首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Glycerol-3-phosphate dehydrogenase (GPD) serves a central function in the metabolism of carbohydrate for insect flight. This paper reports that the function is supported in a wide range of species by thorax-specific GPD isozymes. These have been discovered in nine of 14 orders in which winged forms have been tested, including all of the major orders except Lepidoptera and Odonata. Examples have been found in each of the Polyneoptera, Paraneoptera and Holometabola, occurring predominantly in larger, stronger fliers which use carbohydrate as a fuel. Thorax-specific GPD isozymes have been found only once (in a tiphiid female) in a flightless insect and in the Palaeoptera not at all.  相似文献   

2.
3.
4.
Glycerol-3-phosphate dehydrogenase (G-3-PDH) isozymes were investigated in several bee and wasp species to verify if variations detected in G-3-PDH-2 isozymes are closely related to the age and activity of adult workers in the nest or hive of social species. In the solitary, the semisocial, and one social bee species, no phenotypic variations were detected for G-3-PDH-2 isozymes, and this was also the case for all wasp species investigated which were characterized as social. These results allow us to suggest that the variation detected in G-3-PDH-2 isozymes is a phenomenon closely related not only to adult age and activity in the hive, but also to a gradual acquisition of the ability to fly, which is not present in newly emerged worker meliponids in particular.  相似文献   

5.

Background

De novo glycerolipid synthesis begins with the acylation of glycerol-3 phosphate catalyzed by glycerol-3-phosphate acyltransferase (GPAT). In mammals, at least four GPAT isoforms have been described, differing in their cell and tissue locations and sensitivity to sulfhydryl reagents. In this work we show that mitochondrial GPAT2 overexpression in CHO-K1 cells increased TAG content and both GPAT and AGPAT activities 2-fold with arachidonoyl-CoA as a substrate, indicating specificity for this fatty acid.

Methods and Results

Incubation of GPAT2-transfected CHO-K1 cells with [1-14C]arachidonate for 3 h increased incorporation of [14C]arachidonate into TAG by 40%. Consistently, arachidonic acid was present in the TAG fraction of cells that overexpressed GPAT2, but not in control cells, corroborating GPAT2''s role in synthesizing TAG that is rich in arachidonic acid. In rat and mouse testis, Gpat2 mRNA was expressed only in primary spermatocytes; the protein was also detected in late stages of spermatogenesis. During rat sexual maturation, both the testicular TAG content and the arachidonic acid content in the TAG fraction peaked at 30 d, matching the highest expression of Gpat2 mRNA and protein.

Conclusions

These results strongly suggest that GPAT2 expression is linked to arachidonoyl-CoA incorporation into TAG in spermatogenic germ cells.  相似文献   

6.
Non-AFP-producing Morris hepatoma 7777 were treated with glucocorticoids in order to compare the responses for AFP production and for lactate and malate dehydrogenases. Steroid hormone treatment did not affect the production of AFP. However, there was an approximate tripling of levels of both LDH and MDH (cytosolic plus mitochondrial).  相似文献   

7.
The uptake of tritiated cysteinyl leukotrienes (LTC4, LTD4, LTE4) and LTB4 was investigated in freshly isolated rat hepatocytes and different hepatoma cell lines under initial-rate conditions. Leukotriene uptake by hepatocytes was independent of an Na+ gradient and a K+ diffusion potential across the hepatocyte membranes as established in experiments with isolated hepatocytes and plasma membrane vesicles. Kinetic experiments with isolated hepatocytes indicated a low-Km system and a non-saturable system for the uptake of cysteinyl leukotrienes as well as LTB4 under the conditions used. AS-30D hepatoma cells and human Hep G2 hepatoma cells were deficient in the uptake of cysteinyl leukotrienes, but showed significant accumulation of LTB4. Moreover, only LTB4 was metabolized in Hep G2 hepatoma cells. Competition studies on the uptake of LTE4 and LTB4 (10 nM each) indicated inhibition by the organic anions bromosulfophthalein, S-decyl glutathione, 4,4'-diisothiocyanato-stilbene-2,2'-disulfonate, probenecid, docosanedioate, and hexadecanedioate (100 microM each), but not by taurocholate, the amphiphilic cations verapamil and N-propyl ajmaline, and the neutral glycoside ouabain. Cholate and the glycoside digitoxin were inhibitors of LTB4 uptake only. Bromosulfophthalein, the strongest inhibitor of leukotriene uptake by hepatocytes, did not inhibit LTB4 uptake by Hep G2 hepatoma cells under the same experimental conditions. Leukotriene-binding proteins were analyzed by comparative photoaffinity labeling of human hepatocytes and Hep G2 hepatoma cells using [3H]LTE4 and [3H]LTB4 as the photolabile ligands. Predominant leukotriene-binding proteins with apparent molecular masses in the ranges of 48-58 kDa and 38-40 kDa were labeled by both leukotrienes in the particulate and in the cytosolic fraction of hepatocytes, respectively. In contrast, no labeling was obtained with [3H]LTE4 in Hep G2 cells. With [3H]LTB4 a protein with a molecular mass of about 48 kDa was predominantly labeled in the particulate fraction of the hepatoma cells, whereas in the cytosolic fraction a labeled protein in the range of 40 kDa was detected. Our results provide evidence for the existence of distinct uptake systems for cysteinyl leukotrienes and LTB4 at the sinusoidal membrane of hepatocytes; however, some of the inhibitors tested interfere with both transport systems. Only LTB4, but not cysteinyl leukotrienes, is taken up and metabolized by the transformed hepatoma cells.  相似文献   

8.
9.
Inhibition of IMP dehydrogenase in AS-30D hepatoma cells in suspension culture resulted in a pronounced and selective reduction of guanine nucleotide pools. Total acid-soluble guanine nucleotides decreased to 40% and the content of GTP and GDP dropped to about 20% of control within 4 h when mycophenolate or ribavirin were used as the inhibitors. Induction of GTP deficiency was associated with a 50% rise in UTP and other uracil nucleotides. Guanosine rapidly reversed both the reduction of guanine nucleotide pools and the elevation of cellular UTP contents. Enzymatic nucleotide analyses in cell and tissue extracts after treatment with ribavirin indicated that ribavirin 5'-triphosphate was an effective substrate for yeast hexokinase, yeast phosphoglycerate kinase, and nucleosidediphosphate kinase from yeast or bovine liver. These results were confirmed in detail by the use of synthetic ribavirin 5'-triphosphate and 5'-diphosphate. The latter nucleotide analog was also a substrate of pyruvate kinase from muscle. Mycophenolate-induced GTP deficiency was associated with an arrest of hepatoma cell growth in suspension culture. Ribavirin, at an equimolar concentration, was much less effective in this respect. None of the two inhibitors had a detectable effect, however, in vivo when guanine or uracil nucleotides were assayed in liver. This indicated that an inhibition of de novo guanylate synthesis in vivo can be compensated by salvage pathway synthesis.  相似文献   

10.
In only 1 bee species(Tetragona clavipes) of 24 sampled in 145 colonies (0.69%) did we detect the presence of more than one allele for glycerol-3-phosphate dehydrogenase (EC 1.1.1.8), an enzyme that is involved in flight. In 34 colonies containing 9 wasp species, 5 colonies of only 2 species(Polybia paulista andP. sericea) showed variation in larval G-3-PDH (14.7%). The small amount of variation observed for theG-3-PDH-1 locus in the bee and wasp species analyzed in the present study agrees with that reported for the G-3-PDH system in other insects.Research supported by FAPESP and CNPq-PIG IV.  相似文献   

11.
Phosphoenolpyruvate carboxykinase (PEPCK) mRNA is elevated in H4IIEC3 rat hepatoma cells cultured at high density, suggesting that PEPCK expression and growth arrest may be coordinately regulated. Induction of growth arrest either by contact inhibition (high culture density) or by serum deprivation correlated with significant increases in PEPCK protein and its mRNA. The observation that PEPCK mRNA was induced by contact inhibition in the presence of serum indicates that the effect of high density is independent of insulin or any other serum component. The magnitudes of the changes in PEPCK expression during growth arrest were greatly enhanced in KRC-7 cells, an H4IIEC3 subclone that is much more sensitive to growth arrest than its parental cell line. Restimulation of proliferation in growth-arrested KRC-7 cells, either by addition of serum or insulin to serum-deprived cells or by replating contact-inhibited cells at low density, caused a rapid decrease in PEPCK expression. However, PEPCK mRNA is not always reduced in proliferating cells since treatment of serum-starved cells with epidermal growth factor stimulated entry into the cell cycle but did not affect PEPCK mRNA levels. Finally, dexamethasone induction of PEPCK mRNA was blunted in cells cultured at high density but was unaffected by the presence or absence of serum. Collectively, these data suggest the possibility of cross-talk between the control of PEPCK expression and growth arrest in KRC-7 cells.  相似文献   

12.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is considered a housekeeping glycolitic enzyme that recently has been implicated in cell signaling. Under apoptotic stresses, cells activate nitric oxide formation leading to S-nitrosylation of GAPDH that binds to Siah and translocates to the nucleus. The GAPDH–Siah interaction depends on the integrity of lysine 227 in human GAPDH, being the mutant K227A unable to associate with Siah. As lysine residues are susceptible to be modified by acetylation, we aimed to analyze whether acetylation could mediate transport of GAPDH from cytoplasm to the nucleus. We observed that the acetyltransferase P300/CBP-associated factor (PCAF) interacts with and acetylates GAPDH. We also found that over-expression of PCAF induces the nuclear translocation of GAPDH and that for this translocation its intact acetylase activity is needed. Finally, the knocking down of PCAF reduces nuclear translocation of GAPDH induced by apoptotic stimuli. By spot mapping analysis we first identified Lys 117 and 251 as the putative GAPDH residues that could be acetylated by PCAF. We further demonstrated that both Lys were necessary but not sufficient for nuclear translocation of GAPDH after apoptotic stimulation. Finally, we identified Lys 227 as a third GAPDH residue whose acetylation is needed for its transport from cytoplasm to the nucleus. Thus, results reported here indicate that nuclear translocation of GAPDH is mediated by acetylation of three specific Lys residues (117, 227 and 251 in human cells). Our results also revealed that PCAF participates in the GAPDH acetylation that leads to its translocation to the nucleus.  相似文献   

13.
14.
The bacterial enzyme, glycerol-3-phosphate cytidylyltransferase (GCT), is a model for mammalian cytidylyltransferases and is a member of a large superfamily of nucleotidyltransferases. Dimeric GCT from Bacillus subtilis displays unusual negative cooperativity in substrate binding and appears to form products only when both active sites are occupied by substrates. Here we describe a complex of GCT with the product, CDP-glycerol, in a crystal structure in which bound sulfate serves as a partial mimic of the second product, pyrophosphate. Binding of sulfate to form a pseudo-ternary complex is observed in three of the four chains constituting the asymmetric unit and is accompanied by a backbone rearrangement at Asp11 and ordering of the C-terminal helix. Comparison with the CTP complex of GCT, determined previously, reveals that in the product complex the active site closes around the glycerol phosphate moiety with a concerted motion of the segment 37-47 that includes helix B. This rearrangement allows lysines 44 and 46 to interact with the glycerol and cytosine phosphates of CDP-glycerol. Binding of CDP-glycerol also induces smaller movements of residues 92-100. Roles of lysines 44 and 46 in catalysis have been confirmed by mutagenesis of these residues to alanine, which decreases Vmax(app) and has profound effects on the Km(app) for glycerol-3-phosphate.  相似文献   

15.
We have investigated spontaneous and light-induced photon emission of suspensions of rat hepatocytes and of HTC hepatoma cells. Rat hepatocytes exhibit spontaneous biophoton emission, but from hepatoma cells this was not detectable. In contrast, after irradiation with white light, the reemission intensity was found to be lower for hepatocytes than for the tumor cell line. Induced photon emission was neither influenced by anaerobiosis nor by the intactness of the cells. Cell-fractionation studies demonstrate that the induced photon emission was caused by the nuclear fraction and by isolated chromatin. Phenol-extracted DNA, however, has lost this capacity. Our data suggest that differences in the chromatin structure may explain the cell-specific induced photon emission.  相似文献   

16.
Substrate selectivity of glycerol-3-phosphate acyltransferase (EC 2. 3. 1. 15) of rice (Oryza sativa L.) was explored in a comparative study of acyltransferases from seven plant species. In vitro labeling of acyl carrier protein (ACP) with ^14C or 3H showed that acyltransferase from chill-sensitive plants, such as rice that uses either oleic (18:1) or palmitic acid (16:0) as acyl donor at comparable rates, displays lower selectivity than the enzyme from chill-resistant plants, such as spinach, which preferentially uses oleic acid (18:1) rather than palmitic acid (16:0) as an acyl donor. This may be a result of the size and character of the substrate-binding pocket of acyltransferase. Homology modeling and protein structure-based sequence alignment of acyltransferases revealed that proteins from either chill-sensitive or chill-tolerant plants shared a highly conserved domain containing the proposed substrate-binding pocket. However, the aligned residues surrounding the substrate-binding pocket are highly heterogeneous and may have an influence mainly on the size of the substrate binding pockets of acyltransferases. The substrate selectivity of acyltransferase of rice can be improved by enlarging the substrate-binding pocket using molecular biological methods.  相似文献   

17.
Reaggregating cell cultures of neonatal mouse cerebellar cells express many of the differentiated properties of normal developing cerebellum, including the transition for the embryonic and adult isozymes of l-glycerol 3-phosphate dehydrogenase (EC 1.1.1.8). In order to determine the mechanism leading to increased levels of adult isozyme, aggregates in culture from 2 to 17 days were labeled with radioactive leucine and the relative rate of enzyme synthesis was measured after purification of the enzyme by affinity chromatography on Blue Sepharose 6B. During the course of in vitro differentiation, the relative rate of synthesis increased 100-fold, such that it represented 0.5% of the total protein synthesized in the cytoplasmic fraction of the cell. In vivo, BALBcBy mice have twice the level of enzyme activity in the cerebellum as do C57BL6J mice. Reaggregating cell cultures of cerebellar cells from these strains of mice also express a difference in the activity level, but only when the cerebellar cells are taken from mice 4 days of age or less. When the relative rates of synthesis of l-glycerol 3-phosphate dehydrogenase were measured in cultures expressing the strain-dependent difference in activity, these rates were found to be approximately twofold greater in cultures of BALBcBy cells. In contrast, estimates of the relative rate of enzyme degradation by the double-isotope labeling technique indicate that neither specific enzyme degradation nor degradation of total protein is different in aggregates from the two strains of mice. The results suggest that the genetic mechanisms controlling the levels of l-glycerol 3-phosphate dehydrogenase in the cerebellum during development are intrinsic to the cells and, with the exception of serum factors, are independent of systemic influences.  相似文献   

18.
A rapid purification procedure for glycerol-3-phosphate dehydrogenase from Dunaliella tertiolecta (strain 19-6 of the algal collection of the Univ. of Göttingen), the initial enzyme in the glycerol cycle, has been developed on the basis of affinity chromatography on Blue Sepharose and subsequent desalting by Sephadex G-50. The achieved purification was 126-fold. The pH optimum of dihydroxyacetone phosphate reduction is 7, that of glycerol-3-phosphate oxidation is about 9. The in vitro enzymatic activity obtained from cell extracts is higher than the required activity for the observed glycerol production rates under osmotic stress in vivo.  相似文献   

19.
The deacylated forms of the phosphoinositides were used to determine whether the guinea pig uterus phosphoinositide-specific phospholipase C (PI-PLC I, Mr 60,000) required fatty acids at the sn-1 and sn-2 positions for the hydrolysis of the sn-3 phosphodiester bond. L-alpha-Glycerophospho-D-myo-inositol 4-phosphate (Gro-PIP), but not glycerol 3-phosphate (Gro-3-P), L-alpha-glycerophospho-D-myo-inositol (Gro-PI), or L-alpha-glycerophospho-D-myo-inositol 4,5-bisphosphate (Gro-PIP2), inhibited PI-PLC I in a concentration-dependent manner. Assays performed with 10 microM [3H]phosphatidylinositol ([3H]PI), 10 microM [3H]phosphatidylinositol 4-phosphate ([3H]PIP) or 10 microM [3H]phosphatidylinositol 4,5-bisphosphate ([3H]PIP2) as substrates, with increasing [Gro-PIP] revealed an IC50 = 380 microM. Kinetic studies with increasing [3H]PI substrate concentrations in the presence of 100 microM and 300 microM Gro-PIP demonstrated that Gro-PIP exhibited competitive inhibition; Kis = 40 microM. Ca2+ concentrations over the range 1.1 microM to 1 mM did not effect inhibition, suggesting that Gro-PIP inhibition of [3H]PI hydrolysis was calcium-independent. To determine whether Gro-PIP was a substrate, 20 microM and 500 microM [3H]Gro-PIP were incubated with PI-PLC I. Anion-exchange HPLC analysis revealed no [3H]IP2 product formation, indicating that [3H]Gro-PIP was not hydrolyzed. Assays performed with [3H]PI and [3H]PIP substrates in the presence of 500 microM [3H]Gro-PIP revealed approx. 75% less [3H]inositol 1-phosphate ([3H]IP1) and [3H]inositol 1,4-bisphosphate ([3H]IP2) product formation, respectively, indicating that [3H]Gro-PIP inhibited the hydrolysis of the substrates by PI-PLC I. These data suggest that Gro-PIP does not serve as a substrate, and that it inhibits PI-PLC I by competitive inhibition in a Ca2(+)-independent fashion.  相似文献   

20.
alpha-Fetoprotein (AFP) synthesis was studied in the presence and absence of glucocorticoids in rat hepatoma Mc-A-RH-7777 cells. Radioimmunoassay of media from cell cultures grown in the presence of glucocorticoid (dexamethasone or cortisol) showed a reduction in AFP, an increase in albumin, and no significant change in transferrin accumulation, as compared to controls. Labeling experiments with L-[35S]methionine indicated that in both cells and media of dexamethasone-treated cultures there was a 50--80% reduction in polypeptide precipitated by anti-AFP serum, as compared with controls; no change was seen in polypeptide precipitated by anti-transferrin serum. Pulse and pulse-chase experiments demonstrated that dexamethasone inhibited the synthesis of AFP but not its secretion. The half-time for secretion of AFP in the presence and absence of dexamethasone was 43 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号