that were observed for heparin albumin (HA) and that have also been observed by monosaccharide conjugates. They did not alter bovine aortic endothelial cell (BAEC) proliferation, in the presence of FGF-2 in serum free medium or in absence of FGF-2 in serum free and complete medium. Disaccharides (10 microg/mL) reduced by 25-31% the inhibition caused by HA (10 microg/mL) on BAEC growth in serum-free medium but had no effect in complete medium. There was no evidence obtained for the binding of these oligosaccharides to FGF-2 in competition with HA by ELISA.  相似文献   

16.
Epidermal growth factor, a potent mitrogen for granulosa cells produced a three-fold stimulation of ornithine decarboxylase activity in porcine granulose cells in vitro. Fibroblast growth factor, another compound with mitogenic activity for granulose cells, did not stimulate ornithine decarboxylase. Maximally effective concentrations of a commercial preparation of bovine serum albumin equalled the maximal effect of epidermal growth factor on this enzyme activity. The dominant stimulator(s) in the albumin preparation eluted after bovine serum albumin in gel filtration. At maximally effective concentrations, luteinizing hormone produced substantially greater stimulation than either epidermal growth factor or the bovine albumin preparation. Combinations of saturating doses of any two of these stimulators produced additive effects on enzyme activity.  相似文献   

17.
The soluble form of the insulin-like growth factor II (IGF-II)/mannose 6-P (IGF-II/M6P) receptor is released by cells in culture and circulates in the serum. It retains its ability to bind IGF-II and blocks IGF-II-stimulated DNA synthesis in isolated rat hepatocytes. Because these cells are not normally stimulated to divide by IGF-II in vivo, the effect of soluble IGF-II/M6P receptor on DNA synthesis has been further investigated in two cell lines sensitive to IGF-II; mouse 3T3(A31) fibroblasts, stimulated by low levels of IGF-II following priming by epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) and Buffalo rat liver (BRL) cells, which secrete IGF-II and proliferate in the absence of exogenous growth factors. Soluble IGF-II/M6P receptor (0.2-2.0 microgram/ml) purified from a rat hepatoma cell line inhibited DNA synthesis (determined by dThd incorporation) in both cell lines. Basal DNA synthesis was very low in serum-free 3T3 cells, but high in serum-free BRL cells, possibly as a result of autocrine IGF-II production. The inhibitory effect was reversible in cells preincubated with soluble receptor prior to incubation with growth factors and could also be overcome by excess IGF-II. Soluble receptor was more potent in IGF-II-stimulated 3T3 cells and serum-free BRL cells than in BRL cells incubated with serum. Mean inhibition by four preparations of soluble receptor (1 microgram/ml) was 34.7% +/- 4.4% in BRL cells stimulated with fetal calf serum (FCS) (5%) compared to 54.8% +/- 4.2% in serum-free BRL cells (P = 0.05) and 60.6% +/- 6.5% (P = 0.02) in 3T3 cells stimulated by PDGF, EGF, and IGF-II. Soluble receptor had no effect on DNA synthesis in 3T3 cells stimulated with IGF-I. These results demonstrate that soluble receptor, at physiological concentrations, can block proliferation of cells by IGF-II and could therefore play a role in blocking tumor growth mediated by IGF-II.  相似文献   

18.
In preparation for studies on the growth factor requirements of normal and transformed human fibroblasts, we have developed a serum-free medium that supports vigorous long-term serial subculture of diploid human fibroblasts and allows them to form large-sized colonies with high efficiency (40 to 60%) when plated at cloning density (2 to 5 cells/cm2). This medium, which is a modification of Ham's MCDB 110 base medium with its serum replacement supplements, is relatively easy to prepare and the cost of the serum replacements is approximately the same as that of fetal bovine serum supplied at 10%. The ingredients of "Supplement B" of MCDB 110 medium were added in an ethanol solution, rather than in the form of liposomes, and were combined with bovine serum albumin (0.5%), a lipid carrier. Gelatin and fetuin were included as attachment factors instead of polylysine. Bioassays indicated that none of the ingredients in the medium were contaminated with either epidermal growth factor or platelet-derived growth factor. In this modified serum-free medium, which we have designated McM+SR1, diploid human fibroblasts grew for 21 days at the same rate as in the base medium, McM, supplemented with 10% FBS (i.e., 21 population doublings). During the next 20 days, they underwent 15 population doublings which was 75% of the rate of cells growing in the medium containing serum.  相似文献   

19.
A Rizzino 《In vitro》1984,20(10):815-822
Transforming growth factors (TGFs) are a relatively new category of factors that induce the anchorage-independent growth of non-transformed cells. These factors are usually detected by their ability to induce normal rat kidney (NRK) fibroblasts to grow in soft agar. Until now, this assay has been performed in serum-containing medium (SCM). Unfortunately, the background activity of this assay is variable and dependent on several factors, including passage number of the cells and the serum lot used. Furthermore, the addition of either EGF or TGF-beta alone results in the appearance of additional colonies, which decreases the sensitivity of the assay. To circumvent these problems, serum-free media have been developed that support the growth of the NRK cells at low density in both monolayer culture and soft agar. Long-term growth in monolayer cultures occurs in serum-free medium supplemented with laminin, insulin, transferrin, epidermal growth factor (EGF), fibroblast growth factor (FGF) and high density lipoprotein (HDL). Growth in soft agar occurs when TGFs are added to a serum-free medium, AIG medium, that contains insulin, transferrin, FGF and HDL. In contrast to the background activity observed when the assay is performed in SCM, no colonies form in the AIG medium unless TGFs are added and few, if any, colonies form if EGF or TGF-beta are added alone. Thus, the AIG medium provides an improved assay for TGFs. In addition, the AIG medium should prove useful for examining other factors, including serum factors, for TGF activity.  相似文献   

20.
Human whole blood serum reduces the binding of [125I]labeled mouse epidermal growth factor to cultured human fibroblasts as well as does 70-100 ng/ml mouse epidermal growth factor. However, at most 1-2% of the binding inhibitor detected in human whole blood serum is related to epidermal growth factor--the remaining consists of other factors released during preparation of serum, predominantly the platelet-derived growth factor, which are capable of altering the binding properties of the epidermal growth factor receptor. This accounts for much of the differences between values reported for epidermal growth factor concentration in blood by investigators using different assay procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号