首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A strain ofAlternaria alternata (Fr.) Keissl, when grown on wheat bran Czapek Dox medium was found to secrete one neutral and two alkaline proteases. The purified enzymes were found to be endo peptidases, the alkaline proteases being serine proteases and neutral proteases being cysteine proteases. Fructose when added to the culture medium was found to give rise to a new neutral protease at the expense of the neutral protease produced in the absence of fructose and was also found to enhance the production of alkaline proteases. It also appears that fructose modifies the alkaline proteases with respect to some characteristics such asV max, Ea etc. Sodium dodecyl sulphate Polyacrylamide gel electrophoresis indicated a significantly altered protein profile in fructose supplemented medium.  相似文献   

2.
In order to elucidate the protease constitution of Aspergillus oryzae, systematic separation of proteases was elaborated by sequential chromatography on Amberlite CG–50, DEAE-Sephadex A–50 and CM-cellulose. As the results, three kinds of proteases, that is, acid-, neutral- and alkaline proteases were isolated and purified in crystalline form except neutral one. Purified neutral protease could not be crystallized, but was confirmed to be homogeneous by ultracentrifugal analysis. Besides these proteases, a new protease which was unknown up to the present in the constitution of Asp. oryzae proteases, was first isolated and designated as “semi-alkaline protease” according to its optimal pH.  相似文献   

3.
Extracellular and membrane-bound proteases from Bacillus subtilis.   总被引:8,自引:5,他引:3       下载免费PDF全文
Bacillus subtilis YY88 synthesizes increased amounts of extracellular and membrane-bound proteases. More than 99% of the extracellular protease activity is accounted for by an alkaline serine protease and a neutral metalloprotease. An esterase having low protease activity accounts for less than 1% of the secreted protease. These enzymes were purified to homogeneity. Molecular weights of approximately 28,500 and 39,500 were determined for the alkaline and neutral proteases, respectively. The esterase had a molecular weight of approximately 35,000. Amino-terminal amino acid sequences were determined, and the actions of a number of inhibitors were examined. Membrane vesicles contained bound forms of alkaline and neutral proteases and a group of previously undetected proteases (M proteases). Membrane-bound proteases were extracted with Triton X-100. Membrane-bound alkaline and neutral proteases were indistinguishable from the extracellular enzymes by the criteria of molecular weight, immunoprecipitation, and sensitivity to inhibitors. The M protease fraction accounted for approximately 7% of the total activity in Triton X-100 extracts of membrane vesicles. The M protease fraction was partially fractionated into four species (M1 through M4) by ion-exchange chromatography. Immunoprecipitation and sensitivity to inhibitors distinguished membrane-bound alkaline and neutral proteases from M proteases. In contrast to alkaline and neutral proteases, proteases M2 and M3 exhibited exopeptidase activity.  相似文献   

4.
The stability of the neutral and alkaline proteases in a Bacillus subtilis enzyme mixture was studied in aqueous solutions at room temperature. Stabilization of the proteases in solution for periods up to 25 days was achieved by the addition of various protein preparations including casein and soya protein. The degree of stabilization by casein was concentration dependent to about 2% protein. The instability of the neutral protease in solutions of the B. subtilis enzyme mixture was shown to be due primarily to proteolysis by the alkaline protease since the diisopropylfluorophosphate-treated enzyme was quite stable. Formulation of such enzyme solutions at low pH gave greater stability as did solutions containing an alkaline protease inhibitor from potatoes. A Conceptual approach to the formulation of enzyme solutions containing proteolytic enzyme to ensure maximum stability is proposed.  相似文献   

5.
Methods for the examination of bacteria for protease production on semisolid media are described. The selection of media for production of small quantities of crude bacterial proteases from pure cultures of selected microorganisms in shake flasks is discussed. The most useful media have been found to be a grain-based medium, a soya fluff-starch-yeast extract medium and a fish meal-enzose-cerelose-cornsteep liquor medium. The alkaline proteases and neutral proteases can be identified and differentiated by specific assays and a purification procedure planned dependent upon the enzymes present in the fermentation beer. Crude enzyme can be precipitated from the fermentation beer by the addition of organic solvents such as acetone or isopropanol or by the addition of salts such as ammonium or sodium sulfate. The alkaline proteases typified by B. subtilis alkaline protease can be extensively purified by chromatography on Duolite C-10 cation exchange resin, whereas the neutral protease of 3 subtilis is best purified by chromatography on hydroxylapatite. Methods for purification of other proteases are discussed and the prechromatography steps for removal of pigment and other gross impurities are described.  相似文献   

6.
Six deep-sea proteolytic bacteria taken from Aleutian margin sediments were screened; one of them produced a cold-adapted neutral halophilic protease. These bacteria belong to Pseudoalteromonas spp., which were identified by the 16S rDNA sequence. Of the six proteases produced, two were neutral cold-adapted proteases that showed their optimal activity at pH 7–8 and at temperature close to 35°C, and the other four were alkaline proteases that showed their optimal activity at pH 9 and at temperature of 40–45°C. The neutral cold-adapted protease E1 showed its optimal activity at a sodium chloride concentration of 2 M, whereas the activity of the other five proteases decreased at elevated sodium chloride concentrations. Protease E1 was purified to electrophoretic homogeneity and its molecular mass was 34 kDa, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of protease E1 was determined to be 32,411 Da by mass spectrometric analysis. Phenylmethyl sulfonylfluoride (PMSF) did not inhibit the activity of this protease, whereas it was partially inhibited by ethylenediaminetetra-acetic acid sodium salt (EDTA-Na). De novo amino acid sequencing proved protease E1 to be a novel protein.  相似文献   

7.
Total protease activity at pH 7 and 10.3 of 23 commercial grade enzymes was determined. The type and amount of enzymatic activity varied widely among the products. The wide variation in pH 7.0/pH 10.3 proteolytic activity ratios among products indicated that the products studied contained differing levels of alkaline and neutral proteases. Antisera were prepared against the purified enzyme in detergent grade Enzyme AP, neutral protease from B. megaterium, detergent grade ALK Enzyme, and Thermolysin. The commercial (unpurified) products were classified as neutral subtilopeptidase A and subtilopeptidase B from three Bacillus species using these antisera. It was concluded that standard immunochemical techniques provide rapid and sensitive methods for the preliminary identification of sources and types of proteases present in commercial enzyme products.  相似文献   

8.
Proteases of the genus Bacillus. II. Alkaline proteases   总被引:5,自引:0,他引:5  
The alkaline proteases of B. subtilis NRRL B3411, B. pumilis, and B. licheniformis have been isolated by fractionation followed by ion exchange chromatography and their homogeneity demonstrated. General enzyme properties of the B. sublitis NRRL B3411 alkaline protease have been studied and attempts made to differentiate a group of alkaline proteases. It is clear that the alkaline proteases known as Subtilisins or Subtilopeptidases are not, exclusive to B. subtilis but are common to many Bacilli and therefore the generic name Bacillopeptidases has been proposed. It is clear too that on the basis of the effect of pH on activity, amino acid composition, esterase activity, and immunological cross-reactions the Bacillopeptidases can be divided into two groups or types: (a) Bacillopcptidase A (Subtilisin A or Subtilopeptidase A) which includes Subtilisin Carlsberg, B. licheniformis, and B. pumilis alkaline proteases; ( b ) Bacillopeptidase B (Subtilisin B or Subtilopeptidase B) which includes B subtilis NRRL B3411, Subtilisin Novo, Subtilisin BPN' (Nagarse), alkaline protease Daiwa Kasei, and (probably) B. subtilis var. amylosacchariticus. At present, no further differentiation is possible and whether or not the enzymes within group A or B are identical remains an open question. Methods for examination of crude enzyme mixtures or fermentation beers are described and from the examination of a number of crude enzymes and fermentation beers it appears that organisms producing Bacillopeptidase A do not produce neutral protease or amylase, while organisms producing Bacillopeptidase B produce a neutral protease and amylase as well.  相似文献   

9.
A transformable strain of Bacillus subtilis 6160, a derivative of B. subtilis 168, produces three kinds of casein hydrolytic enzymes (alkaline protease, neutral protease, and esterase) in a culture medium. B. natto IAM 1212 produces 15 to 20 times as much total proteolytic activity as does B. subtilis. Extracellular proteases produced by the two strains were separated into each enzyme fraction by diethylaminoethyl-Sephadex A-50 column chromatography. The difference in the total protease activities of extracellular proteases between the two strains was due to the amount of neutral protease. The ratios of neutral protease activity to alkaline protease activity (N/A) were 1.1 in B. subtilis 6160 and 13.0 in B. natto IAM 1212. Enzymological and immunological properties of alkaline protease and neutral protease obtained from the two strains were quite similar or identical, respectively. Specific activities measured by an immunological analysis of the two neutral proteases against casein were also equal. A genetic character of high protease productivity in B. natto IAM 1212 was transferred to B. subtilis 6160 by the deoxyribonucleic acid-mediated transformation. Among 73 transformants that acquired high protease productivity, 69 produced a higher amount of neutral protease and the ratios of N/A were changed to 15 to 60. Three other strains were transformed in the productivity of neutral protease and alpha-amylase simultaneously, and one showed considerable change in the production of alkaline protease and neutral protease. The specific activities (casein hydrolytic activities/enzyme molecules) of neutral proteases from the representative four transformants were equal to those of the two parental strains. These results suggested the presence of a specific gene(s) that participated in the productivity of neutral protease in B. subtilis.  相似文献   

10.
Summary Alkaliphilic Bacillus sp. no. AH-101 produces an extremely thermostable alkaline serine protease that has a high optimum pH (pH 12–13) and shows keratinolytic activity. The gene encoding this protease was cloned in Escherichia coli and expressed in B. subtilis. The cloned protease was identical to the AH-101 protease in its optimum pH and thermostability at high alkaline pH. An open reading frame of 1083 bases, identified as the protease gene, was preceded by a putative Shine-Dalgarno sequence (AAAGGAGG) with a spacing of 11 bases. The deduced amino acid sequence revealed a pre-pro-peptide of 93 residues followed by the mature protease comprising 268 residues. AH-101 protease showed slightly higher homology to alkaline proteases from alkaliphilic bacilli (61.2% and 65.3%) than to those from neutrophilic bacilli (54.9–56.7%). Also AH-101 protease and other proteases from alkaliphilic bacilli shared common amino acid changes and a four amino acid deletion when compared to the proteases from neutrophilic bacilli. AH-101 protease, however, was distinct among the proteases from alkaliphilic bacilli in showing the lowest homology to the others.Correspondence to: H. Takami  相似文献   

11.
Summary Bacillus subtilis DB104, a double mutant which does not synthesize neutral or alkaline proteases, was shown to exhibit some residual proteolytic activity when grown in both batch and continuous cultures. A major protein component responsible for about 70% of extracellular residual protease activity was reversibly deactivated by removal of calcium.  相似文献   

12.
Summary Hyperthermostable proteases were characterized from five archaeobacterial species (Thermococcus celer, T. stetteri, Thermococcus strain AN 1, T. litoralis, Staphylothermus marinus) and the hyperthermophilic eubacterium Thermobacteroides proteolyticus. These proteases, which were found to be of the serine type, exhibited a preference for phenylalanine in the carboxylic side of the peptide. The enzymes from Thermococcus stetteri and T. litoralis hydrolysed most substrates (peptides) tested. All proteases were extremely thermostable and demonstrated optimal activities between 80 and 95°C. The pH optimum was either neutral (T. celer, Thermococcus strain AN 1) or alkaline. The protease of Thermobacteroides proteolyticus was optimally active at pH 9.5. Zymogram staining showed the presence of multiple protease bands for all strains investigated.Offprint requests to: G. Antranikian  相似文献   

13.
Studies were carried out to define the relation between enzyme production and fungal sporulation, in solid-state cultivation conditions of the filamentous fungus Aspergillus oryzae NRRL 2217 to get information on possible links between metabolite synthesis and differentiation phenomena. The efforts taken to explore the possibility for the presence of a neutral protease inside the spores of this fungus was to increase the overall enzyme yield. Results showed that the production of enzyme (neutral protease) and biomass (total protein) were synchronised, both reaching their respective maximum levels at 48 h of fermentation, and decreasing thereafter. Neutral protease synthesis was not related to sporulation. The spores produced were subjected to various permeabilisation procedures, and the increase in the levels of neutral protease was monitored. Mechanical shear was the sole technique that was able to disrupt spores but even this failed to increase enzyme titres, confirming the absence of intra-spore proteases.  相似文献   

14.
冯璨  马香  刘柱  李宏  李娟娟  彭欣  唐燕琼 《微生物学通报》2022,49(10):4291-4304
【背景】微生物蛋白酶在工业生物技术上具有广阔的应用前景。在微生物蛋白酶中,碱性蛋白酶占全球酶总产量的50%以上,获取产碱性蛋白酶的新微生物资源意义重要。【目的】在海南近海贝类养殖基地海泥中筛选获得高产碱性蛋白酶的菌株,对其生长特性进行探究并优化菌株产酶条件,获得新的蛋白酶生产资源。【方法】以酪素培养基为筛选培养基,采用形态学结合系统发育分析鉴定菌株,通过响应面实验优化菌株的产酶条件。【结果】筛选获得一株高产碱性蛋白酶的菌株F3,鉴定为粘质沙雷氏菌(Serratia marcescens)。菌株在最优产酶条件下发酵酶活达到(339.36±4.30) U/mL。【结论】筛选获得的菌株粘质沙雷氏菌F3有较好的产碱性蛋白酶的能力。  相似文献   

15.
We examined the influence of bromfenvinphos, a commonly used acaricide, on activities of many metabolic enzymes affecting the biochemical defences/physiology of the western honeybee, Apis mellifera L. (Hymenoptera: Apidae), as well as on some metabolic compound concentrations, percentage of global DNA methylation, and Nosema spp. infection levels. Bromfenvinphos‐treated workers had decreased haemolymph volumes and higher protein concentrations on their cuticle but lower protein concentrations in the haemolymph. They had higher global DNA methylation levels independent of the age‐related variants. Bromfenvinphos decreased the activities of antioxidant enzymes (SOD, GPx, CAT, GST), acidic, neutral, and alkaline protease inhibitors and enzymatic physiological markers (AST, ALT, ALP), and concentrations of urea, uric acid, creatinine, cholesterol, glucose, Mg2+, and Ca2+ in worker haemolymph, depending on the age of the bees. Protease activities were higher only in the haemolymph of young bromfenvinphos‐treated bees in comparison with untreated bees. This compound decreased the activities of alkaline proteases and neutral protease inhibitors on the cuticle. Unexpectedly, in the treated bees, the activities of acidic and neutral proteases, and acidic and alkaline protease inhibitors, were higher in the young bees and lower in the older workers in comparison to the untreated group. The bromfenvinphos‐treated workers were more heavily infested with Nosema spp. Thus, bromfenvinphos not only supressed many levels of biochemical defences, and therefore stress‐resistance‐related biochemical pathways but also visibly increased the Nosema spp. infection levels.  相似文献   

16.
Bacillus subtilis 1A20 transformed with a hybrid plasmid, pNP150, to which a DNA fragment from Bacillus amyloliquefaciens F was attached, produced a large amount of a neutral protease. To identify the origin of the gene specifying this neutral protease, neutral proteases from B. amyloliquefaciens F, B. subtilis NP58 (a derivative of Marburg 6160), and B. subtilis 1A20 transformed with pNP150 were purified. We investigated their immunological properties and primary structures.

The proteases from these two species were indistinguishable by chromatography, but they were distinguishable from each other by SDS-polyacrylamide gel electrophoresis and double immunodiffusion. Amino acid sequencing of these two proteases by Edman degradation showed that there were four substitutions in the 20-residue amino acid sequence from the N-termini.

Neutral protease from the transformant had the same immunological characteristics and N-terminal amino acid sequence as that from B. amyloliquefaciens. These results meant that the gene in question was derived from a gene specifying the neutral protease in this bacterium.  相似文献   

17.
Summary Effect of the cloned gene of Bacillus licheniformis on the extracellular proteolytic activities of B. subtilis was investigated. The gene was cloned onto the vector plasmid pUB110 (3.0 Md), and the introduction of the hybrid plasmid [pAN2 (5.4 Md)] into the cells of B. subtilis resulted in a marked increase of activities of the extracellular alkaline and neutral proteases, which had optimal pHs at 10.5 and 7.2, respectively. On DEAE-Sephadex column chromatography, the extracellular activity of B. subtilis with pAN2 was separated into two active fractions (a1 and b1). The activity in a1 was specifically inactivated by diisopropyl phosphorofluoridate (DFP) and tosyl fluoride (TSF), potent inhibitors of alkaline proteases, while, the activitiy in b1 was inhibited by ethylenediaminetetraacetate (EDTA), an inhibitor of neutral protease, but not by DEP or TSF.Sub-cloning with genes shortened to about 0.85 Md (pAN2-1) and 0.25 Md (pAN2-2) increased the activities of both alkaline and neutral proteases. The extracellular -amylase and ribonuclease production was also increased when the host strain was transformed with these hybrid plasmids (pAN2, pAN2-1, pAN2-2). The increase in activity of proteases by the cloning was discussed in relation to regulation of the production and/or secretion of the enzyme.  相似文献   

18.
中国大鲵消化系统13种器官的蛋白水解酶种类和活性分析   总被引:8,自引:0,他引:8  
蛋白水解对生命活动是必不可少的(Vassali et al., 1994),蛋白质的酶解修饰(Xu et al.,1999)、细胞的迁移、组织再生与修复、消化系统对食物中蛋白质的消化等均与蛋白水解酶有关(Baimbridge et al.,1992),许多病理过程也与蛋白水解酶功能失调有关(Teichert et al., 1989; Monard, 1988).因此开展大鲵消化系统各器官的蛋白水解酶种类和性质的研究,对了解大鲵消化系统各器官的功能、演化及大鲵的营养需求、食性、消化生理等是必要的.本文对大鲵消化系统各器官的蛋白水解酶特征进行了初步分析,现将结果报道如下.  相似文献   

19.
Intracellular proteolytic activity was detected in cell-free extracts ofClostridium perfringens NCTC 10239 and NCTC 8798. The kinetics of protease, enterotoxin, and spore formation as well as growth of the wild type at elevated temperature and the use of sporulation mutants indicated that most protease activity was related to sporulation. Intracellular protease activity was inhibited by a mixture of tetrasodium ethylenediaminetetraacetic acid and phenylmethylsulfonyl fluoride; this indicated the presence of an alkaline serine protease and a neutral metallo-protease. Stage 0 sporulation mutants produced only metallo-sensitive proteases; this indicated that only the serine protease was sporulation-specific.  相似文献   

20.
Studies to determine the physiological and nutritional characteristics of protease synthesis by Bacteroides splanchnicus NCTC 10825 showed that the proteases were constitutive and cell-associated during exponential growth in batch culture. As growth slowed and the bacteria entered the stationary phase, proteases that had accumulated intracellularly were released into the culture media. In continuous cultures, [dilution rate (D)=0.03 h–1 to D=0.29 h–1], protease activity was completely cell-bound and maximal during nitrogen-limited growth at high dilution rates. The proteases hydrolysed a relatively restricted range of protein substrates including casein, azocasein and gelatine (comparative maximum rates of hydrolysis were 1.0, 4.1 and 2.7 units mg–1 protein respectively). B. splanchnicus proteases exhibited arylamidase activities against leucine p-nitroanilide, valylalanine p-nitroanilide and glycylproline p-nitroanilide. Inhibition experiments indicated that the bacterium produced a mixture of serine, thiol and, possibly, metalloproteases. Protease activities were affected by reducing agents and divalent metal ions. Mercaptoethanol at 1 mm was slightly stimulatory; however, dithiortheitol and dithioerythritol (each 10 mm) respectively inhibited protease activities by 91% and 100%. Calcium ions (5 mm) stimulated protease activity by 30%, whereas Mn2+ and Mg2+ had little or no effect. Protease and arylamidase activities had neutral to alkaline pH optima. Together, these results show that with respect to the types of protease formed and the physiology of the process, B. splanchnicus proteolysis is similar in many respects to that occurring in species belonging to the B. fragilis group. Correspondence to: G. T. Macfarlane  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号