首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The action of chlordimeform on the nerve-muscle preparation of the larvae of the waxmoth Galleria mellonella has been studied by means of microelectrodes. Exitatory junction potential evoked by nerve stimulation is reversibly suppressed by 2 × 10?3 M chlordimeform, and spike-like component is abolished. The resting membrane potential of the muscle fibre and the action potential from the nerve terminal are not affected at 5 × 10?3 M chlordimeform. The depolarizing membrane response caused by outward current and the effective membrane resistance are not appreciably affected. It appears that chlordimeform exerts its blocking action on the neuromuscular junction rather than the conductance mechanism of muscle fibre membrane.  相似文献   

2.
Synthetic calcium buffers, including fluorescent calcium indicators, were microinjected into squid 'giant' presynaptic nerve terminals to investigate the calcium signal that triggers neurotransmitter secretion. Digital imaging methods, applied in conjunction with the fluorescent calcium indicator dye fura-2, reveal that transient rises in presynaptic calcium concentration are associated with action potentials. Transmitter release terminates within 1-2 ms after a train of action potentials, even though presynaptic calcium concentration remains at micromolar levels for many seconds longer. Microinjection of the calcium buffer, EGTA, into the presynaptic terminal has no effect on transmitter release evoked by single presynaptic action potentials. EGTA injection does, however, block the change in calcium concentration measured by fura-2. Therefore, the calcium signal measured by fura-2 is not responsible for triggering release. These results suggest that the rise in presynaptic calcium concentration that triggers release must be highly localized to escape detection with fura-2 imaging. Unlike EGTA, microinjection of BAPTA--a calcium buffer with an equilibrium affinity for calcium similar to that of EGTA--produces a potent, dose-dependent, and reversible block of action-potential evoked transmitter release. The superior ability of BAPTA to block transmitter release apparently is due to the more rapid calcium-binding kinetics of BAPTA compared to EGTA. Because EGTA should bind calcium within a few tens of microseconds under the conditions of our experiments, the inability of EGTA to block release indicates that transmitter release is triggered within a few tens of microseconds after the entry of calcium into the presynaptic terminal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Evoked synaptic potential were recorded extracellularly in experiments on a nervemuscle preparation of the frog sartorius muscle. A decrease in evoked transmitter release was found from the proximal to the distal parts of the nerve ending, due to a decrease in the probability of transmitter quantum release. The terminal portions of the synapse are less sensitive than the proximal parts to changes in Ca++ concentration, they show less marked facilitation of transmitter release during paired and repetitive stimulation, and exhibit deeper and more rapidly developing depression. It is concluded that differences in transmitter release in the terminal parts of the synapse are due to the low reserves of transmitter and the lower premeability of the presynaptic membrane to Ca++.  相似文献   

4.
A mechanism of the long-term potentiation of transmitter release induced by adrenaline (ALTP) was studied by recording intracellularly the fast excitatory postsynaptic potentials (fast EPSPs). The ALTP was produced during the blockade of K+ channels at the presynaptic terminals by tetraethylammonium (TEA). The synaptic delay, possibly reflecting a relative change in the duration of an action potential at the presynaptic terminal, was not changed during the course of the ALTP. By contrast, it was significantly lengthened by TEA and other K+ channel inhibitors (4-aminopyridine and Cs+) that markedly enhanced the evoked release of transmitter. The magnitude of facilitation of the fast EPSP, induced by a conditional stimulus to the preganglionic nerve, was decreased during the generation of the ALTP, but was unchanged during the potentiation of transmitter release caused by TEA. These results, together with theoretical considerations applying the residual Ca2+ hypothesis to the facilitation, suggest that the enhancement of transmitter release during the ALTP is not caused by an increased Ca2+ influx during a presynaptic impulse owing to the blockade of K+ channel or the modulation of Ca2+ channel, but presumably is induced by a rise in the basal level of free Ca2+ in the presynaptic terminal.  相似文献   

5.
Electron microscopy and extracellular recordings were used for the investigation of structural and functional peculiarities of single frog sartorius muscle nerve terminal. It has been found that the diameter, length of the synaptic contact and quantity of synaptic vesicles decreased from proximal to distal parts of the nerve terminal. A number of varicosities, separated from each other by schwann cells, have been revealed along the course of the nerve terminal. This indicates the existence of an interrupted synaptic contact. Both the evoked and spontaneous transmitter release decreased from the initial to the end parts of the nerve terminal. The data obtained suggest that there is a correlation between structural heterogeneity and the differences in the transmitter release.  相似文献   

6.
Zefirov AL  Gafurov OSh 《Biofizika》2000,45(3):556-564
The influence of both growth and branching of a nerve terminal on the asynchronism of transmitter release and the time-course of evoked postsynaptic responses was investigated using a model of a frog neuromuscular synapse in which the nerve terminal represents a population of spatially isolated active zones. It was shown that the appearance of additional branching in proximal parts of the nerve ending leads to decrease in the asynchronism of transmitter release, an increase in quantum content and the amplitude of the postsynaptic signal, and the shortening of its phase of growth. It was found that the asynchronism of transmitter release has a much stronger influence on the time-course of end plate currents compared with end plate potentials. The factors strengthening and weakening the asynchronism of transmitter release in a neuromuscular synapse and the reasons for various length and branching of vertebrate nerve terminals are considered.  相似文献   

7.
In experiments on the frog cutaneous-pectoris muscle under the visual control the evoked responses of nerve endings were recorded in proximal, central and distal parts of the terminal. At the fixed position of the recording electrode the local iontophoretic application of TTX to different terminal parts and Ranvier's nodes was performed. It was concluded, that local currents at more proximal terminal parts provide the depolarization of the located parts and conduction of excitation to the nonexcitable parts. Inward currents at behind located and already excited parts are shortened and decreased by local currents from more distal parts during the propagation of excitation. It results in shortening of the action potential and decreasing of the transmitter release in more proximal parts. This effect disappeared along the nerve terminal due to decreasing of inward Na current at the end parts.  相似文献   

8.
This study examined the effect of prolonged inactivity, associated with aestivation, on neuromuscular transmission in the green-striped burrowing frog, Cyclorana alboguttata. We compared the structure and function of the neuromuscular junctions on the iliofibularis muscle from active C. alboguttata and from C. alboguttata that had been aestivating for 6 months. Despite the prolonged period of immobility, there was no significant difference in the shape of the terminals (primary, secondary or tertiary branches) or the length of primary terminal branches between aestivators and non-aestivators. Furthermore, there was no significant difference in the membrane potentials of muscle fibres or in miniature end plate potential (EPP) frequency and amplitude. However, there was a significant decrease in evoked transmitter release characterised by a 56% decrease in mean EPP amplitude, and a 29% increase in the failure rate of nerve terminal action potentials to evoke transmitter release. The impact of this suite of neuromuscular characteristics on the locomotor performance of emergent frogs is discussed.  相似文献   

9.
1. In the present paper we review some presynaptic aspects of the mode of action of botulinal toxins (BoTxs) at vertebrate neuromuscular junctions with emphasis on studies carried out in our laboratories using electrophysiological and morphological techniques. 2. Spontaneous quantal transmitter release recorded as miniature end-plate potentials is drastically affected by BoTxs. The low probability of release at poisoned terminals can be enhanced by carbonyl cyanide m-chlorophenylhydrazone (CCCP), Cd2+ and La3+. However, CCCP and La3+ which drastically deplete clear synaptic vesicles from unpoisoned terminals failed to markedly affect the density of synaptic vesicles at poisoned terminals. It is concluded that poisoned terminals have a reduced sensitivity to the release-promoting action of Ca2+, Cd2+ and La3+. 3. When comparing the effect of the various BoTxs on nerve-impulse evoked transmitter release it appears that increasing phasic Ca2+ entry into the terminals enhances evoked synchronized quantal release only from terminals poisoned with serotypes A and E. In contrast, enhanced Ca2+ entry into terminals poisoned with serotypes B, D and F induced a period of high frequency asynchronous release suggesting that these BoTxs may affect a presynaptic step beyond the influx of Ca2+, that may be involved in the synchronization of transmitter quanta. These data suggest that the actions of BoTxs involve several steps of the acetylcholine release process. 4. The analysis of presynaptic currents which depend on both Ca2+ entry and intraterminal background Ca2+ levels strongly suggests that neither Ca2+ entry nor intraterminal Ca2+ levels are altered by BoTxs. Furthermore, poisoned terminals are no more efficient than unpoisoned ones in dealing with Ca2+ overloads. 5. Finally, the morphological examination of junctions paralysed by BoTx-A indicates that the toxin triggers a particularly important overgrowth of the nerve terminals and suggests that the in vivo functional recovery may occur from an extension of the original nerve terminal arborization and the concomitant remodelling of postsynaptic structures.  相似文献   

10.
Using the whole-cell patch-clamp technique and stimulation of a single presynaptic terminal, we studied peculiarities of GABA release in inhibitory synapses of cultured neurons of the rat spinal cord. Analyzing the amplitude distributions of evoked inhibitory postsynaptic currents, we estimated the main quantum parameters of transmitter release. It was demonstrated that the minimum transmitter release in GABA-ergic synapses of spinal neurons cultured 9 to 11 days is multiquantum (packets containing at least 2 or 3 quanta). The distribution of the number of released quanta sufficiently agreed with that theoretically calculated according to the Poisson law. It is hypothesized that the minimum simultaneous two (three-)-quantum release of GABA in synapses of spinal neurons can be related to synchronous involvement of two closely adjacent excited terminals, each of which possesses one active zone, or of one terminal with two active zones.  相似文献   

11.
The release of endogenous glutamate from guinea-pig cerebrocortical synaptosomes evoked by dendrotoxin, beta-bungarotoxin, and 4-aminopyridine is compared. Dendrotoxin and 4-aminopyridine cause Ca2+-dependent release, representing a partial depletion of the KCl-releasable transmitter pool. The decrease in the plasma membrane potential caused by 4-aminopyridine or dendrotoxin and the evoked release of glutamate from a transmitter pool accord with the inhibitory action of these agents on certain K+ conductances. In contrast, the massive release of glutamate evoked by beta-bungarotoxin is produced in the presence of Ca2+ but not of Sr2+, a result consistent with a generalised permeabilisation of synaptosomal plasma membranes. Although dendrotoxin inhibits the binding of beta-bungarotoxin and the resultant synaptosomal lysis, demonstration of a direct effect of beta-bungarotoxin binding per se on K+ permeability is impractical owing to its phospholipase A2 activity.  相似文献   

12.
The actions of serotonin on frog primary afferent terminals and cell bodies   总被引:1,自引:0,他引:1  
The actions of serotonin (5-HT) were studied in the isolated frog spinal cord and dorsal root ganglion preparations. In the spinal cord, 5-HT increased the spontaneous activity recorded from dorsal roots, facilitated evoked spinal reflexes and produced fast and slow primary afferent depolarization (PAD). A direct action of 5-HT on primary afferent terminals is likely since 5-HT induced PAD remained in the presence of 1 microM tetrodotoxin and 2 mM Mn2+. The direct action of 5-HT on primary afferent terminals was blocked by methysergide and attenuated by concentrations of Mn2+ in excess of that required to block transmitter release. Cell bodies of the dorsal root ganglion were also depolarized by 5-HT. A slow hyperpolarization occasionally followed the initial depolarization. The depolarizing action of 5-HT in the dorsal root ganglion was also attenuated by treatment with Mn2+. It is concluded that 5-HT acts directly on frog primary afferents and that this influence may involve a calcium sensitive process. The dorsal root ganglion response to 5-HT appears to be a suitable model of the afferent terminal response.  相似文献   

13.
Abstract: In this study, we compare the electrically evoked, somatodendritic release of dopamine (DA) with axonal release of serotonin (5-HT) in the substantia nigra (SN) and ventral tegmental area (VTA) in vitro by using fast-scan cyclic voltammetry with carbon-fibre microelectrodes. Furthermore, we have examined transmitter release in these regions in guinea-pig compared with rat. Somatodendritic DA was released, as shown previously, in guinea-pig VTA, SN pars compacta (SNc), and occasionally in SN pars reticulata (SNr). 5-HT was rarely released, except in SNr, where nonetheless it only contributed to <30% of amine signals. In rat midbrain, somatodendritic DA release was evoked to a similar extent as in guinea-pig. However, a clear species difference was apparent; i.e., 5-HT and DA were detected equally in rat SNc, whereas in rat SNr, 5-HT was the predominant transmitter detected. Nevertheless, electrically evoked extracellular concentrations of 5-HT in SNc and SNr were, respectively, seven- and fourfold less than DA in SNc. 5-HT release was low in all regions in neonatal rat slices before the maturation of 5-HT terminals. Hence, axonal 5-HT transmission in midbrain exhibits both species and site selectivity. Moreover, whereas somatodendritic DA release is conventionally regarded as modest compared with axon terminal release in striatum, somatodendritic DA release can result in significantly greater extracellular levels than a transmitter released from axon terminals in the same locality.  相似文献   

14.
The theory that neurotransmitter release is regulated locally at the individual terminals of neurons has achieved a rapid and seemingly secure status in our understanding of neuronal function both in the periphery and in the central nervous system. This concept of negative feedback control through the monitoring of the perineuronal concentration of previously released transmitter has been extended to a multiplicity of transmitters and utilized to explain the mechanisms of action of diverse classes of drugs, ranging from antihypertensives to antidepressants. It is my view that negative feedback by terminal and by somadendritic receptors cannot account for the existing body of experimental work. Analyses of the profiles of action of agonists and antagonists, and of the per pulse release of transmitter in the absence of drugs in a variety if peripheral organ systems, as well as in superfused brain slices, demonstrates the need for alternate interpretations of the available data. Evidence is provided that the actions of agonists to inhibit transmitter release and that of antagonists to enhance release occur at different cellular loci and that the purported unitary action of these two classes that is so central to the validity of presynaptic theory is unsupportable.  相似文献   

15.
Abstract: Effects of concanavalin A on transmitter release were investigated in primary cultures of chick sympathetic neurons. The lectin reduced electrically evoked [3H]noradrenaline release by up to 30% with half-maximal inhibition at 0.16 µ M . Concanavalin A also reduced the release triggered by extracellular Ca2+ in neurons depolarized by 25 m M K+ or rendered Ca2+-permeable by the ionophore A23187. The inhibitory action of concanavalin A on electrically evoked release was additive to that of the α2-adrenergic agonist UK 14,304. Inactivation of Gs and Gi/Go type G proteins by either cholera or pertussis toxin did not alter the inhibitory effect of the lectin. Concanavalin A failed to affect the resting membrane potential, action potential waveforms, or voltage-dependent K+ and Ca2+ currents. In contrast, the lectin efficiently blocked both the Ca2+-dependent and -independent α-latrotoxin-induced transmitter release, but only when applied before the toxin. The reduction of electrically evoked, as well as α-latrotoxin-evoked, release by concanavalin A was attenuated in the presence of glucose and abolished by methyl α- d -mannopyranoside. The dimeric derivative, succinyl-concanavalin A, was significantly less active than tetrameric concanavalin A. In bovine adrenal chromaffin cells, which displayed only weak secretory responses to α-latrotoxin, concanavalin A failed to alter K+-evoked catecholamine secretion. These results show that concanavalin A causes presynaptic inhibition in sympathetic neurons and indicate that cross-linking of α-latrotoxin receptors may reduce action potential-dependent transmitter release.  相似文献   

16.
The effect of dipicolinic acid (2,6-pyridine dicarboxylic acid) on the mealworm neuromuscular junction was studied using conventional microelectrode recording techniques. Dipicolinic acid (10?5-10?3 M) added to the bathing solution reversibly blocked neuromuscular transmission. The depolarization in response to iontophoretically applied L-glutamate (glutamate potential) was not affected by dipicolinic acid even when the neurally evoked excitatory postsynaptic potential (EPSP) was totally abolished. Focal extracellular recordings from single synaptic sites revealed that in the presence of 1 x 10?4 M dipicolinic acid the presynaptic spike was unchanged, but the quantal content for evoked transmitter release was reduced. The calcium-dependent action potential elicited by direct stimulation of the muscle fiber was not impaired by dipicolinic acid. These results suggest that dipicolinic acid interferes with the transmitter-releasing mechanism from the presynaptic terminal.  相似文献   

17.
4-Aminopyridine markedly potentiates transmitter release at the frog pectoris neuromuscular junction by increasing the quantal content even when applied at low concentrations (5-20 microM). This enhancement of transmitter release is associated with greater minimum synaptic latency, but the dispersion of the synaptic latencies does not appear much affected. This is in contrast with the action of tetraethylammonium (0.2-0.5 mM) in which case similar enhancement of transmitter release results not only in larger minimum synaptic latency but also in greater dispersion of the synaptic latencies. The time course of transmitter release associated with enhanced transmitter output is hence much more prolonged in the presence of tetraethylammonium than 4-aminopyridine, at least for low concentrations of 4-aminopyridine (5-20 microM). This indicates that their presynaptic actions differ significantly. This conclusion is further strengthened by the finding that unlike tetraethylammonium, 4-aminopyridine induces bursts of release, presumably by producing multiple action potentials in the nerve terminal. Tetraethylammonium probably acts by blocking the delayed potassium conductance, but the blockade of Ca2+-activated K+ conductance cannot be excluded. 4-Aminopyridine, however, probably blocks the fast inactivating (IA) K+ current, but it also may be acting directly on the voltage-dependent Ca2+ conductance or on the intracellular Ca2+ buffering.  相似文献   

18.
Experiments on isolated frog nerve-muscle preparations showed that manganese ions (0.4–5.0 mM) inhibit evoked transmitter release by reducing the quantum composition of the end-plate potentials, and they intensify spontaneous transmitter release to a certain extent by increasing the frequency of miniature potentials. Verapamil (1 · 10–6–5·10–5 g/ml) and D-600 (2.5·10–5 g/ml), by contrast with manganese ions, do not inhibit evoked release, but also intensify spontaneous release of the transmitter. All the agents tested prevent the potentiating effect of imidazole (3 mM). During repetitive stimulation, verapamil disturbs action potential generation in the motor nerve. Manganese ions had no such action. It is concluded that between the calcium channels of motor nerve endings and the calcium channels of heart muscle or the neuron soma there are molecular differences, expressed as sensitivity to the blocking action of verapamil and D-600.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 9, No. 4, pp. 415–422, July–August, 1977.  相似文献   

19.
In experiments on the frog cutaneous-pectoris muscle, the amplitude-temporal parameters of monoquantum end-plate currents (EPC) and miniature EPC (mEPC) were investigated using extracellular recording. A significant dependence of the risetime of the signals on their amplitude was found after analyzing mEPC; at the same time, such dependence was absent for EPC. Approaches leading to disorganization of the active zones (AZ) of the nerve ending (NE), prolonged action of a Ca-free solution, and denervation resulted in an increased dependence of the risetime of the monoquantum signals on their amplitude; moreover, these dependences were similar for both mEPC and monoquantum EPC. Mathematical simulation showed that the obtained data could be explained by the spatial heterogeneity of the sites of spontaneous and evoked transmitter release within the regions of the AZ. A new hypothesis interpreting spontaneous and evoked transmitter release is proposed.  相似文献   

20.
The transmitter releasing action of caffeine was studied in the absence of extracellular Ca2+ from the peripheral sympathetic nerves of the rabbit main pulmonary artery. Caffeine (10 mM) increased the release of [3H]-noradrenaline moderately, but not significantly in Ca2(+)-free (+1 mM EGTA) Krebs solution. When peripheral nerve endings/varicosities were depolarized by elevating extracellular K+ to 47.2 mM and 70.8 mM in Ca2(+)-free solution, the transmitter releasing effect of 10 mM caffeine became significant. Ca2+ removal itself transiently increased the [3H]-noradrenaline outflow. In the individual experiments the amount of the caffeine evoked transmitter release at 47.2 mM and 70.8 mM K(+)-depolarization was inversely correlated to the release evoked by Ca2(+)-removal. Our results suggest that caffeine-sensitive calcium stores are present in peripheral nerve terminals of rabbit pulmonary artery, and part of the caffeine sensitive calcium stores may discharge during Ca2(+)-removal from the extracellular solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号