首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and assembly of ribosomal subunits take place in the nucleolus. The nucleolus forms in the nucleus around the repeated ribosomal gene clusters and undergoes cyclic changes during the cell cycle. Although the nucleolus is easily visualized by light microscopy of cells in vitro, the nucleolus has not been imaged in cells in vivo. We report here development of a mouse model to visualize the nucleolus cycle of cancer cells in live mice. HT-1080 human fibrosarcoma cells were labeled in the nucleus with histone H2B-GFP and with retroviral RFP in the cytoplasm. The nucleolus was visualized by contrast to the fluorescence of GFP expressed in the nucleus. HT-1080 dual-color cells were seeded on the surface of a skin-flap of nude mice. The inside surface of the skin-flap was directly imaged with a laser scanning microscope 24 hours after seeding. The nucleoli of the cancer cells were clearly imaged in real-time. The appearance of the nucleoli changed dramatically during the cell cycle. During mitosis, the nucleolus disappeared. After mitosis, the nucleoli decreased in number and increased in size. The nucleolus appears to have a major role in cell cycle regulation effected at least in part by sequestering proteins which affect cell cycle progression. Nucleolar imaging could be used for more precise determination of cancer-cell position in the cell cycle in vivo.  相似文献   

2.
We analyzed the connection of changes in nucleus ploidy with changes in nucleolar apparatus of NIH 3T3 cells. The quantity of nucleoli does not depend on the quantity of nucleolar DNA, but instead depends on euploidy: the majority of euploid cells have 1-3 nucleoli. The quantity of DNA in the nucleolus is correlated with the quantity of nucleolar DNA, and does not depend on ploidy changes. The nucleolar area has a tendency to increase in line with an increase in their numbers in the nucleus. The relationship of the quantity of DNA in the nucleolus with that of the nucleus is stable. During the process of increase in the number of nucleoli in a nucleus, there is a corresponding decrease in the quantity of DNA in each nucleolus, and there is likewise no increase in the sum of nucleolar DNA. The ratio of sums of the nucleolar perimeters to nuclear perimeter is a significant factor, which increases linearly along with an increase in the number of nucleoli in a nucleus.  相似文献   

3.
4.
5.
The ultra-structure of the nucleolus in Dictyostelium discoideum cells was studied by electron microscopy. Large nucleoli on the periphery of the nucleus in cells of the multi-cellular pseudoplasmodium (slug) were maintained during long migration. Disaggregation of the slug cells induced a reduction in the size of the large nucleoli. The size of the reduced nucleoli in the reaggregated cells were maintained during the long migration and culmination of reconstructed slug. The electron density of the cytoplasm clearly distinguishes the prespore from the prestalk region, and it takes about 6 h for the complete recovery of cell-to-cell contact after reaggregation.  相似文献   

6.
7.
BACKGROUND: Various attributes of nucleoli, including abundance of the nucleolar product (rRNA), correlate with cell-proliferative status and are useful markers for tumor diagnosis and prognosis. However, there is a paucity of methods that can quantitatively probe nucleolus. The aim of the present study was to utilize the morphometric capacity of the laser scanning cytometer (LSC) to analyze nucleoli and measure expression of the nucleolar protein nucleolin (NCL) in individual cells and correlate it with their state of proliferation. MATERIALS AND METHODS: Human lymphocytes were mitogenically stimulated, and at different time points their nucleoli were detected immunocytochemically using NCL Ab. The frequency of nucleoli per nucleus, their area, and the level of expression of NCL, separately in the nuclear and nucleolar compartments, were estimated in relation to the G(0) to G(1) transition and the cell cycle progression. RESULTS: During the first 24 h of stimulation, when the cells underwent G(0) to G(1) transition, their RNA content was increased nearly 8-fold, the level of NCL per nucleus also increased 8-fold, the NCL per nucleolus increased 12-fold, nucleolear area increased 3-fold, and NCL/nucleolar area increased nearly 4-fold. During the subsequent 24-48 h of stimulation, when cells were progressing through S, G(2), and M and reentering the next cycle, the number of nucleoli per nucleus was increased and a massive translocation of NCL from nucleoli to nucleoplasm was observed; its overall level per nucleus, however, still remained high, at 6-fold above of that of G(0) cells. CONCLUSIONS: While high expression of NCL in the nucleolar compartment correlates with the rate of rRNA accumulation in the cell and is a sensitive marker of the G(0) to G(1) transition, the cells progressing through the remainder of the cycle are better distinguished from G(0) cells by high overall level of NCL within the nucleus. Such an analysis, when applied to tumors, may be helpful in obtaining the quantitative parameters related to the kinetic status of the tumor-cell population and tumor prognosis. The capability of LSC to measure the protein translocation between nucleolus and nucleoplasm can be used to study the function and regulatory mechanisms of other proteins that reside in these compartments.  相似文献   

8.
A large proportion of the Newcastle disease virus (NDV) matrix (M) protein is found in the nuclei of infected chicken embryo cells. Kinetic analysis indicated that much of the M protein enters the nucleus early in infection, concentrating in discrete regions of the nucleus and remaining there throughout infection. The M protein was found in localized regions of the nuclei of a variety of cell lines infected with NDV. Immunostaining for both M protein and nucleolar antigens indicated that most of these regions represent nucleoli. Moreover, this nucleolar localization of the M protein was observed in chicken embryo cells infected with 11 different strains of NDV. Only the M protein of strain HP displayed a modified pattern, concentrating in the nucleolus early in infection but in the cytoplasm late in infection. M protein transiently expressed in COS-1 cells also localized to the nucleus and nucleolus, indicating that the M protein does not require other NDV proteins for this localization.  相似文献   

9.
红豆草根瘤侵染细胞核在细胞凋亡中的超微结构变化   总被引:1,自引:0,他引:1  
用透射电镜观察红豆草根瘤侵染细胞核在细胞凋亡过程中的超微结构,以探讨红豆草根瘤侵染细胞核在发育过程中的超微结构变化及其与细胞凋亡的关系.结果表明,红豆草根瘤侵染细胞核的超微结构随细胞发育程度不同而不同.在幼龄侵染细胞中,细胞核体积较大,近似圆形.在即将成熟和成熟的侵染细胞中,细胞核膜有内陷现象,其核仁常具有核仁泡和核仁联合体.在早期凋亡的侵染细胞中,细胞核体积减小,形状变得不规则,核膜出现大量内陷,在其表面形成许多大的突起和深的沟槽,有时还有内质网、线粒体、小液泡和细菌等位于核膜的内陷处,而且核仁也开始裂解.在后期凋亡的侵染细胞中,除细菌解体外,还出现核仁消失,核膜破裂,核质外流,并在细胞质中形成一些电子密度很高,无一定形状的团块状物质.  相似文献   

10.
The number of the nucleoli in a CaCo-2 cell nucleus does not generally depend on the quantity of DNA in the nucleus, but nucleolar DNA content is directly proportional to total nuclear DNA. However, in multinucleolar cells (three or more nucleoli), the nucleolar DNA content increases after 96 h incubation in culture without concomitant quantitative changes in nuclear DNA. The percentage of multinucleolar cells and the average number of nucleoli per nucleus increase with increasing incubation time. After 72 and 96 h in culture, multinucleolar cells show distinctive morphologies. The ratio of the sum of nucleolar perimeters to the nuclear perimeter increases linearly when the number of nucleoli in a nucleus increases, but there is no concomitant increase in total nucleolar area or DNA content, except in the 72 and 96 h populations. When the number of nucleoli in CaCo-2 cells increases after 48 and 60 h in culture, the amount of DNA per nucleolus decreases.  相似文献   

11.
Summary The dry mass of nucleoli from yolky oocytes of T. cristatus, as determined by interference microscopy is about 150 g. Less than 10% of this is attributable to RNA that is removable by ribonuclease from formalin-fixed nucleoli. There is a linear relationship between nucleolar dry mass and size. There are basic proteins in oocyte nucleoli and these are bound to the nucleolar RNA. The concentrations of cytochemically detectable RNA and basic protein are higher in the nucleolar core than in the cortex. The ratio of RNA to basic protein is higher in the core than in the cortex, as determined by microdensitometry of nucleoli stained with gallocyanine and fast green. The significance of these observations in relation to the role of the nucleolus in ribosome biosynthesis is discussed.This study was supported in part by Science Research Council Grant No. BSR/4468. We wish to thank Dr. Colin Muir of the Department of Zoology, University of St. Andrews for his helpful advice on interferometry.  相似文献   

12.
13.
Li Jing-yan 《Hydrobiologia》1985,124(1):45-48
To date no nucleolus had been observed in Prorocentrum under the light microscope. The author failed to show the nucleoli of P. micans and P. cassubica with eosin in 70% alc or with methyl green-pyronin. But when these dinoflagellates were treated with an Ag-1 technique which had been improved for demonstrating NORs in unicellular organisms, nucleoli were stained dark brown or black, while all other parts showed no colour. When the materials were stained well, only the central part of the nucleolus was stained. Under the electron microscope, it was observed that all the silver grains were concentrated in the pars fibrosa of the nucleolus. P. cassubica had only one small oblate nucleolus attached to the nuclear envelope, with NOR usually in the shape of the letters O or C. P. micans had 1–7 nucleoli of various sizes and shapes with NORs in various complicated forms. The number of nucleoli bore a certain relationship to the living state of the dinoflagellate. One day after fresh medium was added, cells with 3 nucleoli were most common, and 28.5% of the individuals had 4–6 nucleoli. Cells having only one nucleolus accounted for 8.6%. 3 days after, cells with 2 nucleoli became dominant, and those with 4–6 decreased to 18.4%. After a month, cells with 1 nucleolus became most abundant, cells having 4 nucleoli decreased to 2.4%, and no cells had 5 or 6 nucleoli.  相似文献   

14.
Rigidity of the nucleus during nuclear rotation in 3T3 cells   总被引:2,自引:0,他引:2  
Using near infrared microscopy and ultraviolet fluorescence microscopy of living 3T3 cells stained with the fluorochrome Hoechst 33342, we have demonstrated that the nucleoli and Hoechst 33342-stained chromocenters in the nucleus maintain a fixed pattern during nuclear rotation. We conclude that the term "nuclear rotation" refers to rotation of the entire nucleus in the cytoplasm of interphase cells, and that nuclear rotation is not an expression of karyoplasmic streaming. In conjunction with earlier results on nuclear rotation the data imply that the interface of nuclear rotation is located either between the two nuclear membranes or in the adjacent cytoplasm.  相似文献   

15.
16.
17.
Chromosomes with active nucleolus organizer regions (NORs) were visualized in root tip metaphases ofPhaseolus coccineus using the silver staining technique. A mean number of 5.5 Ag-NORs per cell was observed in 54 cells from eight plants. In the endopolyploid nuclei of the suspensor the silver technique did not demonstrate the reported specificity for nucleolus organizer activity, because there was usually pale staining of nucleoli and preferential staining of heterochromatic regions in the polytene chromosomes including pericentromeric material, telomeres and NORs. The mean number of NORs per nucleolus as detected by this method was 5.8 (28 nucleoli analysed). Using a modified preparation technique, giant chromosomes stained pale, but nucleoli of suspensor cells displayed darkly silver staining internal domains, each of which originating from a nucleolus organizer.—Giemsa C-banding of endopolyploid suspensor nuclei revealed C-positive nucleolus organizers with darkly staining intranucleolar fibrils. The latter were frequently involved in inter-NOR associations. In 34 nucleoli analysed, the mean number of Giemsa C-positive NORs per nucleolus was 6.0.Dedicated to Professor Dr.Lothar Geitler on the occasion of his 80th birthday.  相似文献   

18.
The effect of 2–48 h treatment of Lupinus angustifolius L. roots with lead nitrate at the concentration of 10−4 M on the nucleoli in meristematic cells was investigated. In the lead presence the number of ring-shaped as well as segregated nucleoli increased especially after 12–48 h of treatment, while spindle-shaped nucleoli appeared after 24 h and 48 h. Lead presence also increased the frequency of cells with silver-stained particles in the nucleus and the number of these particles especially from the 12th hour of treatment. It was accompanied by significant decline of nucleolar area. Analysis of these cells in transmission electron microscope confirmed the presence of ring-shaped and segregated nucleoli. Moreover, electron microscopy revealed compact structure nucleoli without granular component. Additionally, one to three oval-shaped fibrillar structures attached to nucleolus or lying free in the nucleoplasm were visible. The possible mechanism of lead toxicity to the nucleolus is briefly discussed.  相似文献   

19.
Lead acetate treatment of unfixed cells immobilizes the intracellular water-soluble, inorganic orthophosphate ions as microcrystalline lead hydroxyapatite precipitates (see reference 1). These precipitates have been analyzed with the electron microprobe. A much higher concentration of phosphorus has been found in the nucleoli of maize root tip cells fixed in lead acetate-glutaraldehyde (organic phosphorus plus inorganic orthophosphate), as compared to the nucleoli of roots fixed in glutaraldehyde alone (organic phosphorus). The concentration of the inorganic orthophosphate pool in these nucleoli is three to five times as high as the concentration of the macromolecular organic phosphate. Since nearly all of the latter is in RNA, the concentration of inorganic phosphate in the nucleolus is calculated to be roughly 0.5–0.8 M. About 30%—and up to 50%—of the total cellular inorganic phosphate is accumulated in the nucleolus since the mean concentration per cell is about 10-2 M. In the extranucleolar part of the nucleus the mean concentration was estimated by densitometry to be roughly six times less than in the nucleolus (⩽ 0.1 M), and appears more concentrated in the nucleoplasm than in the condensed chromatin. While there is no direct evidence for the concentration in the cytoplasm, it certainly must be much lower than the mean cellular level (i.e., < 10-2 M) since the nucleus is about 10% of the total cell volume. The implications of this compartmentation in the intact cell are discussed in connection with (A) the availability of orthophosphate ions for the cytoplasm in those processes in which these ions affect the rate of enzymatic reactions, and (B) protein nucleic acid interactions within the nucleus and nucleolus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号