首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this report the biokinetic parameter μmax, m and Ymax for the denitrification of a medium containing acetat as C-source and a soft coal gasification water containing volatile fatty acids as main components have been compared. An expression for a true maximum specific growth rate is proposed (μmaxw = μmax + mYmax) and it could be shown that despite different values for μmax the values for μmaxw correspond fairly well.  相似文献   

2.
Various organic compounds were assessed as potential substrates for single cell protein production. Substrate evaluation was based on the costs associated with the substrate, oxygen, and heat yield coefficients: Ysub, Yo, and Ykcal, respectively. Yo, and Ykcal, were calculated from experimental values of Ysub, and from the elemental composition of bacterial cells. The dependence of the yield coefficients on the specific growth rate (μ) and maintenance coefficient (m) also was assessed. The analysis disclosed that m caused two- to threefold variations in the yield coefficients as μ was increased from 10% to 100% of μmax. The effect of different m values at constant specific growth rates also was determined. The value of m had a significant effect on the yield coefficients even at high specific growth rates. Assignment of cost factors to the yield coefficients provided an estimation of the impact m and μ on biomass production costs.  相似文献   

3.
Summary Maximal molar growth yields (Y sub max ) and protease production ofBacillus licheniformis S 1684 during NH 4 + -, O2-, and NH 4 + +O2-limitation with either glucose or citrate as carbon and energy source and during glucose-, and citratelimitation in chemostat cultures were determined. Protease production was repressed by excess ammonia when glucose served as C/E-source. Glucose and citrate repressed protease production during NH 4 + -limitation. A low oxygen tension enbanced protease production at low -values. It was concluded that, besides ammonia repression, catabolite flux and oxygen tension influence protease production, indicating that the energy status of the cell is important for the level of protease production.Y sub max -values were high during glucose-limitation and indicate a high efficiency of growth caused by a highY ATP max . During NH 4 + -, O2-, and NH 4 + +O2-limitation with glucose as C/E-values were lower than during glucose limitation. The lowerY sub max -values were due to a lower efficiency of energy conservation.Y sub max -values during limitations with citrate as C/E-source were lower than during limitations with glucose as C/E-source.Nomenclature specific growth rate (h-1) - Y sub growth yield per mol substrate (g biomass/mol) - Y max maximal molar growth yield corrected for maintenance requirements (g biomass/mol) - Y max (corr) Y max corrected for product formation (g biomass/mol) - m sub maintenance requirements (mol/g biomass·h) - m sub (corr) maintenance requirements corrected for product formation (mol/g biomass·h) - q port max maximal specific rate of protease production (E440/mg DW·h)  相似文献   

4.
The molar growth yield (Y m) of Bacteroides amylophilus strain WP91 on maltose was 68±2 g/mol when determined from batch cultures at the peaks of maximal growth. Continued incubation led to considerable cell lysis. When calculated from batch cultures in exponential phase (specific growth rate, =0.57 h-1) Y m was 101 g/mol. The maximum value of Y m in maltose-limited chemostat cultures at the maximum dilution rate (D) attainable (D==0.39 h-1) was about 79 g/mol. Ammonia-Fmited chemostat cultures metabolized maltose with a much reduced efficiency and this was associated with a difference in morphology and chemical composition of the cells. The theoretical maximum molar growth yields (Y m max ) were 55 and 114 g/mol for ammonia- and maltose-limited growth respectively. However, if account was taken of extracellular nitrogen-containing material in ammonia-limited cultures, Y m max became 60. The maintenance coefficient (m s), estimated from the lines relating the specific rate of maltose consumption (q m) and D (where m s=q m at D=0), was 7.4±0.6×10-4 mol maltose/g x h for both nutrient limitations. A difference in maintenance energy demand, independent of growth-rate, could not account, therefore, for the observed differences in Y m between ammonia- and maltose-limited growth.  相似文献   

5.
Summary Bacillus licheniformis S 1684 is able to produce an alkaline serine protease exocellularly. In glucose-limited chemostat cultures the specific rate of protease production was maximal at a -value of 0.22. Above this growth rate protease production was repressed. Dependent on 10–20% of the glucose input was used for exocellular product formation. The degree of reduction of exocellular products was 4.1.Maximum molar growth yields were high and indicate a high efficiency of growth. The values of Y glu max and YO 2 max were 83.8 and 53.3, respectively. When Y glu max was corrected for the amount of glucose used for product formation a value of 100.3 was obtained. These high maximum molar growth yields are most probably caused by a high Y ATP max . Anaerobic batch experiments showed a Y ATP of 14.6.Sometimes the used strain was instable in cell morphology and protease production. Non-protease producing cells most probably develop from producing cells by mutation in the rel-gene. Producing cells most probably are relaxed (rel -) and non-producing cells stringent (rel +).Glossary specific growth rate (h-1) - Y sub growth yield permol substrate (g biomass/mol) - Y max maximum molar growth yield, corrected for maintenance requirements (g biomass/mol) - Y max(corr) Y max corrected for product formation (g biomass/mol) - m sub maintenance requirements (mol/g biomass·h) - m sub(corr) maintenance requirements corrected for product formation (mol/g biomass·h) - Y c fraction of organic substrate converted in biomass - z fraction of organic substrate converted in exocellular products - d fraction of organic substrate converted in CO2 (g mol/g atom C) - Crec% carbon recovery % - average degree of reduction of exocellular products - P/O amount of ATP produced during electron-transport of 2 electrons to oxygen  相似文献   

6.
The behavior of Streptomyces peucetius var. caesius N47 was studied in a glucose limited chemostat with a complex cultivation medium. The steady-state study yielded the characteristic constants μ max over 0.10 h−1, Y XS 0.536 g g−1, and mS 0.54 mg g−1 h−1. The product of secondary metabolism, ɛ-rhodomycinone, was produced with characteristics Y PX 12.99 mg g−1 and m P 1.20 mg g−1 h−1. Significant correlations were found for phosphate and glucose consumption with biomass and ɛ-rhodomycinone production. Metabolic flux analysis was conducted to estimate intracellular fluxes at different dilution rates. TCA, PPP, and shikimate pathway fluxes exhibited bigger values with production than with growth. Environmental perturbation experiments with temperature, airflow, and pH changes on a steady-state chemostat implied that an elevation of pH could be the most effective way to shift the cells from growing to producing, as the pH change induced the biggest transient increase to the calculated ɛ-rhodomycinone flux.  相似文献   

7.
Molar growth yields for anaerobic growth of Aerobacter aerogenes in complex medium were much higher than for growth in minimal medium. In batch cultures the molar growth yield for glucose varied from 44 to 50 and Y ATP from 17.1 to 18.8. For glucose-limited chemostat cultures a value of 17.5 g/mole was found for Y ATP max and a value of 2.3 mmoles ATP/g dry weight h for the maintenance coeficient. Growth dependent pH changes were used to control the addition of fresh medium, containing excess of glucose to a continuous culture. The specific growth rate and the population density were dependent on the pH difference between the inflowing medium and the culture. At a value of 1.44 h-1 the molar growth yield for glucose was about 70 and Y ATP about 28.5. An-equation is presented, which gives the relation between theoretical and experimental Y ATP max values.  相似文献   

8.
For anaerobic glucose-limited chemostat cultures of Escherichia coli a value of 8.5 was found for Y ATP max . For anaerobic glucose- or ammoniumlimited chemostat cultures of the ATPase-negative mutant M2-6 of E. coli Y ATP max values of 17.6 and 20.0 were found, respectively. From these data it can be concluded that in the wild type during anaerobic growth 51–58% of the total ATP production is used for energetization of the membrane. Using the Y ATP values obtained in the anaerobic experiments a P/O ratio of 1.46 could be calculated for aerobic experiments with the wild type. It is concluded that from the energy obtained by respiration in wild type E. coli about 60% is used for membrane energetization and only about 40% for the actual formation of ATP. No dramatic difference in the maintenance requirement for ATP or glucose has been observed between glucose- and ammonium-limited chemostat cultures of the mutant. The large difference in maintenance requirement observed for such cultures of the wild type is therefore supposed to be made possible by ATP hydrolysis by the ATPase.  相似文献   

9.
Thiobacillus tepidarius, isolated from the hot springs at Bath, Avon, UK, grew optimally at 43–45°C and pH 6.0–7.5 on thiosulphate or tetrathionate. In batch culture, thiosulphate was oxidized stoichiometrically to tetrathionate, with a rise in pH. The tetrathionate was then oxidized to sulphate, supporting growth and producing a fall in pH to a minimum of ph 4.8. The organism contained high levels of thiosulphate-oxidizing enzyme, rhodanese and ribulose bisphosphate carboxylase. It was obligately chemolithotrophic and autotrophic. In chemostat culture, T. tepidarius grew autotrophically with the following sole energy-substrates: sulphide, thiosulphate, trithionate, tetrathionate, hexathionate or heptathionate. Thiocyanate, dithionate and sulphite were not used as sole substrates, although sulphite enhanced growth yields in the presence of thiosulphate. Maximum specific growth rate on tetrathionate was 0.44 h-1. True growth yields (Y max) and maintenance coefficients (m) were calculated for sulphide, thiosulphate, trithionate and tetrathionate and observed yields at a single fixed dilution rate compared with those on hexathionate and heptathionate. Mean values for Y max, determined from measurements of absorbance, dry wt, total organic carbon and cell protein, were similar for sulphide, thiosulphate and trithionate (10.9 g dry wt/mol substrate) as expected from their equivalent oxygen consumption for oxidation. Y max for tetrathionate (20.5) and the relative Y o values (as g dry wt/g atom oxygen consumed) for thiosulphate and all four polythionates indicated that substrate level phosphorylation did not contribute significantly to energy conservation. These Y max values were 40–70% higher than any of those previously reported for obligately aerobic thiobacilli. Mean values for m were 6.7 mmol substrate oxidized/g dry wt·h for sulphide, thiosulphate and trithionate, and 2.6 for tetrathionate.Abbreviation PIPES Piperazine-N,N-bis(ethane sulphonic acid)  相似文献   

10.
Summary Growth coefficients ofZymomonas mobilis were compared in glucose-limited chemostat culture using a complex medium and a defined minimal growth medium at non inhibitory concentrations of ethanol. Under carbon and energy limited conditions in the complex medium containing yeast extract, the max. molar growth yield (YG max) and maintenance energy coefficient (me) were 10.8 g cell/mol glucose and 8.3 mmol glu/g cell/hr, respectively. Glucose-limited growth in the minimal medium with NH4Cl as nitrogen source promoted slight energetic uncoupling, as reflected in the decrease in the maximum growth yield. The growth yield with respect to calcium pantothenate was calculated to be 1.4×104 g cell/g Ca-pantothenate. However, pantothenate-limited growth did not result in a decrease in growth yield nor an increase in the specific rate of glucose catabolism. Steady-state growth measurements failed to confirm the previously held view of Belaïchet al. (1972) that pantothenate deficiency induces energetic uncoupling inZymomonas.  相似文献   

11.
Soil microbes produce extracellular enzymes that degrade carbon (C)‐containing polymers in soil organic matter. Because extracellular enzyme activities may be sensitive to both increased nitrogen (N) and temperature change, we measured the effect of long‐term N addition and short‐term temperature variation on enzyme kinetics in soils from hardwood forests at Bear Brook, Maine, and Fernow Forest, West Virginia. We determined the Vmax and Km parameters for five hydrolytic enzymes: α‐glucosidase, β‐glucosidase, β‐xylosidase, cellobiohydrolase, and N‐acetyl‐glucosaminidase. Temperature sensitivities of Vmax and Km were assessed within soil samples subjected to a range of temperatures. We hypothesized that (1) N additions would cause microbial C limitation, leading to higher enzyme Vmax values and lower Km values; and (2) both Vmax and Km would increase at higher temperatures. Finally, we tested whether or not temperature sensitivity of enzyme kinetics is mediated by N addition. Nitrogen addition significantly or marginally significantly increased Vmax values for all enzymes, particularly at Fernow. Nitrogen fertilization led to significantly lower Km values for all enzymes at Bear Brook, but variable Km responses at Fernow Forest. Both Vmax and Km were temperature sensitive, with Q10 values ranging from 1.64–2.27 for enzyme Vmax and 1.04–1.93 for enzyme Km. No enzyme showed a significant interaction between N and temperature sensitivity for Vmax, and only β‐xylosidase showed a significant interaction between N and temperature sensitivity for Km. Our study is the first to experimentally demonstrate a positive relationship between Km and temperature for soil enzymes. Higher temperature sensitivities for Vmax relative to Km imply that substrate degradation will increase with temperature. In addition, the Vmax and Km responses to N indicate greater substrate degradation under N addition. Our results suggest that increasing temperatures and N availability in forests of the northeastern US will lead to increased hydrolytic enzyme activity, despite the positive temperature sensitivity of Km.  相似文献   

12.
Using experimental data from continuous cultures of Clostridium acetobutylicum with and without biomass recycle, relationships between product formation, growth and energetic parameters were explored, developed and tested. For glucose-limited cultures the maintenance models for, the Y ATP and biomass yield on glucose, and were found valid, as well as the following relationships between the butanol (Y B/G) or butyrate (Y BE/G) yields and the ATP ratio (R ATP, an energetic parameter), Y B/G =0.82-1.35 R ATP, Y BE/G =0.54 + 1.90 R ATP. For non-glucose-limited cultures the following correlations were developed, Y B/G =0.57-1.07 , Y B/G =0.82-1.35 R ATPATP and similar equations for the ethanol yield. All these expressions are valid with and without biomass recycle, and independently of glucose feed or residual concentrations, biomass and product concentrations. The practical significance of these expressions is also discussed.List of Symbols D h–1 dilution rate - m e mol g–1 h–1 maintenance energy coefficient - m G mol g–1 h–1 maintenance energy coefficient - R biomass recycle ratio, (dimensionless) - R ATP ATP ratio (eqs.(5), (10) and (11)), (dimensionless) - X kg/m3 biomass concentration - Y ATP g biomass per mol ATP biomass yield on ATP - Y ATP max g biomass per mol ATP maximum Y ATP - Y A/G mol acetate produced per mol glucose consumed molar yield of acetate - y an/g mol acetone produced per mol glucose consumed molar yield of acetone - Y B/G mol butanol produced per mol glucose consumed molar yield of butanol - y be/g mol butyrate produced per mol glucose consumed molar yield of butyrate - Y E/G mol ethanol produced per mol glucose consumed molar yield of ethanol - Y X/G g biomass per mol glucose consumed biomass yield on glucose - Y ATP max g biomass per mol maximum Y X/G glucose consumed - h–1 specific growth rate  相似文献   

13.
The enteric methane conversion factor (Ym) is an important country‐specific value for the provision of precise enteric methane emissions inventory reports. The objectives of this meta‐analysis were to develop and evaluate the empirical Ym models for the national level and the farm level for tropical developing countries according to the IPCC's categorization. We used datasets derived from 18 in vivo feeding experiments from 1999 to 2015 of Zebu beef cattle breeds fed low‐quality crop residues and by‐products. We found that the observed Ym value was 8.2% gross energy (GE) intake (~120 g methane emission head?1 day?1) and ranged from 4.8% to 13.7% GE intake. The IPCC default model (tier 2, Ym = 6.5% ± 1.0% GE intake) underestimated the Ym values by up to 26.1% compared with its refinement of 8.4% ± 0.4% GE intake for the national‐level estimate. Both the IPCC default model and the refined model performed worse in predicting Ym trends at the farm level (root mean square prediction error [MSPE] = 15.1%–23.1%, concordance correlation coefficient [CCC] = 0.16–0.18, R2 = .32). Seven of the extant Ym models based on a linear regression approach also showed inaccurately estimated Ym values (root MSPE = 16.2%–36.0%, CCC = 0.02–0.27, R2 < .37). However, one of the developed models, which related to the complexity of the energy use efficiencies of the diet consumed to Ym, showed adequate accuracy at the farm level (root MSPE = 9.1%, CCC = 0.75, R2 = .67). Our results thus suggest a new Ym model and future challenges for estimating Zebu beef cattle production in tropical developing countries.  相似文献   

14.
The maximum carboxylation capacity of Rubisco, Vc,max, is an important photosynthetic parameter that is key to accurate estimation of carbon assimilation. The gold‐standard technique for determining Vc,max is to derive Vc,max from the initial slope of an ACi curve (the response of photosynthesis, A, to intercellular CO2 concentration, Ci). Accurate estimates of Vc,max derived from an alternative and rapid “one‐point” measurement of photosynthesis could greatly accelerate data collection and model parameterization. We evaluated the practical application of the one‐point method in six species measured under standard conditions (saturating irradiance and 400 μmol CO2 mol?1) and under conditions that would increase the likelihood for successful estimation of Vc,max: (a) ensuring Rubisco‐limited A by measuring at 300 μmol CO2 mol?1 and (b) allowing time for acclimation to saturating irradiance prior to measurement. The one‐point method significantly underestimated Vc,max in four of the six species, providing estimates 21%–32% below fitted values. We identified ribulose‐1,5‐bisphosphate‐limited A, light acclimation, and the use of an assumed respiration rate as factors that limited the effective use of the one‐point method to accurately estimate Vc,max. We conclude that the one‐point method requires a species‐specific understanding of its application, is often unsuccessful, and must be used with caution.  相似文献   

15.
Salt-tolerant aromatic yeast is an important microorganism arising from the solid state fermentation of soy sauce. The fermentation kinetics of volatile esters by Candida etchellsii was studied in a batch system. The data obtained from the fermentation were used for determining the kinetic parameters of the model. Batch experimental results at four NaCl levels (180, 200, 220, and 240 g/L) were used to formulate the parameter estimation model. The kinetic parameters of the model were optimized by specifically designed Runge-Kutta Genetic Algorithms (GA). The resulting mathematical model for volatile ester production, cell growth and glucose consumption simulates the experimental data well. The resulting new model was capable of explaining the behavior of volatile ester fermentation. The optimized parameters (μo, X max, K i, α, β, Y X/S, m, and Y P/S) were characterized by a correlation of functions assuming salinity dependence. The kinetic models optimized by GA describe the batch fermentation process adequately, as demonstrated by our experimental results.  相似文献   

16.
The growth performance of malolactic fermenting bacteria Oenococcus oeni NCIMB 11648 and Lactobacillus brevis X2 was assessed in continuous culture. O. oeni grew at a dilution rate range of 0.007 to 0.052 h−1 in a mixture of 5:6 (g l−1) of glucose/fructose at an optimal pH of 4.5, and L. brevis X2 grew at 0.010 to 0.089 h−1 in 10 g l−1 glucose at an optimal pH of 5.5 in a simple and safe medium. The cell dry weight, substrate uptake and product formation were monitored, as well as growth kinetics, yield parameters and fermentation balances were also evaluated under pH control conditions. A comparison of growth characteristics of two strains was made, and this showed significantly different performance. O. oeni has lower maximum specific growth rate (μmax=0.073 h−1), lower maximum cell productivity (Q x max=17.6 mg cell l−1 h−1), lower maximum biomass yield (Y x/s max=7.93 g cell mol−1 sugar) and higher maintenance coefficient (m s=0.45 mmol−1 sugar g−1 cell h−1) as compared with L. brevis X2max=0.110 h−1; Q x max=93.2 g−1 cell mol−1 glucose; Y x/s max=22.3 g cell mol−1 glucose; m s=0.21 mmol−1 glucose g−1 cell h−1). These data suggest a possible more productive strategy for their combined use in maturation of cider and wine.  相似文献   

17.
Abstract: Parameters associated with the photosynthetic performance of eight common epiphytic ferns in a Mexican cloud forest were investigated in relation to the distribution of these species within the canopy. If the substantial microclimatic gradients within tropical forest canopies provide microhabitats exploited by different epiphytic species, we would expect to find correlations between distribution and physiological traits. Maximum rates of CO2 uptake (Amax) and photon flux densities at light compensation points (LCP) were in the range of shade plants (Amax = 0.6 ‐ 5.2 μmol m‐2 s‐1; LCP = 4 ‐ 6.5 μmol m‐2 s‐1), but saturation light intensities were more typical for sun plants (270 ‐ 550 μmol m‐2 s‐1). Amax and nitrogen content per unit dry weight were correlated with the distribution of the species within the canopy, but LCP, apparent quantum yield and dark respiration were not. When leaves were left to desiccate, the fluorescence yield of dark‐adapted leaves (Y0) remained high until the relative water content (RWC) had dropped below 30 to 20 %. Fluorescence after short illumination with 200 μmol m‐2 s‐1 declined when RWC dropped below 70 to 40 %. After exposure to full sunlight for 1 h, Y0 of species growing in the outer canopy (Pleopeltis mexicana and Polypodium plebeium) and a plant characteristic of the mid‐canopy (Elaphoglossum petiolatum) recovered better than in species from shadier locations (Trichomanes bucinatum, Asplenium cuspidatum, Phlebodium areolatum). With the exception of Ph. areolatum and a species growing at both exposed and shaded sites (Polypodium puberulum), Y0 recovered at least partially after a loss of 80 ‐ 96 % of saturation water, with the humidity‐loving filmy fern (T. bucinatum) showing no signs of permanent damage at all. The results suggest that tolerance or avoidance of desiccation and high light may be at least as important in controlling the distribution of the species studied as photosynthetic performance without stress.  相似文献   

18.
Decomposition of soil organic matter (SOM) is mediated by microbial extracellular hydrolytic enzymes (EHEs). Thus, given the large amount of carbon (C) stored as SOM, it is imperative to understand how microbial EHEs will respond to global change (and warming in particular) to better predict the links between SOM and the global C cycle. Here, we measured the Michaelis–Menten kinetics [maximal rate of velocity (Vmax) and half‐saturation constant (Km)] of five hydrolytic enzymes involved in SOM degradation (cellobiohydrolase, β‐glucosidase, β‐xylosidase, α‐glucosidase, and N‐acetyl‐β‐d ‐glucosaminidase) in five sites spanning a boreal forest to a tropical rainforest. We tested the specific hypothesis that enzymes from higher latitudes would show greater temperature sensitivities than those from lower latitudes. We then used our data to parameterize a mathematical model to test the relative roles of Vmax and Km temperature sensitivities in SOM decomposition. We found that both Vmax and Km were temperature sensitive, with Q10 values ranging from 1.53 to 2.27 for Vmax and 0.90 to 1.57 for Km. The Q10 values for the Km of the cellulose‐degrading enzyme β‐glucosidase showed a significant (= 0.004) negative relationship with mean annual temperature, indicating that enzymes from cooler climates can indeed be more sensitive to temperature. Our model showed that Km temperature sensitivity can offset SOM losses due to Vmax temperature sensitivity, but the offset depends on the size of the SOM pool and the magnitude of Vmax. Overall, our results suggest that there is a local adaptation of microbial EHE kinetics to temperature and that this should be taken into account when making predictions about the responses of C cycling to global change.  相似文献   

19.
An anaerobic continuous culture study was made with Campylobacter spec. to determine growth yields under various growth conditions. The growth media contained 0.1% (w/v) yeast extract as carbon source. When grown in an aspartate-limited culture Y asp max was 4.6. Inclusion of formate in the culture medium hardly affected the true growth yield. The number of ATP equivalents generated in the fumaratereductase system was 0.66 and the Y ATP max was 7.0. In the nitrate reduction with formate 1.7 ATP equivalents were generated, and a YNO 3- max of 12.2 was observed. The true growth yield obtained with a mixture of lactate and aspartate was lower than that found with aspartate alone.  相似文献   

20.
A model is described, which allows the determination of 95% confidence limits for the maintenance coefficient and the efficiency of oxidative phosphorylation for chosen values of the growth yield for ATP corrected for energy maintenance (Y ATP max ). As experimental data the specific rates of substrate consumption, product formation and oxygen uptake in chemostat cultures at various growth rates are used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号