首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The Asp and isoAsp isomers of three bioactive peptides, Crinia angiotensin 11 [APGDRIYHPF(OH)], uperin 1.1 [pEADPNAFYGLM(NH2)] and citropin 1.1 [GLFDVIKKVASVIGGL(NH2)] were tested for changes in (i) susceptibility towards proteolytic cleavage, (ii) activity (smooth muscle activity for Crinia angiotensin 11 and uperin 1.1 isomers, and antimicrobial activity for the two isomers of citropin 1.1), and (iii) 3D structures in water, trifluoroethanol-d3/water (1:1) and DPC micelles as determined by 2D nuclear magnetic resonance spectroscopy. Proteolytic cleavage with trypsin was identical for each pair of Asp/isoAsp isomers. Cleavage with chymotrypsin was the same for the Crinia angiotensin and uperin 1.1 isomeric pairs, but different for the two Asp/isoAsp citropin 1.1 isomers. Chymotrypsin cleaved at Phe3 (adjacent to Asp4) for citropin 1.1, but not at Phe3 (adjacent to isoAsp4) for isoAsp citropin 1.1. The smooth muscle activity of the isoAsp isomer of Crinia angiotensin 11 was less than that of the Asp isomer. The smooth muscle activity of isoAsp3-uperin 1.1 is greater than that of the Asp isomer at low concentration (<10−9 M) but no different from the Asp isomer at concentrations > 10−9 M. Citropin 1.1 is a wide-spectrum antibiotic against Gram positive organisms, while the isoAsp isomer is inactive against the test pathogens Staphylococcus aureus and Bacillus subtilis. The observed changes in activity are accompanied by changes in the 3D structures of isomers as determined by 2D nuclear magnetic resonance spectroscopy.  相似文献   

2.
ADP-Ribosylation of Human Myelin Basic Protein   总被引:2,自引:0,他引:2  
Abstract: When isolated myelin membranes were ADP-ribosylated by [32P]NAD+ either in the absence of toxin (by the membrane ADP-ribosyltransferase) or in the presence of cholera toxin, the same proteins were ADP-ribosylated in both cases and myelin basic protein (MBP) was the major radioactive product. Therefore, cholera toxin was considered a good model for ADP-ribosylation of myelin proteins. Although purified human MBP migrates as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a molecular mass of 20 kDa, the microheterogeneity that is masked under these conditions can be clearly demonstrated on alkaline-urea gels at pH 10.6. At this pH, MBP is resolved into several components that differ one from the other by a single charge (charge isomers). These charge isomers can be resolved on CM52 columns at pH 10.6, and several can be ADP-ribosylated. Component 1 (C-1), the most cationic charge isomer, incorporated 1.79 mol of ADP-ribose/mol of protein. C-2 and C-3 (which differ from C-1 by the loss of one and two positive charges, respectively) incorporated slightly less at 1.67 and 1.63 mol of ADP-ribose/mol of protein, respectively, whereas C-8, the least cationic, incorporated less than 0.11 mol/mol of protein. In the presence of neutral hydroxylamine, the ADP-ribosyl bond was shown to have a half-life of about 80 min, suggesting an N-glycosidic linkage between ADP-ribose and an arginyl residue of the protein. As MBP contains several components that are ADP-ribosylated to different specific activities, the use of MBP, ADP-ribosylated in the natural membrane, to identify the sites involved would yield a mixture of peptides difficult to resolve. Therefore, to identify the sites ADP-ribosylated, an endoproteinase Lys-C digest of C-1 ADP-ribosylated by cholera toxin was prepared. Two radioactive peptides were isolated by reversed-phase HPLC. Amino acid and sequence analyses identified the radioactive peptides as residues 5–13 and 54–58 of the human sequence (sp. act., 0.89 and 0.62 nmol of ADP-ribose/nmol of peptide, respectively). The ADP-ribosylated residues were identified as Arg9 and Arg54 by automated and manual Edman sequencing. Taken together with our previous observation that MBP binds GTP at a single site, these data suggest that MBP functions as part of a signal transduction system in myelin.  相似文献   

3.
A complete series of configurationally isomers (L -L , L -D , D -L AND D -D ) of a dipeptide Leu-Phe benzyl ester have been synthesized and assayed for chymotrypsin. In the conformational analysis by 400 MMz 1H NMR, the L -D and D -L isomers, but not hte L -L and D -D isomers, showed fairly large up field shifts (0.2–0.4 ppm) of Leu-βCH2 and γCH proton signals, indicating the presence of shielding effects from the benzene ring. In addition to distinct signal splitting of Phe-βCH2, the NOE enhancement observed between Leu-δCH3 and Phe-phenyl groups revealed that these groups are in close proximity. These data indicated that L -D and D -L isomers from a hydrophobic core between side chains of adjacent Leu and Phe residues. When the dipeptides were examined for inhibition of chymotrypsin using Ac-Try-OEt as a substrate, the L -L isomer showed no inhibition, itself becoming a substrate. However, the other three isomers inhibited chymotrypsin in a competitive manner, and the D -L isomer was strongest with Ki of 2.2 × 10?5 M . It was found that the D -L isomer was only slowly hydrolysed but the L (or D )-D isomer was not. H-D -Phe-L -Leu-OBzl with the inverse sequence of H-D -Leu-L -Pre-OBzl inhibited chymotrypsin more strongly (Ki = 6.3 × 10?6 M ). Since the free acid analogue of the D -L isomer exhibited no inhibition, the benzyl ester moiety itself was thought to be involved in the enzyme inhibition. It is assumed that in the inhibitory conformation the ester-benzyl group fits the S1 site of chymotrypsin, while the side chain-side chain complexing hydrophobic core fits the S2 site.  相似文献   

4.
Urea residues are produced by ionizing radiation on thymine residues in DNA. We have studied an oligodeoxynucleotide containing a thymine opposite the urea residue, by one and two dimensional NMR spectroscopy. The urea deoxyribose exists as two isomers with respect to the orientation about the peptide bond. For the trans isomer we find that the thymine and urea site are positioned within the helix and are probably hydrogen bonded. The oligonucleotide adopts a globally B form structure although conformational changes are observed around the mismatch site. A minor species is observed, in which the urea deoxyribose and the opposite base adopt an extrahelical position and this corresponds to the isomer cis for the peptide bond.  相似文献   

5.
A 17-residue disulfide-bridged peptide (PAK 128–144) corresponding to the C-terminus of Pseudomonas aeruginosa pilin strain K has been studied by one- and two-dimensional nmr techniques. This synthetic immunogen has been found to exist as two distinct conformations in solution, which have been demonstrated to arise as a result of the isomerization of the I138-P139 amide bond. The two isomers occur in the ratio of 3 : 1 trans to cis at 5°C. Sequential assignments for both forms have been accomplished through the use of nuclear Overhauser enhancement spectroscopy (NOESY) spectra and most side-chain resonances have been assigned using a combination of correlated spectroscopy, total correlated spectroscopy, and NOESY spectra. The presence of the cis isomer, which is considerably more predominant in the oxidized peptide, was confirmed by the observation of the characteristic NOEs between P139 and the preceding residue. Further corroboration was given by the disappearance of the cis resonances in the spectrum of the P139A analogue of PAK 128–144. From observation of the differences in the chemical shifts and amide proton temperature coefficients of the two isomers, it is apparent that the two forms differ markedly in their solution conformation. The biological implications of the isomerization are discussed. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
 The interaction of the two chiral isomers of the new anticancer agent [Pt(ampyr)(cbdca)] (ampyr=aminomethylpyrrolidine, cbdca=cyclobutanedicarboxylate) with 5′-GMP and with short G-containing oligonucleotides has been studied using 1H and 31P NMR, UV-vis spectroscopy and molecular modelling. Each isomer loses the cbdca ligand upon binding to the DNA fragments. Two geometrical isomers of the DNA adducts are formed owing to the presence of the unsymmetric ampyr ligand. These isomers prove to be GG-N7,N7 chelates for d(GpG), d(pGpG) and d(CpGpG). A slight preference for the formation of one geometrical isomer is found in the case of DNA fragments having a phosphate moiety and/or a C base at the 5′-site of the GG sequence. H-bonding interactions from the NH2 moiety towards the 5′-phosphate group and/or the O atom of the C base clearly favour the formation of one geometrical isomer. The presence of these H-bonds, together with the bulky pyrrolidine ring, has resulted in the unique observation (by 1H NMR) of NH protons of coordinated amines that do not rapidly exchange in a 99.95% D2O solution. Temperature-dependence studies show an extremely slow stack ⇄ destack conformational change for the CGG adducts of the S isomer, which could be related to these stable H-bonds of the amine protons towards the oligonucleotide. For the R isomer this stack ⇄ destack conformational change is faster, probably owing to more steric hindrance of the pyrrolidine ring as deduced from the NOESY data, and as also suggested by molecular modelling. The observation of extremely slow rotation around the Pt-N7 bond for [Pt(R-ampyr)(GMP-N7)2] provides further evidence for increased steric hindrance of the R isomer compared to the S isomer. The rate of binding of the drug to G bases proved to be second order for both isomers; in fact the (toxic) S isomer is about two times more reactive than the (non-toxic) R isomer, as seen from k 2 values of 0.17±0.01 M–1 s–1 for [Pt(S-ampyr)(cbdca)] and 0.09±0.01 M–1 s–1 for [Pt(R-ampyr)(cbdca)]. No solvent-assisted pathway is involved in these reactions, since the complexes prove to be stable in solution for weeks and therefore only a direct attack of the G base on the Pt must be involved. Because hardly any intermediate species can be detected during the reaction, coordination of the second G base must occur much faster than the binding of the first G base. Since direct attack of the nucleobases takes place, steric interactions become extremely important and therefore are likely to determine the reactivity, activity and even the toxicity of such Pt complexes. Received: 12 January 1999 / Accepted: 17 June 1999  相似文献   

7.
Human myelin basic protein (MBP) is composed of several charge isomers, the result of various post-translational modifications. One of the charge isomers C-8, has been shown in our laboratory to contain six citrullinyl residues which replace arginyl residues at selected sites in the MBP. In order to determine the disposition of the citrulline-containing charge isomers in the myelin stack, we prepared specific antisera against the citrullinyl group. Since 9-fluorenylmethoxycarbonyl (Fmoc)-citrulline, required for the preparation of the synthetic peptides to be used for antibody production, was not commercially available, synthesis of the Fmoc-citrulline was a necessary prerequisite. The synthesis and purification of the N-9-fluorenylmethyloxycarbonyl derivative of citrulline is described. It was characterized by thin layer chromatography, 1H and 13C NMR spectroscopy, fast-atom bombardment mass spectroscopy, and thermal analyses. It was used in the automated peptide synthesis of a peptide Ala-Cit-His-Gly-Phe-Leu-Pro-Cit-His-Arg corresponding to residues 24-33 and Gly-Cit-Asp-Ser-Arg-Ser-Gly-Ser-Pro-Met-Ala-Cit-Arg, corresponding to residues 158-170 of the C-8 sequence, a naturally occurring charge isomer of human myelin basic protein, and a tetracitrulline peptide, Cit-Cit-Cit-Cit-Gly. The tetracitrulline peptide was used for the production of an antibody shown to react only with synthetic peptides and proteins containing citrulline. This antibody was used to distinguish between a citrulline-containing protein, C-8, a naturally occurring charge isomer of MBP, and a non-citrulline-containing charge isomer of MBP, C-1.  相似文献   

8.
As part of a program to investigate the origins of peptide-carbohydrate mimicry, the conformational preferences of peptides that mimic the group B streptococcal type III capsular polysaccharide have been investigated by NMR spectroscopy. Detailed studies of a dodecapeptide, FDTGAFDPDWPA, a molecular mimic of the polysaccharide antigen, and two new analogs, indicated a propensity for beta-turn formation. Different beta-turn types were found to be present in the trans and cis (Trp-10-Pro-11) isomers of the peptide: the trans isomer favored a type I beta-turn from residues Asp-7-Trp-10, whereas the cis isomer exhibited a type VI beta-turn from residues Asp-9-Ala-12. The interaction of the dodecapeptide FDTGAFDPDWPA with a protective anti-group B Streptococcus monoclonal antibody has also been investigated, by transferred nuclear Overhauser effect NMR spectroscopy and saturation-transfer difference NMR spectroscopy (STD-NMR). The peptide was found to adopt a type I beta-turn conformation on binding to the antibody; the peptide residues (Asp-7-Trp-10) forming this turn are recognized by the antibody, as demonstrated by STD-NMR experiments. STD-NMR studies of the interactions of oligosaccharide fragments of the capsular polysaccharide have also been performed and provide evidence for the existence of a conformational epitope.  相似文献   

9.
We have previously demonstrated that a crude mixture of commercially available conjugated linoleic acid (CLA) isomers suppressed triglyceride (TG) content and induced apoptosis in post-confluent cultures of murine 3T3-L1 preadipocytes. Furthermore, we found that 100 μM of trans-10, cis-12 isomer of CLA had a greater TG-lowering and apoptotic effect than the crude mixture of CLA isomers. Therefore, the purpose of this study was to: 1) compare the potencies of the two main isomers found in the crude mixture of CLA isomers, e.g. cis-9, trans-11 (41%) and trans-10, cis-12 (44%); and 2) determine if the TG-reducing actions of CLA could be attenuated by the addition of increasing levels of linoleic acid to the cultures. Preadipocyte differentiation was assessed on day 7 of the differentiation protocol by measuring TG content (per 106 cells), cell size, and lipid staining. In experiment 1, post-confluent cultures of 3T3-L1 preadipocytes treated for the first 6 d of differentiation with 100 μM of a crude mixture of CLA isomers or 44 μM of trans-10, cis-12 CLA had less TG content than all other cultures. In contrast, cultures supplemented with 41 μM of the cis-9, trans-11 CLA isomer had the same amount of TG as the BSA controls. In experiment 2, post-confluent cultures of 3T3-L1 preadipocytes treated for the first 6 d of differentiation with 50 μM trans-10, cis-12 CLA had less TG content and a greater number of smaller cells (10–12.5 microns) compared to all other treatments. CLA-treated cultures supplemented with increasing levels of linoleic acid (50–200 μM) had greater TG contents and greater numbers of larger cells (15–20 microns) than cultures treated with 50 μM of the trans-10, cis-12 CLA isomer alone. These data demonstrate that: 1) the TG-lowering effects of the crude mixture of CLA isomers is due almost exclusively to the trans-10, cis-12 isomer; and 2) linoleic acid partially reverses CLA’s attenuation of TG content, suggesting that these unsaturated fatty acids may compete for incorporation into TG or phospholipid-derived eicosanoids that regulate preadipocyte differentiation.  相似文献   

10.
1H and 13C high-resolution nmr spectra of cationic, zwitterionic, and anionic forms of the peptides: H-Trp-(Pro)n-Tyr-OH, n = 0-5, and H-Trp-Pro-OCH3 were obtained in D2O solution. Analysis of Hα(Pro1), Hα(Trp), Cγ(Pro), Hε(Tyr), and Hδ(Trp) resonances provided evidence for the presence of two predominant backbone isomers: the all-trans one and another with the Trp-Pro peptide bond in cis conformation; the latter constituted about 0.8 molar fraction of the total peptide (n > 1) concentration. Relative content of these isomers varied in a characteristic way with the number of Pro residues and the ionization state of the peptides. The highest content of the cis (Trp-Pro) isomer, 0.74, was found in the anionic form of H-Trp-Pro-Tyr-OH; it decreased in the order of: anion ? zwitterion ≈ cation, and with the number of Pro residues to reach the value of 0.42 in the cationic form of H-Trp- (Pro)5-Tyr-OH. Isomerization equilibria about Pro-Pro bond(s) were found to be shifted far (?0.9) in favor of the trans conformation. Interpretation of the measured vicinal coupling constants Jα?β′ and Jα?β″ for CαH-CβH2 proton systems of Trp and Tyr side chains in terms of relative populations of g+, g?, and t staggered rotamers around the χ1 dihedral angle indicated that in all the peptides studied (a) rotation of Trp indole ring in cis (Trp-Pro) isomers is strongly restricted, and (b) rotation of Tyr phenol ring is relatively free. The most preferred χ1 rotamer of Trp (0.8-0.9 molar fraction) was assigned as the t one on the basis of a large value of the vicinal coupling constant between the high-field Hβ and carbonyl carbon atoms of Trp, estimated for the cis (Pro1) form of H-Trp-Pro-Tyr-OH from a 1H, 13C correlated spectroscopy 1H detected multiple quantum experiment. This indicates that cis ? trans equilibrium in the Trp-Pro fragment is governed by nonbonding interactions between the pyrrolidine (Pro) and indole (Trp) rings. A molecular model of the terminal cis Trp-Pro dipeptide fragment is proposed, based on the presented nmr data and the results of our molecular mechanics modeling of low-energy conformers of the peptides, reported elsewhere. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
Ten asymmetric isomers exist for [Co(pema)(ampy)Cl]2+ (pema=N-(2-aminomethylpyridyl)ethylenediamine, ampy=2-aminomethylpyridine) which involve unsymmetrical triamine and diamine ligands. Four of these have been synthesized, two facial (f3, f2) and two mer (m3 and m4) isomers. Ab initio energy calculations for the [Co(pema)(ampy)Cl]2+ and [Co(pema)(ampy)OH]2+ systems show that the isomers containing a C-H?π interaction are the more stable forms. The f3 is the most stable isomer in the chloro system and the m3 form in the hydroxo system. The structures are deduced from the 2D NMR spectra and confirmed by the X-ray crystal structure determinations for the four chloro isomers.  相似文献   

12.
Campbell AP  Wong WY  Irvin RT  Sykes BD 《Biochemistry》2000,39(48):14847-14864
The C-terminal receptor binding region of Pseudomonas aeruginosa pilin protein strain PAK (residues 128-144) has been the target for the design of a vaccine effective against P. aeruginosa infections. We have recently cloned and expressed a (15)N-labeled PAK pilin peptide spanning residues 128-144 of the PAK pilin protein. The peptide exists as a major (trans) and minor (cis) species in solution, arising from isomerization around a central Ile(138)-Pro(139) peptide bond. The trans isomer adopts two well-defined turns in solution, a type I beta-turn spanning Asp(134)-Glu-Gln-Phe(137) and a type II beta-turn spanning Pro(139)-Lys-Gly-Cys(142). The cis isomer adopts only one well-defined type II beta-turn spanning Pro(139)-Lys-Gly-Cys(142) but displays evidence of a less ordered turn spanning Asp(132)-Gln-Asp-Glu(135). These turns have been implicated in cross-reactive antibody recognition. (15)N-edited NMR spectroscopy was used to study the binding of the (15)N-labeled PAK pilin peptide to an Fab fragment of a cross-reactive monoclonal antibody, PAK-13, raised against the intact PAK pilus. The results of these studies are as follows: the trans and cis isomers bind with similar affinity to the Fab, despite their different topologies; both isomers maintain the conformational integrity of their beta-turns when bound; binding leads to the preferential stabilization of the first turn over the second turn in each isomer; and binding leads to the perturbation of resonances within regions of the trans and cis backbone that undergo microsecond to millisecond motions. These slow motions may play a role in induced fit binding of the first turn to Fab PAK-13, which would allow the same antibody combining site to accommodate either trans or cis topology. More importantly for vaccine design, these motions may also play a role in the development of a broad-spectrum vaccine capable of generating an antibody therapeutic effective against the multiple strains of P. aeruginosa.  相似文献   

13.
Abstract: Myelin basic protein (MBP) is a highly heterogeneous family of membrane proteins consisting of several isoforms resulting from alternative splicing and charge isomers arising from posttranslational modifications. Although well characterized in the bovine and human species, those in the mouse are not. With the availability of a number of transgenic and knockout mice, the need to understand the chemical nature of the MBPs has become very important. To isolate and characterize the MBP species in murine brain, two methods were adapted for use with the small amounts of MBP available from mice. The first was a scaled-down version of the preparative CM-52 chromatographic system commonly used to isolate MBP charge isomers; the second was an alkaline-urea slab gel technique that required five times less material than the conventional tube gel system and, from these gels, western blots were readily obtained. Murine MBP was resolved into two populations of charge isomers: the 18.5- and 14-kDa isoforms. Isolation and characterization of these charge isomers or components permitted us to assign possible posttranslational modifications to some of them. Component 1 (C-1), the most cationic isomer, had a molecular weight of 14,140.38 ± 0.79. C-2 consisted of two 14-kDa species, 14,136.37 ± 0.74 and 14,204.45 ± 0.70. Two variants, 14,215.57 ± 0.94 and 18,413.57 ± 0.76, constituted C-3. C-4, C-5, and C-8 (the least cationic isomer) each consisted of both 14- and 18.5-kDa isoforms. During myelinogenesis, the 18.5-kDa isoform appeared first (day 4); the 14-kDa isoform appeared at day 16 and subsequently became the dominant isoform. The transgenic shiverer mutant synthesized mainly the 18.5-kDa isoform, but none of the 14-kDa isoform, similar to the 4-day-old mouse. We concluded that the trangenic shiverer was able to initiate myelinogenesis with the 18.5-kDa isoform, but was unable to complete myelinogenesis because of the absence of the 14-kDa isoform.  相似文献   

14.
The objective of this investigation was to determine whether nonmammalian myelin basic protein contained charge isomers resulting from extensive posttranslational modifications as seen in mammalian MBP. Four charge isomer components from dogfish MBP have been isolated. These forms arise by phosphorylation and deamidation modifications. Components C1, C2 and C3 have been characterized. We are currently characterizing component C8. Dogfish MBP is less cationic than mammalian MBP and has about 50% lower mobility on a basic pH gel electrophoresis relative to human and to bovine MBP. The mammalian component C1, which is unmodified, is modified in the dogfish by phosphorylation. The reduced electrophoretic mobility is largely attributable to the charge reduction resulting from phosphorylation in serine 72, 83, and 120 or 121 in C1, and C3. In component C2, two or three phosphate groups were distributed among residues 134, 138 and 139. It was found that dogfish amino acid residue 30 was a lysine residue and not a glutamate residue as reported in the literature.  相似文献   

15.
Abstract

The solution conformations of two potent antagonists of bradykinin (Arg1-Pro2-Pro3-Gly4- Phe5-Ser6-Pro7-Phe8-Arg9), [Aca-1, DArg0, Hyp3, Thi5, DPhe7,(N-Bzl)Gly8]BK (1) and [Aaa- 1, DArg0, Hyp3, Thi5,(2-DNal)7, Thi8]BK (2), were studied by using 2D NMR spectroscopy in DMSO-dg and molecular dynamics simulations. The NMR spectra of peptide 1 reveals the existence of at least two isomers arising from isomerization across the DPhe7-(N-Bzl)Gly8peptide bond. The more populated isomer possesses the cis peptide bond at this position. The ratio of cis/trans isomers amounted to 7:3. With both antagonists, the NMR data indicate a β-turn structure for the Hyp3-Gly4 residues. In addition, for peptide 2, position 2,3 is likely to be occupied by turn-like structures. The cis peptide bond between DPhe7 and (N- Bzl)Gly8 in analogue 1 suggests type VI β-turn at position 7,8. The molecular dynamics runs were performed on both peptides in DMSO solution. The results indicate that the structure of peptide 1 is characterized by type VIb β-turn comprising residues Ser-Arg9 and the βI or βII-turn involving the Pro2-Thi5 fragment, whereas peptide 2 shows the tendency towards the formation of type I β-turn at position 2,3. The structures of both antagonists are stabilized by a salt bridge between the guanidine moiety of Arg1 and the carboxyl group of Arg9. Moreover, the side chain of DArg0 is apart of the rest of molecule and is not involved in structural elements except for a few calculated structures.  相似文献   

16.
Glycerophospholipids (GPs) that differ in the relative position of the two fatty acyl chains on the glycerol backbone (i.e., sn-positional isomers) can have distinct physicochemical properties. The unambiguous assignment of acyl chain position to an individual GP represents a significant analytical challenge. Here we describe a workflow where phosphatidylcholines (PCs) are subjected to ESI for characterization by a combination of differential mobility spectrometry and MS (DMS-MS). When infused as a mixture, ions formed from silver adduction of each phospholipid isomer {e.g., [PC (16:0/18:1) + Ag]+ and [PC (18:1/16:0) + Ag]+} are transmitted through the DMS device at discrete compensation voltages. Varying their relative amounts allows facile and unambiguous assignment of the sn-positions of the fatty acyl chains for each isomer. Integration of the well-resolved ion populations provides a rapid method (< 3 min) for relative quantification of these lipid isomers. The DMS-MS results show excellent agreement with established, but time-consuming, enzymatic approaches and also provide superior accuracy to methods that rely on MS alone. The advantages of this DMS-MS method in identification and quantification of GP isomer populations is demonstrated by direct analysis of complex biological extracts without any prior fractionation.  相似文献   

17.
Abstract

The intercalative binding of chiral tris(phenanthroline) metal complexes to DNA is stereo-selective. The enantiomeric selectivity is based upon the differential steric interactions between the two non-intercalating phenanthroline ligands of each isomer with the DNA phosphate backbone. Gel electrophoretic assays of helical unwinding, optical enrichment studies by equilibrium dialysis and luminescence titrations with separated enantiomers of (phen)3Ru2+ all indicate that the delta isomer binds preferentially to the right-handed duplex. The chiral discrimination is governed by the DNA helical asymmetry. Complete stereospecifity is seen with isomers of the bulkier RuDIP (tris-4,7-diphenylphenanthrolineruthenium(II)). While both isomers bind to Z-DNA, a poor template for discrimination, binding of Λ-RuDIP to B-DNA is precluded. These chiral complexes therefore serve as a chemical probe to distinguish left and right-handed DNA helices in solution.  相似文献   

18.
Thiophosphate analogs of adenine nucleotides were used to establish the absolute stereochemistry of nucleotide substrates in the reactions of carbamate kinase (Streptococcus faecalis), unadenylylated glutamine synthetase (Escherichia coli), and carbamoyl-phosphate synthetase (E. coli). 31P NMR was used to determine that carbamate kinase uses the B isomer of Ado-5′-(2-thioPPP) in the presence of Mg2+. The stereospecificity of the reaction with carbamate kinase was not reversed by Cd2+ suggesting that the metal ion does not bind to the β-phosphoryl group or that both Mg2+ and Cd2+ bind to the sulfur atom. Carbamate kinase uses both A and B isomers of Ado-5′-(1-thioPP) with Mg2+ and Cd2+. We have previously reported that carbamoyl-phosphate synthetase uses the A isomer of Ado-5′-(2-thioPPP) at both ATP sites with Mg2+ (Raushel et al., 1978J. Biol. Chem.253, 6627). Current experiments show that the stereospecificity is reversed by Cd2? and that both A and B isomers are used when Zn2+ is present. With Ado-5′-(1-thioPPP), the B isomer is used with Mg2+, the A isomer with Cd2+, and both isomers with Zn2+. Neither carbamate kinase nor carbamoyl-phosphate synthetase utilized Co(III)(NH3)4ATP as a substrate and thus we can only speculate that the Δ chelate ring configuration is the chelate structure utilized by carbamoyl-phosphate synthetase (based on the analogy between thiophosphate-ATP analogs and Co3+-ATP analogs utilized by hexokinase (E. K. Jaffe, and M. Cohn, 1978Biochemistry17, 652). If the sulfur of the β-phosphoryl of Ado-5′-(2-thioPPP) binds to the metal ion with carbamate kinase, then the Δ chelate ring is also used in this enzyme that catalyzes one of the steps in the overall reaction catalyzed by carbamoyl-phosphate synthetase. Glutamine synthetase reacts with the B isomer of both Ado-5′-(2-thioPPP) and Ado-5′-(1-thioPPP) in the presence of Mg2+. When Co2+ is used with this enzyme the A and B isomers of both thio-ATP compounds are substrates. Co(III)(NH3)4ATP is not a substrate for glutamine synthetase. Glutamine synthetase is therefore different from the two previously mentioned enzymes in that it used the opposite A ring configuration for the metal-ATP chelate.  相似文献   

19.
The influence of steric effects on the helical geometry and the interconversion of type II to type I polyproline in water was examined by the synthesis and analysis of proline dimers and hexamers containing up to three (2S,5R)-5-tert-butylproline residues. In the dimers, the bulky 5-tert-butyl substituent was found to exert a significant influence on the local prolyl amide geometry such that the predominant trans-isomer in N-(acetyl)prolyl-prolinamide (1) was converted to 63% cis isomer in N-(acetyl)prolyl-5-tert-butylprolinamide (2) as measured by (1)H-nmr spectroscopy. Similarly, the presence of a 5-tert-butyl group on the C-terminal residue in the polyproline hexamer Ac-Pro(5)-t-BuPro-NH(2) (4) produced a local 5-tert-butylprolyl amide population containing 61% cis isomer in water. In spite of the presence of a local prolyl cis amide geometry, the downstream prolyl amides in 4 remained in the trans isomer as determined by NOESY spectroscopy. Conformational analysis by (13)C-nmr and CD spectroscopy indicated that Ac-Pro(6)-NH(2) (3) adopted the all-trans amide polyproline type II helix in water. As the amount of 5-tert-butylproline increased from one to three residues in hexamers 4-6, a gradual destabilization of the polyproline type II helical geometry was observed by CD spectroscopy in water; however, no spectrum was obtained, indicative of a complete conversion to a polyproline type I helix. The implications of these results are discussed with respect to the previously proposed theoretical mechanisms for the helical interconversion of polyproline, which has been suggested to occur by either a cooperative C- to N-terminal isomerization of the prolyl amide bonds or via a conformational intermediate composed of dispersed sequences of prolyl amide cis and trans isomers.  相似文献   

20.
The in vivo metabolism of the cis and trans isomers of N-[3,5-3H] nitroso-2,6-dimethylmorpholine (NDMM) was studied in female Fischer rats, Syrian golden hamsters and guinea pigs by analysis of urinary metabolites using high pressure liquid chromatography (HPLC). Animals were treated by gavage with 12 mg/kg body wt. of NDMM, composed of both isomers and 12 μCi/kg body wt. of either of the separated radioactive isomers (cis or trans). Control animals received 12 mg, 12 μCi/kg body wt. NDMM with both isomers labeled in their natural proportion.There was a substantial increase in the excretion of a particular metabolite, 2-(2-hydroxyl-methyl)ethoxy propanoic acid, in the urine of rats, hamsters and guinea pigs 24 h after received the trans isomer (24, 22 and 13% of the total dose excreted, respectively). A minor metabolite was determined to be 2,6-dimethylmorpholine-3-one, another product of α-oxidation. The metabolite 1-amino-2-hydroxypropanol was identified, indicating that NDMM was metabolized by both α-and β-oxidation.In all three species, animals administered the cis isomer excreted larger amounts of N-nitroso(2-hydroxypropyl)(2-oxopropyl)amine (HPOP) and N-nitroso-bis(2-hydroxypropyl)amine (BHP) products of beta oxidation, than those treated with the trans isomer. Hamsters and guinea pigs treated with the more carcinogenic cis isomer in these species, also excreted twice as much of two other metabolites than was found in the urine of animals given the trans isomer.The trans isomer of NDMM appeared to be preferentially metabolized by α-oxidation and from earlier studies this metabolic pathway seemed to be important in carcinogenesis by NDMM in the rat. The cis isomer might be in a conformation more favorable for β-oxidation and this pathway may be of primary importance in carcinogenesis by NDMM in hamsters and guinea pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号