首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
This report describes a simple in vitro method to harvest and study the electrophysiological properties of the trigeminal ganglion of the rat. In suction electrode recordings from the proximal nerve end, two distinct peaks are identified in the compound action potential evoked by electrical stimulation of the distal nerve. gamma-Aminobutyric acid (GABA), added to the perfusion fluid, caused a positive shift in the DC potential (depolarization) and a partially selective decrease in the amplitude of the slow-conduction peak. Reversible antagonism of the GABA effect by picrotoxin and bicuculline suggests that both responses are receptor mediated. There was no response to carbamazepine or L-baclofen, suggesting that ganglionic polarization does not play a major role in the action of these drugs in trigeminal neuralgia.  相似文献   

4.
5.
6.
7.
Summary The increasing concern and the efforts in determining neurological effects in offsprings resulting from maternal exposure to xenobiotics are faced with several difficulties in monitoring damage to the central nervous system. In this paper, the efficiency of several enzyme histochemical reactions for analysing the forebrain and the trigeminal ganglia of rat foetuses are reported. Brains of 20-day-old Sprague-Dawley rat foetuses were frozen and analysed for 18 enzymes that had previously been used to monitor initial injury caused by toxic compounds in liver and other organs. Eight enzymes appeared suitable as histochemical markers for the functional integrity of different areas in brain and ganglia of rats exposed to xenobiotics. They were lactate, malate, glycerophosphate (NAD-linked), succinate, aldehyde and glucose 6-phosphate dehydrogenases, -glycerophosphate-menadione oxidoreductase and cytochromec oxidase. The activities of the enzymes were determined by microphotometry and the arrangement of absorbances of the enzyme final reaction products into appropriate analytical tables is proposed as an efficient procedure for data analysis.Abbreviations AcChE acetylcholinesterase - AldDH aldehyde dehydrogenase - ALKPase alkaline phosphatase - 5AMPase adenosine monophosphatase - ATPase Mg2+ dependent adenosine triphosphatase - CytOx cytochromec oxidase - GAPDH glyceraldehyde phosphate dehydrogenase - GIDH glutamate dehydrogenase - GLPDH glycerophosphate: NAD oxidoreductase - CPODH glycerophosphate:menadione oxidoreductase - G6Pase glucose-6-phosphatase - G6PDH glucose-6-phosphate dehydrogenase - IDH lactate dehydrogenase - MaDH malate dehydrogenase - MAO monoamine oxidase - NADPH, DH, NADPH tetrazolium oxidoreductase - SuDH succinate dehydrogenase - 6PGDH 6-phosphogluconate dehydrogenase  相似文献   

8.
9.
Whisker plucking in developing and adult rats provides a convenient method of temporarily altering tactile input for the purposes of studying experience-dependent plasticity in the somatosensory cortex. Yet, a comprehensive examination of the effect of whisker plucking on the response properties of whisker follicle-innervating trigeminal ganglion (NVg) neurons is lacking. We used extracellular single unit recordings to examine responses of NVg neurons to controlled whisker stimuli in three groups of animals: (1) rats whose whiskers were plucked from birth for 21 days; (2) rats whose whiskers were plucked once at 21 days of age; and (3) control animals. After at least 3 weeks of whisker re-growth, NVg neurons in plucked rats displayed normal, single whisker receptive fields and could be characterized as slowly (SA) or rapidly adapting (RA). The proportion of SA and RA neurons was unaffected by whisker plucking. Both SA and RA NVg neurons in plucked rats displayed normal response latencies and angular tuning but abnormally large responses to whisker movement onsets and offsets. SA neurons were affected to a greater extent than RA neurons. The effect of whisker plucking was more pronounced in animals whose whiskers were plucked repeatedly during development than in rats whose whiskers were plucked once. Individual neurons in plucked animals displayed abnormal periods of prolonged rhythmic firing following deflection onsets and aberrant bursts of activity during the plateau phase of the stimulus. These results indicate that whisker plucking exerts a long-term effect on responses of trigeminal ganglion neurons to peripheral stimulation.  相似文献   

10.
Whisker plucking in developing and adult rats provides a convenient method of temporarily altering tactile input for the purposes of studying experience-dependent plasticity in the somatosensory cortex. Yet, a comprehensive examination of the effect of whisker plucking on the response properties of whisker follicle-innervating trigeminal ganglion (NVg) neurons is lacking. We used extracellular single unit recordings to examine responses of NVg neurons to controlled whisker stimuli in three groups of animals: (1) rats whose whiskers were plucked from birth for 21 days; (2) rats whose whiskers were plucked once at 21 days of age; and (3) control animals. After at least 3 weeks of whisker re-growth, NVg neurons in plucked rats displayed normal, single whisker receptive fields and could be characterized as slowly (SA) or rapidly adapting (RA). The proportion of SA and RA neurons was unaffected by whisker plucking. Both SA and RA NVg neurons in plucked rats displayed normal response latencies and angular tuning but abnormally large responses to whisker movement onsets and offsets. SA neurons were affected to a greater extent than RA neurons. The effect of whisker plucking was more pronounced in animals whose whiskers were plucked repeatedly during development than in rats whose whiskers were plucked once. Individual neurons in plucked animals displayed abnormal periods of prolonged rhythmic firing following deflection onsets and aberrant bursts of activity during the plateau phase of the stimulus. These results indicate that whisker plucking exerts a long-term effect on responses of trigeminal ganglion neurons to peripheral stimulation.  相似文献   

11.
Carbon monoxide (CO) and nitric oxide (NO) are two endogenously produced gases that can function as second messenger molecules in the nervous system. The enzyme systems responsible for CO and NO biosynthesis are heme oxygenase (HO) and nitric oxide synthase (NOS), respectively. The present study was undertaken to examine the distribution of HO-2 and NOS of the trigeminal primary afferent neurons of the rat, located in the trigeminal ganglion (TG) and mesencephalic trigeminal nucleus (MTN), using histochemistry and immunohistochemistry. NADPH-d staining was found in most neurons in TG. The intensely NADPH-d-stained neurons were small- or medium-sized, while the large-sized neurons were less intensely stained. Immunocytochemistry for HO-2 revealed that almost all neurons in TG expressed HO-2, but they did not appear cell size-specific pattern. NADPH-d and HO-2 positive neurons appeared the same pattern, which was NADPH-d activity and HO-2 expression progressively declined from the caudal to rostral part of the MTN. A double staining revealed that the colocalization of NADPH-d/HO-2 neurons was 97.3% in TG and 97.6% in MTN. The remarkable parallels between NADPH-d and HO-2 suggest that NO and CO are likely neurotransmitters and mediate the orofacial nociception and sensory feedback of the masticatory reflex arc together.  相似文献   

12.
13.
目的:应用逆行追踪法研究罗非鱼三叉神经节细胞体在神经节内的分布特征.方法:罗非鱼浸入140mg/L三卡因间氨苯酸乙脂甲磺酸盐{tricaine methanesulfonate(MS222)}溶液中麻醉,在手术显微镜下暴露神经,通过生物胞素(Biocytin)结晶逆行追踪技术研究定位硬骨鱼类三叉神经节内细胞体的位置.结果:①眼神经、上颌神经、下颌神经的神经节细胞胞体分别位于同侧三又神经节的背侧部、中间部和腹侧部.②上颌神经和下颌神经的细胞在神经节内存在着重叠.结论:罗非鱼三叉神经节细胞在神经节内具有局在性分布.  相似文献   

14.
Summary The electron microscopic demonstration of alkaline phosphatase (ALP) was carried out on the trigeminal ganglion of the rat using the calcium lead modification method by Gomori (Gomori, 1952; Molnar, 1952).The ALP reaction was localized on the junction of capsular cells and nerve cells, in the cytoplasm of some dark capsular cell and in that of the endothelial cell: The enzymatic reaction products (1) existed throughout the entire length of the junction of clear cells and capsular cells, (2) aggregated at some points of the junction of dark cells and capsular cells, (3) existed on the smooth and/or rough surfaced endoplasmic reticulum and on the ribosomes of some dark capsular cells.  相似文献   

15.
16.
An anatomical analysis of the chicken trigeminal ganglion was made using light microscopy on specimens prepared by usual chemical fixation or freeze-drying methods and by electron microscopy. Two types of neurons were consistently seen, dark and light cells. Dark cells contained a dense cytoplasm with Nissl substance distributed evenly throughout, whereas light cells had a less dense cytoplasm containing clumps of Nissl substance. The Nissl bodies in light cells contained only a few small cisternae of granular endoplasmic reticulum as compared with many stacked cisternae in Nissl bodies of dark cells. The ratio of dark to light cells was approximately 62:38 in all regions of the ganglion. Dark cells were consistently smaller than light cells. In the seven-day old chick, the mean diameters of the dark and light neurons were 21.4 μ and 29.5 μ respectively; in the adult the values were 29.9 μ and 39.7 μ respectively. It is concluded that the dark and light cells belong to two distinct neuronal cell populations.  相似文献   

17.
Retrograde tracing with true blue (TB) and diamidino yellow (DY) was used to determine the topography of the peripheral projections of the trigeminal (V) ganglion in rats on embryonic day 16 (E-16; E-0 was the day of conception). On E-16, the earliest age at which we were able to accomplish retrograde tracing successfully, the topographic organization of the V ganglionic projection to the periphery was quite adult-like. Cells projecting to the vibrissa pad were restricted to the ophthalmic-maxillary portion of the ganglion, with those innervating dorsal row follicles located medially and those supplying ventral row follicles located laterally. Injections of tracer into ophthalmic skin and/or the cornea labeled cells that were tightly clustered in the most dorsal and anteromedial portion of the ophthalmic-maxillary region. Injections of tracer into the lower jaw or the skin just rostral to the ear labeled cells that were restricted to the lateral, mandibular part of the ganglion. None of the combinations of injections we carried out resulted in large numbers of double-labeled V ganglion cells. Injection of TB into the vibrissa pad and DY into the upper lip produced a small number of double-labeled ganglion cells. This was also the case for paired injections of TB and DY into the lower jaw and lip, respectively. No more than 15 such cells were observed in a ganglion. These findings suggest that the substantial cell death that has been reported to occur in prenatal V ganglion development (Davies and Lumsden, 1984) is probably not involved in the correction of major peripheral targeting errors by the axons of V ganglion cells.  相似文献   

18.
19.
Responses of cultured rat trigeminal ganglion neurons to bitter tastants   总被引:3,自引:2,他引:1  
Liu  L; Simon  SA 《Chemical senses》1998,23(2):125-130
The initial steps in taste and olfaction result from the activation by chemical stimuli of taste receptor cells (TRCs) and olfactory receptor neurons (ORNs). In parallel with these two pathways is the chemosensitive trigeminal pathway whose neurons terminate in the oral and nasal cavities and which are activated by many of the same chemical stimuli that activate TRCs and ORNs. In a recent single unit study we investigated the responses of rat chorda tympani and glossopharnygeal neurons to a variety of bitter-tasting alkaloids, including nicotine, yohimbine, quinine, strychnine and caffeine, as well as capsaicin, the pungent ingredient in hot pepper. Here we apply many of these same compounds to cultured rat trigeminal ganglion (TG) neurons and measure changes in intracellular calcium [Ca2+]i to determine whether TG neurons will respond to these same compounds. Of the 89 neurons tested, 34% responded to 1 mM nicotine, 7% to 1 mM caffeine, 5% to 1 mM denatonium benzoate, 22% to 1 mM quinine hydrochloride, 18% to 1 mM strychnine and 55% to 1 microM capsaicin. These data suggest that neurons from the TG respond to the same bitter-tasting chemical stimuli as do TRCs and are likely to contribute information sent to the higher CNS regarding the perception of bitter/irritating chemical stimuli.   相似文献   

20.
Leiser SC  Moxon KA 《Neuron》2007,53(1):117-133
Rats use their whiskers to locate and discriminate tactile features of their environment. Mechanoreceptors surrounding each whisker encode and transmit sensory information from the environment to the brain via afferents whose cell bodies lie in the trigeminal ganglion (Vg). These afferents are classified as rapidly (RA) or slowly (SA) adapting by their response to stimulation. The activity of these cells in the awake behaving rat is yet unknown. Therefore, we developed a method to chronically record Vg neurons during natural whisking behaviors and found that all cells exhibited (1) no neuronal activity when the whiskers were not in motion, (2) increased activity when the rat whisked, with activity correlated to whisk frequency, and (3) robust increases in activity when the whiskers contacted an object. Moreover, we observed distinct differences in the firing rates between RA and SA cells, suggesting that they encode distinct aspects of stimuli in the awake rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号