首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cells of Rhodopseudomonas sphaeroides grown in a 25% O2 atmosphere were rapidly subjected to total anaerobiosis in the presence of light to study the progression of events associated with the de novo synthesis of the inducible intracytoplasmic membrane (ICM). This abrupt change in physiological conditions resulted in the immediate cessation of cell growth and whole cell protein, DNA, and phospholipid accumulation. Detectable cell growth and whole cell protein accumulation resumed ca. 12 h later. Bulk phospholipid accumulation paralleled cell growth, but the synthesis of individual phospholipid species during the adaptation period suggested the existence of a specific regulatory site in phospholipid synthesis at the level of the phosphatidylethanolamine methyltransferase system. Freeze-fracture electron microscopy showed that aerobic cells contain small indentations within the cell membrane that appear to be converted into discrete ICM invaginations within 1 h after the imposition of anaerobiosis. Microscopic examination also revealed a series of morphological changes in ICM structure and organization during the lag period before the initiation of photosynthetic growth. Bacteriochlorophyll synthesis and the formation of the two light-harvesting bacteriochlorophyll-protein complexes of R. sphaeroides (B800-850 and B875) occurred coordinately within 2 h after the shift to anaerobic conditions. Using antibodies prepared against various ICM-specific polypeptides, the synthesis of reaction center proteins and the polypeptides associated with the B800-850 complex was monitored. The reaction center H polypeptide was immunochemically detected at low levels in the cell membrane of aerobic cells, which contained no detectable ICM or bacteriochlorophyll. The results are discussed in terms of the oxygen-dependent regulation of gene expression in R. sphaeroides and the possible role of the reaction center H polypeptide and the cell membrane indentations in the site-specific assembly of ICM pigment-protein complexes during the de novo synthesis of the ICM.  相似文献   

2.
A major feature that distinguishes prokaryotic organisms from eukaryotes is their less complex internal structure, in which all membrane‐associated functions are thought to be present within a continuous lipid–protein bilayer, rather than with distinct organelles. Contrary to this notion, as described by Tucker and co‐workers in this issue of Molecular Microbiology, the application of cryo‐electron tomography to the purple bacterium Rhodobacter sphaeroides has demonstrated a heretofore unrecognized ultrastructural complexity within the intracytoplasmic membrane (ICM) housing the photosynthetic apparatus. In addition to distinguishing invaginations of the cytoplasmic membrane (CM) and interconnected vesicular structures still attached to the CM, a eukaryote‐like ICM budding process was revealed, which results in the formation of fully detached vesicular structures. These bacterial organelles are able to carry out both the light‐harvesting and light‐driven energy transduction activities necessary for the cells to assume a photosynthetic lifestyle. Their formation is shown to represent the final stage in a membrane invagination and growth process, originating with small CM indentations, which after cell disruption give rise to a membrane fraction that can be separated from mature ICM vesicles by rate‐zone sedimentation.  相似文献   

3.
Recent AFM data demonstrate that mature photosynthetic membranes of R. sphaeroides are composed of rows of dimeric RC-LH1-PufX complexes with some LH2 complexes 'sandwiched' between these rows of core complexes, and others in discrete LH2-only domains which might form the light-responsive complement of the LH2 antenna. The present work applies membrane fractionation, radiolabelling and LDS-PAGE techniques to investigate the response of R. sphaeroides to lowered light intensity. The kinetics underlying this adaptation to low light conditions were revealed by radiolabelling with the bacteriochlorophyll (bchl) biosynthetic precursor, delta-aminolevulinate, which allowed us to measure only the bchls synthesised after the light intensity shift. We show that (1) the increase in LH2 antenna size is mainly restricted to the mature ICM membrane fraction, and the antenna composition of the precursor upper pigmented band (UPB) membrane remains constant, (2) the precursor UPB membrane is enriched in bchl synthase, the terminal enzyme of the bchl biosynthetic pathway, and (3) the LH2 and the complexes of intermediate migration in LDS-PAGE exhibit completely different labelling kinetics. Thus, new photosynthetic complexes, mainly LH2, are synthesised and assembled at the membrane initiation UPB sites, where the LH2 rings pack between the rows of dimeric cores fostering new LH2-LH1 interactions. Mature membranes also assemble new LH2 rings, but in this case the 'sandwich' regions between the rows of core dimers are already fully occupied and the bulk antenna pool is the favoured location for these new LH2 complexes.  相似文献   

4.
The Rhodobacter sphaeroides intracytoplasmic membrane (ICM) is an inducible membrane that is dedicated to the major events of bacterial photosynthesis, including harvesting light energy, separating primary charges, and transporting electrons. In this study, multichromatographic methods coupled with Fourier transform ion cyclotron resonance mass spectrometry, combined with subcellular fractionation, was used to test the hypothesis that the photosynthetic membrane of R. sphaeroides 2.4.1 contains a significant number of heretofore unidentified proteins in addition to the integral membrane pigment-protein complexes, including light-harvesting complexes 1 and 2, the photochemical reaction center, and the cytochrome bc(1) complex described previously. Purified ICM vesicles are shown to be enriched in several abundant, newly identified membrane proteins, including a protein of unknown function (AffyChip designation RSP1760) and a possible alkane hydroxylase (RSP1467). When the genes encoding these proteins are mutated, specific photosynthetic phenotypes are noted, illustrating the potential new insights into solar energy utilization to be gained by this proteomic blueprint of the ICM. In addition, proteins necessary for other cellular functions, such as ATP synthesis, respiration, solute transport, protein translocation, and other physiological processes, were also identified to be in association with the ICM. This study is the first to provide a more global view of the protein composition of a photosynthetic membrane from any source. This protein blueprint also provides insights into potential mechanisms for the assembly of the pigment-protein complexes of the photosynthetic apparatus, the formation of the lipid bilayer that houses these integral membrane proteins, and the possible functional interactions of ICM proteins with activities that reside in domains outside this specialized bioenergetic membrane.  相似文献   

5.
《BBA》2023,1864(4):149001
Phospholipid–protein interactions play important roles in regulating the function and morphology of photosynthetic membranes in purple phototrophic bacteria. Here, we characterize the phospholipid composition of intracytoplasmic membrane (ICM) from Rhodobacter (Rba.) sphaeroides that has been genetically altered to selectively express light-harvesting (LH) complexes. In the mutant strain (DP2) that lacks a peripheral light-harvesting (LH2) complex, the phospholipid composition was significantly different from that of the wild-type strain; strain DP2 showed a marked decrease in phosphatidylglycerol (PG) and large increases in cardiolipin (CL) and phosphatidylcholine (PC) indicating preferential interactions between the complexes and specific phospholipids. Substitution of the core light-harvesting (LH1) complex of Rba. sphaeroides strain DP2 with that from the purple sulfur bacterium Thermochromatium tepidum further altered the phospholipid composition, with substantial increases in PG and PE and decreases in CL and PC, indicating that the phospholipids incorporated into the ICM depend on the nature of the LH1 complex expressed. Purified LH1–reaction center core complexes (LH1–RC) from the selectively expressing strains also contained different phospholipid compositions than did core complexes from their corresponding wild-type strains, suggesting different patterns of phospholipid association between the selectively expressed LH1–RC complexes and those purified from native strains. Effects of carotenoids on the phospholipid composition were also investigated using carotenoid-suppressed cells and carotenoid-deficient species. The findings are discussed in relation to ICM morphology and specific LH complex–phospholipid interactions.  相似文献   

6.
7.
The purple phototrophic bacteria elaborate a specialized intracytoplasmic membrane (ICM) system for the conversion of solar energy to ATP. Previous radiolabelling and ultrastructural experiments have shown that ICM assembly in Rhodobacter sphaeroides is initiated at indentations of the cytoplasmic membrane, termed UPB. Here, we report proteomic analyses of precursor (UPB) and mature (ICM) fractions. Qualitative data identified 387 proteins, only 43 of which were found in the ICM, reflecting its specialized role within the cell, the conversion of light into chemical energy; 236 proteins were found in the significantly more complex UPB proteome. Metabolic labelling was used to quantify the relative distribution of 173 proteins between the UPB and ICM fractions. Quantification reveals new information on assembly of the RC-LH1-PufX, ATP synthase and NAD(P)H transhydrogenase complexes, as well as showing that the UPB is enriched in enzymes for lipid, carbohydrate and amino acid metabolism, tetrapyrrole biosynthesis and proteins representing a wide range of other metabolic and biosynthetic functions. Proteins involved in light harvesting, photochemistry, electron transport and ATP synthesis are all enriched in ICM, consistent with the spatial proximity of energy capturing and transducing functions. These data provide further support to the developmental precursor-product relationship between UPB and ICM.  相似文献   

8.
9.
A rapid, gratuitous and cell-division uncoupled induction of intracytoplasmic photosynthetic membrane formation was demonstrated in low-aeration suspensions of chemotrophically grown Rhodopseudomonas sphaeroides. Despite a nearly 2-fold increase in phospholipid levels, no significant increases were detected in the specific activities of CDP-1,2-diacyl-sn-glycerol:sn-glycerol-3-phosphate phosphatidyltransferase (phosphatidylglycerophosphate synthase, EC 2.7.8.5) and CDP-1,2-diacyl-sn-glycerol:L-serine O-phosphatidyltransferase (phosphatidylserine synthase, EC 2.7.8.8), the first committed enzymes of anionic and zwitterionic phospholipid biosyntheses, respectively. The distribution of phosphatidylglycerophosphate and phosphatidylserine synthase activities after rate-zone sedimentation of cell-free extracts indicated that intracytoplasmic membrane phospholipids were synthesized mainly within distinct domains of the conserved cytoplasmic membrane. Labeling studies with 32Pi and L-[3H]phenylalanine suggested that preexisting phospholipid was utilized initially as the matrix for insertion of intracytoplasmic membrane protein that was synthesized and assembled de novo during induction.Abbreviations BChl bacteriochlorophyll a - B800-850, B875 peripheral and core light-harvesting BChl-protein complexes, respectively, identified by near-IR absorption maxima This paper is dedicated to Professor Gerhart Drews on the occasion of his sixtieth birthday  相似文献   

10.
Atomic force microscopy (AFM) of the native architecture of the intracytoplasmic membrane (ICM) of a variety of species of purple photosynthetic bacteria, obtained at submolecular resolution, shows a tightly packed arrangement of light harvesting (LH) and reaction center (RC) complexes. Since there are no unattributed structures or gaps with space sufficient for the cytochrome bc(1) or ATPase complexes, they are localized in membrane domains distinct from the flat regions imaged by AFM. This has generated a renewed interest in possible long-range pathways for lateral diffusion of UQ redox species that functionally link the RC and the bc(1) complexes. Recent proposals to account for UQ flow in the membrane bilayer are reviewed, along with new experimental evidence provided from an analysis of intrinsic near-IR fluorescence emission that has served to test these hypotheses. The results suggest that different mechanism of UQ flow exist between species such as Rhodobacter sphaeroides, with a highly organized arrangement of LH and RC complexes and fast RC electron transfer turnover, and Phaeospirillum molischianum with a more random organization and slower RC turnover. It is concluded that packing density of the peripheral LH2 antenna in the Rba. sphaeroides ICM imposes constraints that significantly slow the diffusion of UQ redox species between the RC and cytochrome bc(1) complex, while in Phs. molischianum, the crowding of the ICM with LH3 has little effect upon UQ diffusion. This supports the proposal that in this type of ICM, a network of RC-LH1 core complexes observed in AFM provides a pathway for long-range quinone diffusion that is unaffected by differences in LH complex composition or organization.  相似文献   

11.
Photosynthetic organisms drive their metabolism by converting light energy into an electrochemical gradient with high efficiency. This conversion depends on the diffusion of quinones within the membrane. In purple photosynthetic bacteria, quinones reduced by the reaction center (RC) diffuse to the cytochrome bc(1) complex and then return once reoxidized to the RC. In Rhodospirillum photometricum the RC-containing core complexes are found in a disordered molecular environment, with fixed light-harvesting complex/core complex ratio but without a fixed architecture, whereas additional light-harvesting complexes synthesized under low-light conditions pack into large paracrystalline antenna domains. Here, we have analyzed, using time-lapse atomic force microscopy, the dynamics of the protein complexes in the different membrane domains and find that the disordered regions are dynamic whereas ordered antennae domains are static. Based on our observations we propose, and analyze using Monte Carlo simulations, a model for quinone diffusion in photosynthetic membranes. We show that the formation of large static antennae domains may represent a strategy for increasing electron transfer rates between distant complexes within the membrane and thus be important for photosynthetic efficiency.  相似文献   

12.
Recent topographs of the intracytoplasmic membrane (ICM) of purple bacteria obtained by atomic force microscopy (AFM) have provided the first surface views of the native architecture of a multicomponent biological membrane at submolecular resolution, representing an important landmark in structural biology. A variety of species-dependent, closely packed arrangements of light-harvesting (LH) complexes was revealed: the most highly organized was found in Rhodobacter sphaeroides in which the peripheral LH2 antenna was seen either in large clusters or in fixed rows interspersed among ordered arrays of dimeric LH1-reaction center (RC) core complexes. A more random organization was observed in other species containing both the LH1 and LH2 complexes, as typified by Rhododspirillum photometricum with randomly packed monomeric LH1-RC core complexes intermingled with large, paracrystalline domains of LH2 antenna. Surprisingly, no structures that could be identified as the ATP synthase or cytochrome bc 1 complexes were observed, which may reflect their localization at ICM vesicle poles or in curved membrane areas, out of view from the flat regions imaged by AFM. This possible arrangement of energy transducing complexes has required a reassessment of energy tranduction mechanisms which place the cytochrome bc 1 complex in close association with the RC. Instead, more plausible proposals must account for the movement of quinone redox species over considerable membrane distances on appropriate time scales. AFM, together with atomic resolution structures are also providing the basis for molecular modeling of the ICM that is leading to an improved picture of the supramolecular organization of photosynthetic complexes, as well as the forces that drive their segregation into distinct domains.  相似文献   

13.
The arrangement of core antenna complexes (B808-866-RC) in the cytoplasmic membrane of filamentous phototrophic bacterium Chloroflexus aurantiacus was studied by electron microscopy in cultures from different light conditions. A typical nearest-neighbor center-to-center distance of ~18 nm was found, implying less protein crowding compared to membranes of purple bacteria. A mean RC:chlorosome ratio of 11 was estimated for the occupancy of the membrane directly underneath each chlorosome, based on analysis of chlorosome dimensions and core complex distribution. Also presented are results of single-particle analysis of core complexes embedded in the native membrane.  相似文献   

14.
Typical purple bacterial photosynthetic units consist of supra-molecular arrays of peripheral (LH2) and core (LH1-RC) antenna complexes. Recent atomic force microscopy pictures of photosynthetic units in intact membranes have revealed that the architecture of these units is variable (Scheuring et al. (2005) Biochim Bhiophys Acta 1712:109–127). In this study, we describe methods for the construction of heterologous photosynthetic units in lipid-bilayers from mixtures of purified LH2 (from Rhodopseudomonas acidophila) and LH1-RC (from Rhodopseudomonas viridis) core complexes. The architecture of these reconstituted photosynthetic units can be varied by controlling ratio of added LH2 to core complexes. The arrangement of the complexes was visualized by electron-microscopy in combination with Fourier analysis. The regular trigonal array of the core complexes seen in the native photosynthetic membrane could be regenerated in the reconstituted membranes by temperature cycling. In the presence of added LH2 complexes, this trigonal symmetry was replaced with orthorhombic symmetry. The small lattice lengths for the latter suggest that the constituent unit of the orthorhombic lattice is the LH2. Fluorescence and fluorescence-excitation spectroscopy was applied to the set of the reconstituted membranes prepared with various proportions of LH2 to core complexes. Remarkably, even though the LH2 complexes contain bacteriochlorophyll a, and the core complexes contain bacteriochlorophyll b, it was possible to demonstrate energy transfer from LH2 to the core complexes. These experiments provide a first step along the path toward investigating how changing the architecture of purple bacterial photosynthetic units affects the overall efficiency of light-harvesting.  相似文献   

15.
P Richter  M Brand    G Drews 《Journal of bacteriology》1992,174(9):3030-3041
The NH2 termini of light-harvesting complex I (LHI) polypeptides alpha and beta of Rhodobacter capsulatus are thought to be involved in the assembly of the LHI complex. For a more detailed study of the role of the NH2-terminal segment of the LHI alpha protein in insertion into the intracytoplasmic membrane (ICM) of R. capsulatus, amino acids 6 to 8, 9 to 11, 12 and 13, or 14 and 15 of the LHI alpha protein were deleted. Additionally, the hydrophobic stretch of the amino acids 7 to 11 was lengthened by insertion of hydrophobic or hydrophilic amino acids. All mutations abolished the ability of the mutant strains to form a functional LHI antenna complex. All changes introduced into the LHI alpha protein strongly reduced the stability of its LHI beta partner protein in the ICM. The effects on the mutated protein itself, however, were different. Deletion of amino acids 6 to 8, 9 to 11, or 14 and 15 drastically reduced the amount of the LHI alpha protein inserted into the membrane or prevented its insertion. Deletion of amino acids 12 and 13 and lengthening of the stretch of amino acids 7 to 11 reduced the half-life of the mutated LHI alpha protein in the ICM in comparison with the wild-type LHI alpha protein. Under the selective pressure of low light, revertants which regained a functional LHI antenna complex were identified only for the mutant strain deleted of amino acids 9 to 11 of the LHI alpha polypeptide [U43 (pTPR15)]. The restoration of the LHI+ phenotype was due to an in-frame duplication of 9 bp in the pufA gene directly upstream of the site of deletion present in strain U43(pTPR15). The duplicated nucleotides code for the amino acids Lys, Ile, and Trp. Membranes purified from the revertants were different from that of the reaction center-positive LHI+ LHII- control strain U43(pTX35) in doubling of the carotenoid content and increase of the size of the photosynthetic unit. By separating the reaction center and LHI complexes of the revertants by native preparative gel electrophoresis, we confirmed that the higher amount of carotenoids was associated with the LHI proteins.  相似文献   

16.
Cyanobacteria are oxygenic phototrophic prokaryotes and are considered to be the ancestors of chloroplasts. Their photosynthetic machinery is functionally equivalent in terms of primary photochemistry and photosynthetic electron transport. Fluorescence measurements and other techniques indicate that cyanobacteria, like plants, are capable of redirecting pathways of excitation energy transfer from light harvesting antennae to both photosystems. Cyanobacterial cells can reach two energetically different states, which are defined as “State 1” (obtained after preferential excitation of photosystem I) and “State 2” (preferential excitation of photosystem II). These states can be distinguished by static and time resolved fluorescence techniques. One of the most important conclusions reached so far is that the presence of both photosystems, as well as certain antenna components, are necessary for state transitions to occur. Spectroscopic evidence suggests that changes in the coupling state of the light harvesting antenna complexes (the phycobilisomes) to both photosystems occur during state transitions. The finding that the phycobilisome complexes are highly mobile on the surface of the thylakoid membrane (the mode of interaction with the thylakoid membrane is essentially unknown), has led to the proposal that they are in dynamic equilibrium with both photosystems and regulation of energy transfer is mediated by changes in affinity for either photosystem.  相似文献   

17.
During the photosynthetic process, highly organized membranal assemblies convert light into biochemical energy with high efficiency. We have used whole-mount cryo-electron tomography to study the intracellular architecture of the photosynthetic membranes of the anaerobic purple photosynthetic bacterium Rhodopseudomonas viridis, as well as the organization of the photosynthetic units within the membranes. Three-dimensional reconstruction demonstrates a continuity of the plasma membrane with the photosynthetic membranes that form tunnel-like structures with an average diameter of 31 nm ± 8 nm at the connection sites. The spacing between the photosynthetic membranes at their cytoplasmic faces was found to be 11 nm, thus enforcing a highly close packaging of the photosynthetic membranes. Analysis of successive tomographic slices allowed for derivation of the spacing between adjacent photosynthetic core complexes from a single-layered photosynthetic membrane, in situ. This analysis suggests that most, if not all, photosynthetic membranes in R. viridis are characterized by a similar two-dimensional hexagonal lattice organization.  相似文献   

18.
The polycistronic puf operon of Rhodobacter capsulatus encodes protein components for the photosynthetic reaction center and one of the two antenna complexes involved in the capture of light energy. We report here that deletions within specific puf genes alter the synthesis and/or assembly in the photosynthetic membranes of pigment-protein complexes not affected genetically by the deletion. The pufX gene is required for normal ratios of antenna complexes, and its deletion results in an increase of membrane-bound light-harvesting I (LHI) complex-specific proteins. Expression of pufQ in strains deleted for the genes encoding the LHI and the photosynthetic reaction center (RC) yields a novel A868 peak that has not been associated with any of the pigment-protein complexes described previously. While deletions in the RC-coding region resulted in decreased LHI absorbance, no quantitative alteration in membrane-bound LHI protein was observed, suggesting that an intact RC complex is required for correct assembly of LHI in the membrane.  相似文献   

19.
A C Newton  W H Huestis 《Biochemistry》1988,27(13):4645-4655
Sonicated dimyristoylphosphatidylcholine vesicles interact with cultured murine lymphoma (BL/VL3) to generate complexes of vesicle and cell membrane components. Cell-free supernatants harvested after cell-vesicle incubations contain three distinct lipid species that can be separated by density gradient centrifugation. Analysis of protein and lipid composition and assays for cell and vesicle lumen contents reveal that the densest of the three lipid species comprises sealed plasma membrane fragments complexed with vesicles, while the least dense species is indistinguishable from pure phospholipid vesicles. The third, intermediate density species consists of topologically intact vesicles with associated plasma membrane proteins but without detectable cell lipids or cytoplasmic components. The membrane fragmentation and cell-to-vesicle protein transfer observed during lymphoma-vesicle incubations are examined as functions of cell and vesicle concentrations and incubation time.  相似文献   

20.
The development of functional photosynthetic units in Rhodobacter sphaeroides was followed by near infra-red fast repetition rate (IRFRR) fluorescence measurements that were correlated to absorption spectroscopy, electron microscopy and pigment analyses. To induce the formation of intracytoplasmic membranes (ICM) (greening), cells grown aerobically both in batch culture and in a carbon-limited chemostat were transferred to semiaerobic conditions. In both aerobic cultures, a low level of photosynthetic complexes was observed, which were composed of the reaction center and the LH1 core antenna. Interestingly, in the batch cultures the reaction centers were essentially inactive in forward electron transfer and exhibited low photochemical yields F(V)/F(M), whereas the chemostat culture displayed functional reaction centers with a rather rapid (1-2 ms) electron transfer turnover, as well as a high F(V)/F(M) of approximately 0.8. In both cases, the transfer to semiaerobiosis resulted in rapid induction of bacteriochlorophyll a synthesis that was reflected by both an increase in the number of LH1-reaction center and peripheral LH2 antenna complexes. These studies establish that photosynthetic units are assembled in a sequential manner, where the appearance of the LH1-reaction center cores is followed by the activation of functional electron transfer, and finally by the accumulation of the LH2 complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号