首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Escherichia coli β-D -galactosidase (E.C. 3.2.1.23) was immobilized in cellulose nitrate membrane microcapsules and the reaction kinetics with o-nitrophenyl-β-D -galactopyranoside (ONPG), lactose, and whole milk were studied using both continuous stirred tank and packed bedreactor configurations. The results of the experiments gave effectiveness factors of 0.3 for ONPG, 0.6 to 0.7 for lactose in solution, andclose to unity for lactose in milk. Using a coupled mass transfer and kinetic model, it was possible to estimate the permeability of the microcapsule membrane from the reactor data. Membrane permeabilities on the order of 5 × 10?3 and 3 × 10?4 cm/sec were estimated for ONPG and lactose, respectively. It was determined that the membrane was the limiting mass transfer resistance for the overallreaction. The analysis showed that within the microcapsule, the reaction is reaction rate limited for lactose and slightly diffusion limitedfor ONPG.  相似文献   

2.
Ten strains of Propionibacterium shermanii were tested for beta-galactosidase (beta-gal) activity. Of these ten strains, five yielded enhanced enzyme activity when cell suspensions were treated with toluene-acetone; on solvent treatment, the remaining five lost a considerable portion of the activity found in whole-cell suspensions. By using a strain yielding decreased activity upon solvent treatment, explanations for the loss in activity were sought through assays for possible alternative beta-galactoside utilization mechanisms. When this strain was assayed for beta-D-phosphogalactoside galactohydrolase by using orthonitrophenyl-beta-D-galactopyranoside-6-P04 as a substrate, the activity was wither lower or indiffernt as compared with beta-gal activity determined simultaneously. Cell suspensions of P. shermanii 7 and 22 (strains chosen for further work) grown separately on the individual substrates (lactose, glucose, galactose, and sodium lactate) did not show significant differences in beta-gal activity. Optimal temperature for beta-gal activity in untreated and toluene-acetone-treated cell suspensions of strain 7 was 52 C. With strain 22, of the temperatures tested, maximal activity in untreated cell suspensions was noted at 58 C and with solvent-treated cells at 32 C. In the cell-free extract (CFE) system, both strains exhibited maximal activity at 52 C. Optimal pH for untreated and solvent-treated cell suspensions of both strains was around 7.5. In the P. shermanii 22 CFE system, maximal activity occurred at pH 7.0; pH had very little effect on enzyme activity in P. shermanii 7 CFE. Sodium or potassium phosphate buffers in the assay system yielded the best activity. In the CFE system of these two strains, Mn2+ was definitely stimulatory, but in untreated and solvent-treated cell systems of these strains presence or absence of Mn2+ in the assay system had variable effects on enzyme activity. Maximal beta-gal activity was noted in P. shermanii 7 cells harvested after 28 h of growth at 32 C in sodium lactate broth. Sulfhydryl-group blocking agents inhibited enzyme activity in P. shermanii 22 CFE; the inhibition was partly reversed by dithiothreitol.  相似文献   

3.
Properties of the ribosome-bound β-galactosidase were examined in Escherichia coli cells after prolonged induction. This fraction of enzyme was not chased from ribosomes by removal of inducer, or by treatments with hydroxylamine, puromycin, chloramphenicol, and azide. However, the metabolic turnover of this fraction could be demonstrated by means of a pulsed exposure to the phenylalanine analogue β-2-thienylalanine, and this fraction was enriched in heavy forms relative to the soluble enzyme. These observations indicated a tight coupling of the release of ribosome-bound enzyme to nascent enzyme synthesis, and it is suggested that the ribosome-bound enzyme is related to an intermediate stage in the assembly of quarternary enzyme structures.  相似文献   

4.
The kinetics of β-galactosidase induction in E. coli ML 3 have been studied. Following addition of inducer, the rate of enzyme synthesis accelerates from the uninduced to a steady-state rate. At saturating concentration of inducer the time constant (Tc) for this process is 2.5 to 3 minutes. With decreasing inducer concentration (I), increasing time constants are observed. I/I + K′ approximates I/Tc. The steady-state rate of β-galactosidase synthesis is approximated by I2/I2 + K2. K′ and K have been estimated for IPTG and TMG. The kinetics of β-galactosidase production after the removal of inducer by dilution or after the addition of glucose have been investigated. A transition time of 2.5 to 3 minutes is observed before enzyme synthesis slows or stops. These results are consistent with the hypothesis that the enzyme-forming unit is unstable.  相似文献   

5.
The cell suspension culture Daucus carota L. was permeabilized by Tween 80 and immobilized by glutaraldehyde. β-Galactosidase showed an optimum pH of 4.7 and an optimum temperature of 55 °C. The enzyme hydrolysis was linear for 3 h, reaching a 65% conversion. A very good level of storage stability was achieved when using dry catalyst, or a solution of 0.15 M NaCl with the addition of chloramphenicol, (l-methyldodecyl)-dimethylamin-4-oxide (ATDNO), chlortetracycline hydrochloride (CLCTC) or by freezing the immobilized cells in 0.15 M NaCl. The cells characterized by high enzyme activity and stability in long-term storage showed convenient physicomechanical properties.  相似文献   

6.
7.
Induction of β-Galactosidase in Lactobacillus plantarum   总被引:4,自引:1,他引:4  
  相似文献   

8.
β-Galactosidase fragments were isolated from strains of Escherichia coli with mutations in the lacZ gene. The polypeptide obtained from a termination mutant (lacZNG125) appeared to be the intact gene product, containing the first half of the β-galactosidase amino acid sequence. From an internal deletion mutant strain (lacZU163), an aggregate was obtained of several partially degraded polypeptides. Each of these was smaller than predicted from genetic data for the fragment. Introduction of the lacZU163 mutation into a protein degradation-deficient strain (Deg) resulted in the protection of the amino-terminal region of the protein. Some of the BrCN peptides from the U163 polypeptides were separated and identified. From such experiments it was shown that in both Deg and Deg+ strains the COOH-terminal region is rapidly degraded. This indicates that the complete gene product of lacZU163 has not been detected. The use of genetically defined enzyme fragments in studying structure-function relationships and in determination of primary structure is discussed.  相似文献   

9.
In this paper circadian changes in the liver enzyme activities of rat housed under highly standardized conditions with 12:12 hour light-dark cycle are shown. Activities of acid phosphatase, arylsulphatase, β-galactosidase and β-N-acetyl-d-glucosaminidase in microsomal and lysosomal fractions and crude homogenate were estimated every 4 hr during one 24-hr period. The enzyme activities were related to 1 mg of protein, 1 mg of DNA and 1 g fresh tissue. Daily changes of enzyme activities were found. In case of activity calculated per 1 mg DNA two maxima at 0500 and at 2100 hr were observed, while activity calculated per 1 mg protein showed one maximum at 0500 hr. Activity calculated per 1 g fresh tissue showed the maximum at 0500 hr for each enzyme only in microsomal fraction. As far as acrophase table is concerned for all enzymes and fractions the acrophase occurred during the night. The obtained results are discussed in relation to lysosomal enzymes synthesis process as well as different reference values.  相似文献   

10.
11.
N-terminal beta-galactosidase fragments are rapidly degraded in growing cells of Escherichia coli. Mutations in the lon gene are sufficient to enhance the stability of these polypeptides.  相似文献   

12.
13.
A poppy cell suspension culture was permeabilized by Tween 80 and immobilized by glutaraldehyde. The α-Galactosidase in these cells showed an optimum pH level at 5.2 and an optimum temperature at 70 °C. Enzyme hydrolysis was linear for 3 h, reaching 86% conversion. A very good level of storage stability was achieved when using dry catalyst and immobilized cells in 0.15 M NaCl solution (with the addition of chloramphenicol, [1-methyldodecy1)-dimethylamin-4-oxide (ATDNO), chlortetracycline hydrochloride (CLCTC)] or by freezing them in 0.15 M NaCl solution.  相似文献   

14.
The β-galactosidase from the Antarctic gram-negative bacterium Pseudoalteromonas haloplanktis TAE 79 was purified to homogeneity. The nucleotide sequence and the NH2-terminal amino acid sequence of the purified enzyme indicate that the β-galactosidase subunit is composed of 1,038 amino acids with a calculated Mr of 118,068. This β-galactosidase shares structural properties with Escherichia coli β-galactosidase (comparable subunit mass, 51% amino sequence identity, conservation of amino acid residues involved in catalysis, similar optimal pH value, and requirement for divalent metal ions) but is characterized by a higher catalytic efficiency on synthetic and natural substrates and by a shift of apparent optimum activity toward low temperatures and lower thermal stability. The enzyme also differs by a higher pI (7.8) and by specific thermodynamic activation parameters. P. haloplanktis β-galactosidase was expressed in E. coli, and the recombinant enzyme displays properties identical to those of the wild-type enzyme. Heat-induced unfolding monitored by intrinsic fluorescence spectroscopy showed lower melting point values for both P. haloplanktis wild-type and recombinant β-galactosidase compared to the mesophilic enzyme. Assays of lactose hydrolysis in milk demonstrate that P. haloplanktis β-galactosidase can outperform the current commercial β-galactosidase from Kluyveromyces marxianus var. lactis, suggesting that the cold-adapted β-galactosidase could be used to hydrolyze lactose in dairy products processed in refrigerated plants.  相似文献   

15.
《FEBS letters》1994,340(3):185-188
Membrane-associated phosphoinositide-phospholipase C (PI-PLC)-β (150 kDa) and its truncated forms (100 kDa and 45 kDa) were purified from human platelets. The 100 kDa PI-PLC-β was found to be activated to a greater extent by brain G-protein βγ subunits compared to the intact 150 kDa enzyme. Furthermore, treatment with μ-calpain of the intact PI-PLC-β (150 kDa) caused a marked augmentation of its activation by βγ subunits. This enhanced PLC activation by βγ subunits was due to truncation by μ-calpain, producing a 100 kDa PI-PLC, but not by another protease,thrombin.  相似文献   

16.
The peptide Boc-L-Val-ΔPhe-ΔPhe-L-Val-OCH3 was synthesized by the azlactone method in solution phase, and its crystal and molecular structures were determined by x-ray diffraction method. Single crystals were grown by slow evaporation from a methanol/water solution at 6°C. The crystals belong to an orthorhombic space group P212121 with a = 10.478 (6) Å, b = 13.953 (1), c = 24.347 (2) and Z = 4. The structure was determined by direct methods and refined by least squares procedure to an R value of 0.052. The structure consists of a peptide and a water molecule. The peptide adopts two overlapping β-turn conformations of Types II and I′ with torsion angles: ϕ1 = -54.8 (6), ψ1 = 130.5 (4), ϕ2 = 65.8 (5), ψ2 = 12.8 (6), ϕ3 = 79.4 (5), ψ3 = 3.9 (7)°. The conformation is stabilized by intramolecular hydrogen bonds involving Boc CO and NH of ΔPhe3 and CO of Val1 and NH of Val4. The molecules are tightly packed in the unit cell. The crystal structure is stabilized by hydrogen bonds involving NH of ΔPhe2 and CO of a symmetry related (x-½, ½ -y, -z) ΔPhe2. The solvent-water molecule forms two hydrogen bonds with peptide molecule involving NH of Val1 as an acceptor and another with CO of a symmetry related (1 -x, y-½, ½ -z) ΔPhe3 as a donor. These studies indicate that a tetrapeptide with two consecutive ΔPhe residues sequenced with valines on both ends adopts two overlapping β-turns of Types II and I′. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
The synthesis of poly(ε-L -lysine) is described. This is a poly(ε-amino acid) in which the ε-amino group of lysine is condensed with the α-carboxyl group to produce a chain backbone that is a variant of the usual one seen in proteins and the side chain is the α-amino group. Conformational studies of poly(ε-L -lysine) and its t-butyloxycarbonyl derivative suggest the likelihood of a chain order that is formally similar to the antiparallel pleated-sheet conformation of proteins.  相似文献   

18.
In anterior pituitaries from male rats, it appeared that 5α-androstane-3β, 17β-diol was quickly metabolized into 5α-androstane-3β,6α-17β-triol and 5α-androstane-3β,7α, 17β-triol by action of 6α- and 7α-hydroxylases. Hydroxysteroid hydroxylases were located in endoplasmic reticulum and were dependent on NADPH+. Their optimum pH was 8.0, optima temperature, 37°C, and their apparent Km was 2.7 μM. Hydroxylative reactions were not reversible and not modified by gonadectomy. Hydroxylation seemed an efficient control of the pituitary level of 5α-andros-tane-3β, 17β-diol.  相似文献   

19.
Pivaloyl-L -Pro-Aib-N-methylamide has been shown to possess one intramolecular hydrogen bond in (CD3)2SO solution, by 1H-nmr methods, suggesting the existence of β-turns, with Pro-Aib as the corner residues. Theoretical conformational analysis suggests that Type II β-turn conformations are about 2 kcal mol?1 more stable than Type III structures. A crystallographic study has established the Type II β-turn in the solid state. The molecule crystallizes in the space group P21 with a = 5.865 Å, b = 11.421 Å, c = 12.966 Å, β = 97.55°, and Z = 2. The structure has been refined to a final R value of 0.061. The Type II β-turn conformation is stabilized by an intramolecular 4 → 1 hydrogen bond between the methylamide NH and the pivaloyl CO group. The conformational angles are ?Pro = ?57.8°, ψPro = 139.3°, ?Aib = 61.4°, and ψAib = 25.1°. The Type II β-turn conformation for Pro-Aib in this peptide is compared with the Type III structures observed for the same segment in larger peptides.  相似文献   

20.
Two γ-aminobutyric acidA (GABAA) receptor chimeras were designed in order to elucidate the structural requirements for GABAA receptor desensitization and assembly. The (α1/γ2) and (γ2/α1) chimeric subunits representing the extracellular N-terminal domain of α1 or γ2 and the remainder of the γ2 or α1 subunits, respectively, were expressed with β2 and β2γ2 in Spodoptera frugiperda (Sf-9) cells using the baculovirus expression system. The (α1/γ2)β2 and (α1/γ2)β2γ2 but not the (γ2/α1)β2 and (γ2/α1)β2γ2 subunit combinations formed functional receptor complexes as shown by whole-cell patch–clamp recordings and [3H]muscimol and [3H]flunitrazepam binding. Moreover, the surface immunofluorescence staining of Sf-9 cells expressing the (α1/γ2)-containing receptors was pronounced, as opposed to the staining of the (γ2/α1)-containing receptors, which was only slightly higher than background. To explain this, the (α1/γ2) and (γ2/α1) chimeras may act like α1 and γ2 subunits, respectively, indicating that the extracellular N-terminal segment is important for assembly. However, the (α1/γ2) chimeric subunit had characteristics different from the α1 subunit, since the (α1/γ2) chimera gave rise to no desensitization after GABA stimulation in whole-cell patch–clamp recordings, which was independent of whether the chimera was expressed in combination with β2 or β2γ2. Surprisingly, the (α1/γ2)(γ2/α1)β2 subunit combination did desensitize, indicating that the C-terminal segment of the α1 subunit may be important for desensitization. Moreover, desensitization was observed for the (α1/γ2)β2γ2 receptor with respect to the direct activation by pentobarbital. This suggests differences in the mechanism of channel activation for pentobarbital and GABA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号