首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new mechanical model for function of the pharyngeal jaw apparatus in generalized perciform fishes is developed from work with the family Haemulidae. The model is based on anatomical observations, patterns of muscle activity during feeding (electromyography), and the actions of directly stimulated muscles. The primary working stroke of the pharyngeal apparatus involves simultaneous upper jaw depression and retraction against a stabilized and elevating lower jaw. The working stroke is characterized by overlapping activity in most branchial muscles and is resolved into three phases. Four muscles (obliquus dorsalis 3, levator posterior, levator externus 3/4, and obliquus posterior) that act to depress the upper jaws become active in the first phase. Next, the retractor dorsalis, the only upper jaw retracting muscle, becomes active. Finally, there is activity in several muscles (transversus ventrales, pharyngocleithralis externus, pharyngohyoideus, and protractor pectoralis) that attach to the lower jaws. The combined effect of these muscles is to elevate and stabilize the lower jaws against the depressing and retracting upper jaws. The model identifies a novel mechanism of upper jaw depression, here proposed to be the primary component of the perciform pharyngeal jaw bite. The key to this mechanism is the joint between the epibranchial and toothed pharyngobranchial of arches 3 and 4. Dorsal rotation of epibranchials 3 and 4 about the insertion of the obliquus posterior depresses the lateral border of pharyngobranchials 3 and 4 (upper jaw). The obliquus dorsalis 3 muscle crosses the epibranchial-pharyngo-branchial joint in arches 3 and 4, and several additional muscles effect epibranchial rotation. Five upper jaw muscles cause upper jaw depression upon electrical stimulation: the obliquus dorsalis 3, levator posterior, levator externus 3/4, obliquus posterior, and transversus dorsalis. This result directly contradicts previous interpretations of function for the first three muscles. The presence of strong depression of the upper pharyngeal jaws explains the ability of many generalized perciform fishes to crush hard prey in their pharyngeal apparatus.  相似文献   

2.
Functional and structural patterns in the pharyngeal jaw apparatus of euteleostean fishes are described and analysed as a case study of the transformation of a complex biological design. The sequential acquisition of structural novelties in the pharyngeal apparatus is considered in relation to both current hypotheses of euteleostean phylogeny and patterns of pharyngeal jaw function. Several euteleostean clades are corroborated as being monophyletic, and morphologically conservative features of the pharyngeal jaw apparatus are recognized. Functional analysis, using cinematography and electromyography, reveals four distinct patterns of muscle activity during feeding in primitive euteleosts (Esox) and in derived euteleostean fishes(Perca, Micropterus, Ambloplites, Pomoxis). The initial strike, buccal manipulation, pharyngeal manipulation, and the pharyngeal transport of prey into the oesophagus all involve unique muscle activity patterns that must be distinguished in analyses of pharyngeal jaw function. During pharyngeal transport, the upper and lower pharyngeal jaws are simultaneously protracted and retracted by the action of dorsal and ventral musculoskeletal gill arch couplings. The levator externus four and retractor dorsalis muscles, anatomical antagonists, overlap for 70–90°of their activity period. Levatores externi one and two are the main protractors of the upper pharyngeal jaws in the acanthopterygian fishes studied. The major features of pharyngeal jaw movement in primitive euteleosts are retained in many derived clades in spite of a dramatic structural reorganization of the pharyngeal region. Homologous muscles have radically changed their relative activity periods while pharyngeal jaw kinematics have been modified relatively little. Patterns of transformation of activity may thus bear little direct relationship to the sequence of structural modification in the evolution of complex designs. Overall function of a structural system may be maintained, however, through co-ordinated modifications of the timing of muscle activity and anatomical reorientation of the musculoskeletal system. Deeper understanding of the principles underlying the origin and transformation of functional design in vertebrates awaits further information on the acquisition of both structural and functional novelties at successive hierarchical levels within monophyietic clades. This is suggested as a key goal of future research in functional and evolutionary morphology.  相似文献   

3.
Although chewing has been suggested to be a basal gnathostome trait retained in most major vertebrate lineages, it has not been studied broadly and comparatively across vertebrates. To redress this imbalance, we recorded EMG from muscles powering anteroposterior movement of the hyoid, and dorsoventral movement of the mandibular jaw during chewing. We compared muscle activity patterns (MAP) during chewing in jawed vertebrate taxa belonging to unrelated groups of basal bony fishes and artiodactyl mammals. Our aim was to outline the evolution of coordination in MAP. Comparisons of activity in muscles of the jaw and hyoid that power chewing in closely related artiodactyls using cross-correlation analyses identified reorganizations of jaw and hyoid MAP between herbivores and omnivores. EMG data from basal bony fishes revealed a tighter coordination of jaw and hyoid MAP during chewing than seen in artiodactyls. Across this broad phylogenetic range, there have been major structural reorganizations, including a reduction of the bony hyoid suspension, which is robust in fishes, to the acquisition in a mammalian ancestor of a muscle sling suspending the hyoid. These changes appear to be reflected in a shift in chewing MAP that occurred in an unidentified anamniote stem-lineage. This shift matches observations that, when compared with fishes, the pattern of hyoid motion in tetrapods is reversed and also time-shifted relative to the pattern of jaw movement.  相似文献   

4.
Differences in fiber type distribution in the axial muscles of Hawaiian gobioid stream fishes have previously been linked to differences in locomotor performance, behavior, and diet across species. Using ATPase assays, we examined fiber types of the jaw opening sternohyoideus muscle across five species, as well as fiber types of three jaw closing muscles (adductor mandibulae A1, A2, and A3). The jaw muscles of some species of Hawaiian stream gobies contained substantial red fiber components. Some jaw muscles always had greater proportions of white muscle fibers than other jaw muscles, independent of species. In addition, comparing across species, the dietary generalists (Awaous guamensis and Stenogobius hawaiiensis) had a lower proportion of white muscle fibers in all jaw muscles than the dietary specialists (Lentipes concolor, Sicyopterus stimpsoni, and Eleotris sandwicensis). Among Hawaiian stream gobies, generalist diets may favor a wider range of muscle performance, provided by a mix of white and red muscle fibers, than is typical of dietary specialists, which may have a higher proportion of fast-twitch white fibers in jaw muscles to help meet the demands of rapid predatory strikes or feeding in fast-flowing habitats.  相似文献   

5.
Myogenic cell lineages.   总被引:18,自引:0,他引:18  
For many years the mechanisms by which skeletal muscles in higher vertebrates come to be composed of diverse fiber types distributed in distinctive patterns has interested cell and developmental biologists. The fiber composition of skeletal muscles varies from class to class and from muscle to muscle within the vertebrates. The developmental basis for these events is the subject of this review. Because an individual multinucleate vertebrate skeletal muscle fiber is formed by the fusion of many individual myoblasts, more attention, in recent times, has been directed toward the origins and differences among myoblasts, and more emphasis has been placed on the lineal relationship of myoblasts to fibers. This is a review of studies related to the concepts of myogenic cell lineage in higher vertebrate development with emphases on some of the most challenging problems of myogenesis including the embryonic origins of myogenic precursor cells, the mechanisms of fiber type diversity and patterning, the distinctions among myoblasts during myogenesis, and the current hypotheses of how a variety of factors, intrinsic and extrinsic to the myoblast, determine the definitive phenotype of a muscle fiber.  相似文献   

6.
Chondrichthyans (sharks, batoids, and chimaeras) have simple feeding mechanisms owing to their relatively few cranial skeletal elements. However, the indirect association of the jaws to the cranium (euhyostylic jaw suspension) has resulted in myriad cranial muscle rearrangements of both the hyoid and mandibular elements. We examined the cranial musculature of an abbreviated phylogenetic representation of batoid fishes, including skates, guitarfishes and with a particular focus on stingrays. We identified homologous muscle groups across these taxa and describe changes in gross morphology across developmental and functional muscle groups, with the goal of exploring how decoupling of the jaws from the skull has effected muscular arrangement. In particular, we focus on the cranial anatomy of durophagous and nondurophagous batoids, as the former display marked differences in morphology compared to the latter. Durophagous stingrays are characterized by hypertrophied jaw adductors, reliance on pennate versus fusiform muscle fiber architecture, tendinous rather than aponeurotic muscle insertions, and an overall reduction in mandibular kinesis. Nondurophagous stingrays have muscles that rely on aponeurotic insertions onto the skeletal structure, and display musculoskeletal specialization for jaw protrusion and independent lower jaw kinesis, relative to durophagous stingrays. We find that among extant chondrichthyans, considerable variation exists in the hyoid and mandibular muscles, slightly less so in hypaxial muscles, whereas branchial muscles are overwhelmingly conserved. As chondrichthyans occupy a position sister to all other living gnathostomes, our understanding of the structure and function of early vertebrate feeding systems rests heavily on understanding chondrichthyan cranial anatomy. Our findings highlight the incredible variation in muscular complexity across chondrichthyans in general and batoids in particular. J. Morphol. 275:862–881, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Vertebrate dentitions originated in the posterior pharynx of jawless fishes more than half a billion years ago. As gnathostomes (jawed vertebrates) evolved, teeth developed on oral jaws and helped to establish the dominance of this lineage on land and in the sea. The advent of oral jaws was facilitated, in part, by absence of hox gene expression in the first, most anterior, pharyngeal arch. Much later in evolutionary time, teleost fishes evolved a novel toothed jaw in the pharynx, the location of the first vertebrate teeth. To examine the evolutionary modularity of dentitions, we asked whether oral and pharyngeal teeth develop using common or independent gene regulatory pathways. First, we showed that tooth number is correlated on oral and pharyngeal jaws across species of cichlid fishes from Lake Malawi (East Africa), suggestive of common regulatory mechanisms for tooth initiation. Surprisingly, we found that cichlid pharyngeal dentitions develop in a region of dense hox gene expression. Thus, regulation of tooth number is conserved, despite distinct developmental environments of oral and pharyngeal jaws; pharyngeal jaws occupy hox-positive, endodermal sites, and oral jaws develop in hox-negative regions with ectodermal cell contributions. Next, we studied the expression of a dental gene network for tooth initiation, most genes of which are similarly deployed across the two disparate jaw sites. This collection of genes includes members of the ectodysplasin pathway, eda and edar, expressed identically during the patterning of oral and pharyngeal teeth. Taken together, these data suggest that pharyngeal teeth of jawless vertebrates utilized an ancient gene network before the origin of oral jaws, oral teeth, and ectodermal appendages. The first vertebrate dentition likely appeared in a hox-positive, endodermal environment and expressed a genetic program including ectodysplasin pathway genes. This ancient regulatory circuit was co-opted and modified for teeth in oral jaws of the first jawed vertebrate, and subsequently deployed as jaws enveloped teeth on novel pharyngeal jaws. Our data highlight an amazing modularity of jaws and teeth as they coevolved during the history of vertebrates. We exploit this diversity to infer a core dental gene network, common to the first tooth and all of its descendants.  相似文献   

8.
The ability to separate edible from inedible portions of prey is integral to feeding. However, this is typically overlooked in favour of prey capture as a driving force in the evolution of vertebrate feeding mechanisms. In processing prey, cartilaginous fishes appear handicapped because they lack the pharyngeal jaws of most bony fishes and the muscular tongue and forelimbs of most tetrapods. We argue that the elaborate cranial muscles of some cartilaginous fishes allow complex prey processing in addition to their usual roles in prey capture. The ability to manipulate prey has evolved twice along different mechanical pathways. Batoid chondrichthyans (rays and relatives) use elaborate lower jaw muscles to process armored benthic prey, separating out energetically useless material. In contrast, megacarnivorous carcharhiniform and lamniform sharks use a diversity of upper jaw muscles to control the jaws while gouging, allowing for reduction of prey much larger than the gape. We suggest experimental methods to test these hypotheses empirically.  相似文献   

9.
Moray eels (Muraenidae) are a relatively large group of anguilliform fishes that are notable for their crevice-dwelling lifestyle and renowned for their ability to consume large prey. Morays apprehend their prey by biting and then transport prey by extreme protraction and retraction of their pharyngeal jaw apparatus. Here, we present a detailed interpretation of the mechanisms of pharyngeal jaw transport based on work with Muraena retifera. We also review what is known of the moray pharyngeal jaw apparatus from the literature and provide comparative data on the pharyngeal jaw elements and kinematics for other moray species to determine whether interspecific differences in morphology and behavior are present. Rather than comprising broad upper and lower processing tooth plates, the pharyngeal jaws of muraenine and uropterygiine morays, are long and thin and possess large, recurved teeth. Compared with the muraenines, the pharyngobranchials of the uropterygiines do not possess a horn-shaped process and their connection to the fourth epibranchial is dorsal rather than medial. In addition, the lower tooth plates do not exhibit a lateral groove that serves as a site of muscle attachment for the pharyngocleitheralis and the ventral rather than the lateral side of the lower tooth plate attaches to the fourth ceratobranchial. In all morays, the muscles positioned for protraction and retraction of the pharyngeal apparatus have undergone elongation, while maintaining the generalized attachment sites on the bones of the skull and axial skeleton. Uropterygiines lack a dorsal retractor muscle and we presume that retraction of the pharyngeal jaws is achieved by the pharyngocleitheralis and the esophagus. The fifth branchial adductor is greatly hypertrophied in all species examined, suggesting that morays can strongly adduct the pharyngeal jaws during prey transport. The kinematics of biting behavior during prey capture and transport resulted in similar magnitudes of cranial movements although the timing of kinematic events was significantly different and the duration of transport was twice as long as prey capture. We speculate that morays have evolved this alternative prey transport strategy as a means of overcoming gape constraints, while hunting in the confines of coral reefs.  相似文献   

10.
The kinetics of the head and function of select jaw muscles were studied during biting behavior in the lemon shark, Negaprion brevirostris. High speed cinematography and electromyography of seven cranial muscles were recorded during bites elicited by a probe to the oral cavity. In weak bites mandible depression was followed by mandible elevation and jaw closure without cranial elevation. In strong bites cranial elevation always preceded lower jaw depression, lower jaw elevation, and cranial depression. The average duration of the strong bites was rapid (176 msec), considering the size of the animal relative to other fishes. Different electromyographic patterns distinguished the two forms of bite, primarily in activity of the epaxial muscles, which effect cranial elevation. A composite reconstruction of the activity of seven cranial muscles during biting revealed that epaxial muscle activity and consequently cranial elevation preceded all other muscle activity. Mandible depression was primarily effected by contraction of the common coracoarcual and coracomandibularis, with assistance by the coracohyoideus. Simultaneous activity of the levator hyomandibulae is believed to increase the width of the orobranchial chamber. The adductor mandibulae dorsal was the primary jaw adductor assisted by the adductor mandibulae ventral. This biomechanically conservative mechanism for jaw opening in aquatic vertebrates is conserved, with the exception of the coracomandibularis, which is homologous to prehyoid muscles of salamanders.  相似文献   

11.
12.
This study compares the pharyngeal biting mechanism of the Cichlidae, a family of perciform fishes that is characterized by many anatomical specializations, with that of the Centrarchidae, a family that possesses the generalized perciform anatomy. Our objective was to trace the key structural and functional changes in the pharyngeal jaw apparatus that have arisen in the evolution from the generalized to derived (cichlid) perciform condition. We propose a mechanical model of pharyngeal biting in the Centrarchidae and compare this with an already existing model for pharyngeal biting in the family Cichlidae. Central to our centrarchid model is a structural coupling between the upper and lower pharyngeal jaws. This coupling severely limits independent movement of the pharyngeal jaws, in contrast to the situation in the speciose Cichlidae, in which the upper and lower pharyngeal jaw movements are to a large extent independent. We tested both models by electrically stimulating nine muscles of the branchial and hyoid apparatuses in three centrarchild and three cichlid species. The results confirmed the coupled movement of the upper and lower pharyngeal jaws in the Centrarchidae and the independence of these movements in the Cichlidae. We suggest that the key structural innovation in the development of the functionally versatile cichlid (labroid) pharyngeal jaw apparatus was the decoupling of epibranchials 4 from the upper pharyngeal jaws. This structural decoupling implies the decoupling of the movements of the upper and lower pharyngeal jaws and leads to a cichlid (labroid) type of pharyngeal bite. The initial decoupling facilitated a cascade of changes, each leading to improved biting effectiveness and/or to increased mobility and mechanical flexibility of the pharyngeal jaws. The shift of insertion of the m. levator externus 4 which has been considered the primary innovation in the transformation probably arose secondarily. The transformation of the pharyngeal biting mechanism in the perciforms is an excellent example of decoupling of structures associated with diversification of form and function and with increased speciation rates.  相似文献   

13.
Synopsis Pogonias cromis, black drum, is the largest durophagous sciaenid and feeds almost exclusively on hard-shelled bivalves and gastropods using powerful pharyngeal jaws. I estimated pharyngeal jaw bite forces used to crush live molluscs during feeding trials from juvenile and young adult Pogonias cromis, and they are the highest yet documented for bony fishes. Crushing ability in P. cromis scaled with strong positive allometry suggesting large adult fish may have one of the strongest bites among vertebrates. Physiological estimates of pharyngeal muscle strength derived from muscle cross sectional area accounted for only half of the force generated during actual feeding performance trials. The significant disparity between feeding performance and pharyngeal muscle strength in P. cromis indicates the presence of novel biomechanical linkages that enhance crushing ability for feeding on hard-shelled molluscs. I present a biomechanical model in which the lower pharyngeal jaw architecture of P. cromis emulates a second class lever mechanism that can amplify muscle forces transmitted to the shell of the prey.  相似文献   

14.
Ecomorphological relationships among Caribbean tetraodontiform fishes   总被引:2,自引:0,他引:2  
The anatomy of the oral jaw apparatus, lever-arm mechanics and the diet of six species of Caribbean fishes in the order Tetraodontiformes were investigated to explore the relationships between trophic morphology and feeding habit in these fishes. Tetraodontiforms use their oral jaw apparatus to capture and reduce a broad range of prey types such as plankton, polychaete worms, holothuroids, sea urchins, crabs, molluscs, gorgonians and algae. The different feeding habits of tetraodontiforms are reflected by differences in the morphological and biomechanical features of their oral jaw apparatus that appear to enhance their abilities to feed on hard prey organisms. Species that bite and crush hard, benthic prey organisms had more massive bones and muscles, longer jaw-opening in-levers, and higher jaw-closing lever ratios than the planktivorous, suction-feeding species. Masses of the jaw and suspensorium bones and lower jaw adductor muscles as well as the jaw-opening in-levers and jaw-closing lever ratios of crushers were greater than those of biters. In contrast, the mass of the adductor muscle of the upper jaw did not vary among species with different diets, indicating that this muscle may not be central to the factors that determine patterns of prey use in these fishes. The diversity of feeding behaviours and the wide range of feeding habits among fishes in the order Tetraodontiformes illustrate the versatility of the oral jaw apparatus as a single functional feeding system in fishes.  相似文献   

15.
The program of acquisition of adult metabolic phenotypes was studied in three jaw muscles in order to determine the link between muscle metabolism and functional development. During early postnatal stages, there were similar transitions in the masseter, anterior digastric, and internal pterygoid muscles with respect to fiber growth, fiber type composition, and whole muscle energy metabolism. Oxidative capacity, as judged by the activities of the enzymes succinate dehydrogenase (SDH), malate dehydrogenase (MDH), and beta-hydroxyacyl CoA dehydrogenase (beta OAC), rose sharply after birth to reach near maximal levels by 3 weeks. The capacities for glycolytic metabolism represented by lactate dehydrogenase (LDH), and for high-energy phosphate metabolism represented by adenylokinase (AK) and creatine kinase (CK) activities, rose gradually, not reaching peak values until 6 weeks or later. Thus, the maturation of oxidative metabolism preceded that of glycolytic metabolism in the developing jaw muscles. This was documented for individual fibers in the masseter muscle. Differential metabolic maturation among the jaw muscles was evident beyond 3 weeks. All three jaw muscles attained their specific adult fiber-type profile by about 6 weeks. This maturation program differed from that of hindlimb muscles [Nemeth et al., J Neurosci 9:2336-2343, 1989] and diaphragm muscle [Kelly et al., J Neurosci 11:1231-1242, 1991], reflecting their differential energy demands for contractile performance.  相似文献   

16.
Jon Mallatt 《Acta zoologica》1997,78(4):279-294
This study provides a new classification of shark pharyngeal muscles, leading to a re-interpretation of the evolutionary history of these muscles. It begins with Edgeworth's developmental classification but also incorporates phylogenetic and functional information. The two basic groups of pharyngeal muscles are (1) branchial (including deep interbranchials and superficial constrictors) and (2) spinal (including epaxial and hypobranchial muscles). Most of the branchial muscles are also present anteriorly in the mandibular and hyoid segments, indicating that these were once typical branchial segments. The extrabranchial cartilages and gill septa are used as landmarks for dividing the interbranchials from the superficial constrictors. These landmarks reveal that the most important expiratory muscles in the anterior pharynx (most parts of "constrictor hyoideus", interhyoideus, levator palatoquadrati, spiracularis, and intermandibularis) are actually enlarged interbranchial muscles that have taken on a surface location. "Shrinking" these enlarged interbranchials and returning them to a deep location produces a simple, metameric reconstruction of the pre-gnathostome pharynx that fits what is known about thelodonts and other fossil agnatha related to gnathostomes. Finally, the pharyngeal muscles of bony fishes are considered, and concluded to have evolved from a sharklike condition through an acanthodian-like intermediate. © 1997 The Royal Swedish Academy of Sciences. Published by Elsevier Science Ltd.  相似文献   

17.
The correlation of the origin of teeth with jaws in vertebrate history has recently been challenged with an alternative to the canonical view of teeth deriving from separate skin denticles. This alternative proposes that organized denticle whorls on the pharyngeal (gill) arches in the fossil jawless fish Loganellia are precursors to tooth families developing from a dental lamina along the jaw, such as those occurring in sharks, acanthodians, and bony fishes. This not only indicates that homologs of tooth families were present, but also illustrates that they possessed the relevant developmental controls, prior to the evolution of jaws. However, in the Placodermi, a phylogenetically basal group of jawed fishes, the state of pharyngeal denticles is poorly known, tooth whorls are absent, and the presence of teeth homologous to those in extant jawed fishes (Chondrichthyes + Osteichthyes) is controversial. Thus, placoderms would seem to provide little evidence for the early evolution of dentitions, or of denticle whorls, or tooth families, at the base of the clade of jawed fishes. However, organized denticles do occur at the rear of the placoderm gill chamber, but are associated with the postbranchial lamina of the anterior trunkshield, assumed to be part of the dermal cover. Significantly, these denticles have a different organization and morphology relative to the external dermal trunkshield tubercles. We propose that they represent a denticulate part of the visceral skeleton, under the influence of pharyngeal patterning controls comparable to those for pharyngeal denticles in other jawed vertebrates and Loganellia.  相似文献   

18.
A series of studies by Edgeworth demonstrated that cranial muscles of gnathostome fishes are embryologically of somitic origin, originating from the mandibular, hyoid, branchial, epibranchial, and hypobranchial muscle plates. Recent experimental studies using quail-chick chimeras support Edgeworth's view on the developmental origin of cranial muscles. One of his findings, the existence of the premyogenic condensation constrictor dorsalis in teleost fishes, has also been confirmed by molecular developmental studies. Therefore, developmental mechanisms for patterning of cranial muscles, as described and implicated by Edgeworth, may serve as structural entities or regulatory phenomena responsible for developmental and evolutionary changes. With Edgeworth's and other studies as background, muscles in the ventral gill arch region of batoid fishes are analyzed and compared with those of other gnathostome fishes. The spiracularis is regarded as homologous at least within batoid fishes, but its status within elasmobranchs remains unclear; developmental modifications of the spiracularis proper are evident in some batoid fishes and in several shark groups. The peculiar ventral extension of the spiracularis in electric rays and some stingrays may represent convergence, probably facilitating ventilation and/or feeding in both groups. The evolutionary origin of the "internus" and "externus" remains uncertain, despite the fact that a variety of forms of the constrictor superficiales ventrales in batoid fishes indicates an actual medio-ventral extension of the "externus." The intermandibularis is probably present only in electric rays. The "X" muscle occurs only in electric rays and is considered to be Edgeworth's intermandibularis profundus. Its association with the adductor mandibular complex in narkinidid and narcinidid electric rays may relate to its functional role in lower jaw movement. Contrary to common belief, in most batoid fishes as well as some sharks, muscles that originate from the branchial muscle plate and extend medially in the ventral gill arches do exist: the medial extension of the interbranchiales in most batoid fishes and some sharks and the "Y" muscle in the pelagic stingrays Myliobatos and Rhinoptera. The latter is another example of the medial extension of the "internus." Whether the interbranchiales and "Y" muscle are homologous within elasmobranchs and whether homologous with the obliques ventrales and/or transversi ventrales of osteichthyan fishes await further research. Four hypobranchial muscles are recognized in batoid fishes: the coracomandibularis, coracohyoideus, coracoarcualis, and coracohyomandibularis. The coracohyoideus is discrete from the coracoarcualis; its complete structural separation from the latter occurs in several groups of batoid fishes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Skeletal muscles are a mosaic of slow and fast twitch myofibers. During embryogenesis, patterns of fiber type composition are initiated that change postnatally to meet physiological demand. To examine the role of the protein phosphatase calcineurin in the initiation and maintenance of muscle fiber types, we used a "Flox-ON" approach to obtain muscle-specific overexpression of the modulatory calcineurin-interacting protein 1 (MCIP1/DSCR1), an inhibitor of calcineurin. Myo-Cre transgenic mice with early skeletal muscle-specific expression of Cre recombinase were used to activate the Flox-MCIP1 transgene. Contractile components unique to type 1 slow fibers were absent from skeletal muscle of adult Myo-Cre/Flox-MCIP1 mice, whereas oxidative capacity, myoglobin content, and mitochondrial abundance were unaltered. The soleus muscles of Myo-Cre/Flox-MCIP1 mice fatigued more rapidly than the wild type as a consequence of the replacement of the slow myosin heavy chain MyHC-1 with a fast isoform, MyHC-2A. MyHC-1 expression in Myo-Cre/Flox-MCIP1 embryos and early neonates was normal. These results demonstrate that developmental patterning of slow fibers is independent of calcineurin, while the maintenance of the slow-fiber phenotype in the adult requires calcineurin activity.  相似文献   

20.
Cyprinids constitute the largest fish family and are characterized by their pharyngeal teeth. The masticatory mechanism is still poorly understood. The complex of structures that determine the movements of pharyngeal teeth and chewing pad in the carp (Cyprinus carpio L.) is analyzed. Activities in 16 head muscles of a free-swimming carp were recorded. X-ray cinerecordings, synchronized with electromyograms, were made of the intake, transport, mastication, and deglutition of radiopaque food pellets. Metal markers allowed a detailed movement analysis. Masticatory cycles are bilaterally synchronous and show distinct crushing and grinding patterns. Direct masticatory muscles that suspend and connect the pharyngeal bones steer and stabilize the masticatory movements. Baudelot's ligament, between skull and pectoral girdle, is applied as fulcrum, effects a crucial shift of the rotation axis of the pharyngeal jaw, and transforms crushing into grinding; simultaneous abduction lengthens the grinding stroke. Body muscles supply indirectly the power for mastication; they also appear to be regulated more distantly. The epaxial muscles lift the skull and thereby the levators of the pharyngeal bones, thus transmitting high forces to the teeth. They also stretch the levator of the bone as soon as occlusion is reached and thus optimize its production of forces during grinding. The hypaxial muscles retract the pharyngeal bones indirectly during grinding and power the teeth in sliding. The chewing pad, previously assumed to be motionless, rotates rostroventrad with the skull and intensifies grinding. Respiration and mastication are mutually related. The extensive movements of the pharyngeal bones are permitted only by the simultaneous expansion of the buccopharynx and a slide-coupling in the branchial floor. Muscular pads that line the pharynx are shown to transport food toward the teeth. The constrictor pharyngis effects deglutition. Natural food, intestinal contents, and feces of the carp were analyzed with respect to the capacity for distinct masticatory operations. During the experiments pellets, barley, and worms were fed. The carp is specialized for polyphagy and this appears to be based on the profiles of the heterodont teeth rather than on drastic changes in the two preprogrammed activity patterns. Comparison of the pharyngeal jaw system in the carp and higher teleosts emphasizes the structural design for the application of large forces in this cyprinid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号