首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Annual litter fall, nutrient concentrations in litter components and annual weight of nutrients in litter fall have been estimated for karri forest stands aged 2, 6, 9 and 40 years and in mature forest. The weight of litter falling annually increases with stand age, ranging from 1.13 t/ha in 2-year-otd regeneration to 9.45 t/ha in mature forest. This increase is due mainly to greater amounts of twigs, bark and fruit falling in older stands. Leaf fait is relatively independent of stand age once the canopy of regenerating stands closes and the understorey has developed. Concentrations of N, P, K, S and Mn in karri leaf litter differ significantly between sites and the differences appear to be related to stand age. Highest levels of these elements are found in karri leaf litter from the youngest stand and the concentrations decrease with increasing stand age. The amounts of annual litter fall and of nutrients cycling in litter are among the largest reported for Australian forests. In particular cycling of Ca, K and Mg in mature karri forest is greater than has been reported for any other eucalypt forest. Karri forest understorey plays a key rote in nutrient cycling in these ecosystems, contributing 30–70% of the weight of many of the nutrients in the leaf component of titter. Understorey leaf material is particularly important in the cycling of N, S and the micro-nutrients Cu and Zn.  相似文献   

2.
Summary In Jarrah (Eucalyptus marginata Donn ex Sm.) forest of south-western Australia dense germination and regeneration of the native legumeAcacia Pulchella R. Br. can occur following moderate to high intensity fire. The effect of this legume understorey on rate of decomposition and change in nutrient content ofE. marginata litter was investigated using the mesh bag techniques and by examining four components of forest floor litter representing increasing stages of decomposition. E. marginata leaf litter confined in mesh bags lost 37% of its initial dry weight in the first 8 months on the forest floor and 44% of its initial dry weight after 20 months. During this period weight loss was similar for leaf litter located in forest without legume understorey and for leaf litter placed under dense stands ofA. pulchella. MixingA. pulchella litter withE. marginata litter had no significant effect on rate ofE. marginata litter breakdown. The presence of understorey vegetation had a marked effect on chemical composition of decomposingE. marginata leaves. After 8 and 20 months exposure on the forest floor, leaf litter in mesh bags placed underA. pulchella understorey had significantly (P<0.001) higher concentration and contained significantly (P<0.001) greater amounts of N, P, K, S, Ca and Mg than leaf litter placed in areas without legume understorey. This effect was particularly marked for N and P. In forest without legume understorey the amounts of these two nutrients inE. marginata leaf litter changed little during the first 20 months of decomposition, but forE. marginata leaf litter in mesh bags underA. pulchella there were absolute gains of up to 68% in the amount of N and 109% in the amount of P during this period. This represents accumulation of N and P from sources outside the litter bags. The concentration of N, P, S, Ca and Mg were higher at each of the four stages of decomposition in eucalypt leaf litter collected from the forest floor beneathA. pulchella compared to eucalypt leaf litter collected in forest without understorey. Concentrations of N, P and S increased with stage of decomposition. Levels of these three nutrients in eucalypt litter from under the legume were 1.5 to 2.9 fold higher than in the same component of litter from forest without understorey. The effect of legume understorey on nutrient concentrations in the forest floor and on Cielement ratios in decomposing litter is discussed in relation to long term rates of litter breakdown and net mineralisation of litter nutrients.  相似文献   

3.
Changes in the quantity and quality of plant litter occur in many ecosystems as they are invaded by exotic species, which impact soil nutrient cycling and plant community composition. Such changes in sagebrush-steppe communities are occurring with invasion of annual grasses (AG) into a perennial grass (PG) dominated system. We conducted a 5-year litter manipulation study located in the northern Great Basin, USA. Springtime litter was partially or completely removed in three communities with differing levels of invasion (invaded, mixed, and native) to determine how litter removal and litter biomass affected plant-available soil N and plant community composition. Litter biomass (prior to the removal treatment) was negatively correlated with plant-available N in the invaded community, but was positively correlated in the native community. Plant-available N had greater intra- and inter-annual fluctuations in the invaded compared to the mixed or native communities, but was not generally affected by removal treatments. Litter removal had negative effects on AG cover during a warm/dry year and negative effects on PG cover during a cool/wet year in the mixed community. Overall, the effectiveness of springtime litter manipulations on plant-available N were limited and weather dependent, and only removal treatments >75 % had effects on the plant community. Our study demonstrates how communities invaded by AGs have significantly increased temporal variability in nutrient cycling, which may decrease ecosystem stability. Further, we found that the ecological impacts from litter manipulation on sagebrush communities were dependent on the extent of AG invasion, the timing of removal, and seasonal precipitation.  相似文献   

4.
The relationships between seedling emergence and litter cover were studied in the earliest successional stage of a plant community. During a period of 3 years, changes in vegetation cover and species composition were assessed on three permanent quadrats with virgin sandy soil substrates A successional pattern from summer annual grasses to winter annual herbacoeus plants to biennial and perennial plants was confirmed, and invasion and replacement of the component species were conspicuous. The spatial distributions of seedlings and litter were heterogeneous in winter, and some patches consisting of both seedlings and litter were observed. There was a strong positive correlation between distribution patterns of seedlings and litter; seedling density increased with increasing litter cover. The results suggest that the litter cover of the previous stage plays an imporrant role in promoting successional changes in the early stage of plant succession.  相似文献   

5.
《植物生态学报》1958,44(8):791
不同的草原利用方式(围封、放牧和割草等)随着大气氮沉降的不断加剧, 改变了凋落物输入量。凋落物作为连接地上-地下碳循环过程的关键环节, 对草原生态系统生产力和碳循环过程影响显著。氮是草原生产力的主要限制因子, 凋落物输入量的变化对草原生态系统结构和功能的影响仍缺乏长期实验证据支持。该研究在内蒙古半干旱典型草原建立一个凋落物输入变化和氮添加控制实验平台, 通过连续6年对群落生产力和功能群组成的监测, 研究了凋落物添加与去除和氮添加对半干旱草原群落生产力和功能群组成的影响。研究发现: 1)凋落物输入量增加和氮添加均显著提高了群落生产力, 在对照和氮添加处理下, 凋落物去除处理导致生产力分别降低了8.4%和7.6%, 而凋落物添加处理使生产力分别提高了10.7%和6.3%; 2)不同植物功能群对凋落物输入变化和氮添加的响应存在差异, 导致群落功能群结构发生变化。随着凋落物输入量增加和氮添加, 群落优势功能群多年生禾草(包括多年生丛生禾草和多年生根茎禾草)的生物量显著提高, 对群落生产力的贡献增加, 在群落中的优势地位增强; 而另一优势功能群多年生杂类草生物量对凋落物和氮添加处理均无显著响应, 进而导致在氮添加处理下其对群落生物量的贡献比例显著降低; 3)凋落物输入主要改善土壤水分状况, 而氮添加则主要通过提高土壤养分含量, 促进群落生产力, 并通过影响主要功能群生物量, 导致群落结构发生变化。以上结果表明, 适当的草原管理方式如围封禁牧和降低放牧强度等都能通过增加凋落物的输入来提高草原生产力, 维持生态系统稳定性。而适量的氮等养分添加管理也有助于提高草原生产力, 促进其恢复。  相似文献   

6.
不同的草原利用方式(围封、放牧和割草等)随着大气氮沉降的不断加剧, 改变了凋落物输入量。凋落物作为连接地上-地下碳循环过程的关键环节, 对草原生态系统生产力和碳循环过程影响显著。氮是草原生产力的主要限制因子, 凋落物输入量的变化对草原生态系统结构和功能的影响仍缺乏长期实验证据支持。该研究在内蒙古半干旱典型草原建立一个凋落物输入变化和氮添加控制实验平台, 通过连续6年对群落生产力和功能群组成的监测, 研究了凋落物添加与去除和氮添加对半干旱草原群落生产力和功能群组成的影响。研究发现: 1)凋落物输入量增加和氮添加均显著提高了群落生产力, 在对照和氮添加处理下, 凋落物去除处理导致生产力分别降低了8.4%和7.6%, 而凋落物添加处理使生产力分别提高了10.7%和6.3%; 2)不同植物功能群对凋落物输入变化和氮添加的响应存在差异, 导致群落功能群结构发生变化。随着凋落物输入量增加和氮添加, 群落优势功能群多年生禾草(包括多年生丛生禾草和多年生根茎禾草)的生物量显著提高, 对群落生产力的贡献增加, 在群落中的优势地位增强; 而另一优势功能群多年生杂类草生物量对凋落物和氮添加处理均无显著响应, 进而导致在氮添加处理下其对群落生物量的贡献比例显著降低; 3)凋落物输入主要改善土壤水分状况, 而氮添加则主要通过提高土壤养分含量, 促进群落生产力, 并通过影响主要功能群生物量, 导致群落结构发生变化。以上结果表明, 适当的草原管理方式如围封禁牧和降低放牧强度等都能通过增加凋落物的输入来提高草原生产力, 维持生态系统稳定性。而适量的氮等养分添加管理也有助于提高草原生产力, 促进其恢复。  相似文献   

7.
The Effect of a Disturbance Corridor on an Ecological Reserve   总被引:3,自引:0,他引:3  
The effect of a pipeline corridor constructed through an ecological reserve in Southern California was investigated by assessing plant species composition and soil chemistry. A homogeneous plant community comprised primarily of exotic annuals was found along the entire length of the corridor. This community has low similarity to the adjacent native plant communities. Soil organic matter was significantly less on the disturbed corridor than in contiguous undisturbed areas. Both available nitrogen and extractable phosphorus values were greater in the disturbed corridor. By contrast, total nitrogen was significantly higher outside the pipeline. The more labile litter of the exotic annuals allows increased mineralization along the corridor than does the more recalcitrant litter of the native perennial shrubs in the undisturbed areas. Once established, the weedy exotic annual litter may completely turn over organic matter and nitrogen, favoring the persistence of the weedy annuals. These exotic annuals appear to be moving into three of the native communities - grassland, coastal sage, and oak woodland - that have less organic matter and a more open plant canopy. Poor restoration efforts can lead to the establishment of such exotics, subsequent invasion into the surrounding undisturbed habitat, and degradation of the reserve.  相似文献   

8.
The amount of litter and its nutrient composition have been measured at seven sites on various lateritic soils within the jarrah (Eucalyptus marginata Donn ex Sm.) forest near Dwellingup, Western Australia. The weight of litter accumulated during 6 years ranges from 9 tonnes/ha for forest growing on yellow sand to 18 tonnes/ha for forest on reddish gravels. The litter on the reddish gravels contains more than twice the amounts of N, P, K and S in litter on yellow sand and grey and yellow gravels. The proportion of fine material in the forest floor litter increases with total litter weight. Phosphorus, which is less mobile than other nutrients tends to accumulate in this fine component. There are large differences between the foliar nutrient levels of jarrah and Banksia grandis Willd. (e.g. P: 0.041%, 0.025%; K: 0.57%, 0.34%; Mg: 0.43%, 0.21%; Mn: 177 μg/g. 730 μg/g). However, these differences are not reflected in the litter from sites with and without B. grandis understorey. Soil differences and the predominant contribution of the overstorey to the litter appear to be the main factors affecting the litter composition.  相似文献   

9.
This study investigated the impacts of livestock grazing on native plant species cover, litter cover, soil surface condition, surface soil physical and chemical properties, surface soil hydrology, and near ground and soil microclimate in remnant Eucalyptus salmonophloia F. Muell woodlands. Vegetation and soil surveys were undertaken in three woodlands with a history of regular grazing and in three woodlands with a history of little or no grazing. Livestock grazing was associated with a decline in native perennial cover and an increase in exotic annual cover, reduced litter cover, reduced soil cryptogam cover, loss of surface soil microtopography, increased erosion, changes in the concentrations of soil nutrients, degradation of surface soil structure, reduced soil water infiltration rates and changes in near ground and soil microclimate. The results suggest that livestock grazing changes woodland conditions and disrupts the resource regulatory processes that maintain the natural biological array in E. salmonophloia woodlands. Consequently the conditions and resources in many remnant woodlands may be above or below critical thresholds for many species. The implications of these findings for restoration of plant species diversity and community structure are discussed. Simply removing livestock from degraded woodlands is unlikely to result in the restoration of plant species diversity and community structure. Restoration will require strategies that capture resources, increase their retention and improve microclimate.  相似文献   

10.
封育是退化沙地植被恢复与生态重建的重要措施, 理解长期处于封育状态下不同类型沙地植物群落特征变化及其影响因素有利于沙地植被恢复和生态重建。该文基于对科尔沁沙地长期封育的流动沙丘(2005年封育)、固定沙丘(1985年封育)和沙质草地(1997年封育)连续多年(2005-2017年)的植物群落调查, 结合土壤种子库、土壤养分以及气象数据, 分析了植物群落特征变化及其对环境变化的响应。研究结果表明流动沙丘植被盖度显著增加, 群落生物量和物种多样性年际间波动变化, 但无明显趋势; 固定沙丘植物群落存在逆行演替趋势, 具体表现为群落生物量、灌木和半灌木以及豆科优势度显著下降, 而一年生和多年生杂类草优势度显著增加; 沙质草地群落物种丰富度和多年生禾草优势度存在降低趋势, 并且一年生杂类草优势度明显高于其他功能群, 群落存在退化现象。3类沙地土壤种子密度变化不显著, 而种子丰富度在流动沙丘显著增加, 在固定沙丘和沙质草地有下降趋势, 土壤养分仅有有效氮和有效磷含量增加。回归分析结果表明气温和降水是影响年内生物量积累的主要因素, 但对年际间群落生物量和物种丰富度变化影响不大。除趋势对应分析结果显示土壤种子库与植物群落之间存在很高的相似性, 典型相关分析结果表明沙质草地植物群落与土壤养分紧密相关, 而固定沙丘群落主要与土壤水分紧密相关。综合以上结果可知, 封育33年的固定沙丘群落和封育21年的沙质草地群落都存在退化现象, 而封育11年的流动沙丘群落正在缓慢恢复, 因此封育年限的设定对退化沙地植被恢复至关重要, 封育时间过长不仅不利于植物群落恢复, 反而会使群落发生逆行演替, 建议封育年限的设定应综合考虑植被退化程度、土壤养分状况、土壤种子库基础以及气候条件等因素的影响。  相似文献   

11.
We used a long‐term fire experiment in south‐east Queensland, Australia, to determine the effects of frequent prescribed burning and fire exclusion on understorey vegetation (<7.5 m) richness and density in Eucalyptus pilularis forest. Our study provided a point in time assessment of the standing vegetation and soil‐stored vegetation at two experimental sites with treatments of biennial burning, quadrennial burning since 1971–1972 and no burning since 1969. Vegetation composition, density and richness of certain plant groups in the standing and soil‐stored vegetation were influenced by fire treatments. The density of resprouting plants <3 m in height was higher in the biennially burnt treatment than in the unburnt treatment, but resprouters 3–7.5 m in height were absent from the biennial burning treatment. Obligate seeder richness and density in the standing vegetation was not significantly influenced by the fire treatments, but richness of this plant group in the seed bank was higher in the quadrennial treatment at one site and in the long unburnt treatment at the other site. Long unburnt treatments had an understorey of rainforest species, while biennial burning at one site and quadrennial burning at the other site were associated with greater standing grass density relative to the unburnt treatment. This difference in vegetation composition due to fire regime potentially influences the flammability of the standing understorey vegetation. Significant interactions between fire regime and site, apparent in the standing and soil‐stored vegetation, demonstrate the high degree of natural variability in vegetation community responses to fire regimes.  相似文献   

12.
Aims Understanding the drivers of grassland structure and function following livestock removal will inform grassland restoration and management. Here, we investigated the effects of fire and nutrient addition on structure and function in a subtropical semi-native grassland recently released from grazing in south-central Florida. We examined responses of soil nutrients, plant tissue nutrients, biomass of live, standing dead and litter, and plant species composition to experimental annual prescribed fire applied during different seasons (wet season vs. dry season), and nutrient additions (N, P and N + P) over 9 years.Methods Experimental plots were set up in a randomized block split-plot design, with season of prescribed fire as the main treatment and nutrient addition as the subplot treatment. Species cover data were collected annually from 2002 to 2011 and plant tissue and plant biomass data were collected in 2002–2006 and 2011. Soil nutrients were analyzed in 2004, 2006 and 2011.Important findings Soil total phosphorus (P) levels increased substantially with P addition but were not influenced by prescribed fire. Addition of P and N led to increased P and N concentrations in live plant tissues, but prescribed fire reduced N in live tissue. Levels of tissue N were higher in all plots at the beginning of the experiment, an effect that was likely due to grazing activity prior to removal of livestock. Plant tissue N steadily declined over time in all plots, with annually burned plots declining faster than unburned plots. Prescribed fire was an important driver of standing dead and litter biomass and was important for maintaining grass biomass and percent cover. Nutrient addition was also important: the addition of both N and P was associated with greater live biomass and woody forbs. Removal of grazing, lack of prescribed fire, and addition of N + P led to a reduction of grass biomass and a large increase in biomass of a woody forb. Annual prescribed fire promoted N loss from the system by reducing standing dead and litter, but maintained desirable biomass of grasses.  相似文献   

13.
Carbon mineralization in the southern Sonoran Desert   总被引:2,自引:0,他引:2  
We measured carbon mineralization in four different desert habitats (Arroyos, Hillsides, Canopies-Plains and Open-Plains) and the separate effect of litter addition from annual and perennial plants on soil microbial respiration using two laboratory soil incubation experiments. The differences in total aboveground phytomass among habitats correlates with soil nutrient content, soil particulate organic matter (POM) and consequently, C mineralization. The Arroyos habitat with the highest perennial plant phytomass and litter production, had the highest soil nutrient content, soil POM and C mineralization. Litter from annual plants had twice the P concentration than litter from the perennials, but only half the N concentration. Soil microbial respiration was higher with annual plant litter than with perennial plant litter in the Hillsides and Canopies-Plains, suggesting that microbial activity in both habitats was improved by litter with a higher C quality. In contrast, in the poorest habitat, the Open-Plains, the better response to the addition of perennial plant litter suggests that microbial activity may have been constrained by N input.  相似文献   

14.
Question: Can managing disturbance regimes alone or in combination with seeding native species serve to shift the balance from exotic towards native species? Location: Central coast of California, USA. Methods: We measured vegetation composition for 10 yr in a manipulative experiment replicated at three sites. Treatments included no disturbance, grazing and clipping at three frequencies with and without litter removal. We seeded eight native species into clipped plots and compared cover in comparable plots with no seeding. Results: Regardless of frequency, clipping generally shifted community dominance from exotic annual grasses to exotic annual forbs, rather than consistently favoring native species. At one site, perennial grass cover decreased in no‐disturbance plots, but only after 4 yr. Litter removal had minimal impact on litter depth and plant community composition. Grazing had a highly variable effect on the abundance of different plant guilds across sites and years. Seeding increased abundance of only two of eight native species. Conclusions: Managing disturbance regimes alone is insufficient to restore native species guilds in highly‐invaded grasslands and seeding native species has highly variable success.  相似文献   

15.
《新西兰生态学杂志》2011,30(2):209-217
We sampled soils and vegetation within and outside two sheep and rabbit exclosures, fenced in 1979, on steep sunny and shady slopes at 770 m altitude on seasonally-dry pastoral steeplands. The vegetation of sunny aspects was characterised by higher floristic diversity, annual species, and low plant cover. Here the exotic grass Anthoxanthum odoratum dominated on grazed treatments, and the exotic forb Hieracium pilosella on ungrazed. Shady aspects supported fewer, and almost entirely perennial, species. Here Hieracium pilosella dominated grazed treatments, but co-dominated with the exotic forb H. praealtum and the native grass Festuca novae-zelandiae on ungrazed treatments. There was 43% more biomass in exclosures (P < 0.01). Most of the biomass difference (4285 kg/ha) was from greater root mass (2400 kg/ha). 1385 kg/ha of the difference was from herbage and the remainder (500 kg/ha) from litter. Exclosures had 50 to 100% more Ca, Mg, K and P in the biomass (P < 0.05), but the effect on soils was limited to significantly higher concentrations of total N (P < 0.05) and exchangeable Mg (P < 0.01) in 0-7.5 cm soils. We conclude that stopping grazing for 16 years on seasonally-dry steeplands results in greater plant cover, approximately double the biomass of standing vegetation, greater biomass in roots, and more biomass nutrients relative to grazed areas. However, it does not favour native species and has little effect on soil nutrients or soil carbon. Stopping grazing alone therefore cannot be regarded as a comprehensive short- or medium-term vegetation or soil rehabilitation option.  相似文献   

16.
The fire-dependent longleaf pine-wiregrass (Pinus palustris Mill.-Aristida beyrichiana Trin. & Rupr.) savannas of the southeastern United States provide a unique opportunity to examine the relationship between productivity and species richness in a natural ecosystem because of the extremely high number of species and their range across a wide ecological amplitude (sandhills to edges of wetlands). We used a natural gradient to examine how plant species richness and plant community structure vary with standing crop biomass (which in this system is proportional to annual net productivity) as a function of soil moisture and nitrogen mineralization rates in a frequently burned longleaf pine-wiregrass savanna. Highest ground cover biomass and highest species richness were found at the same position along the gradient, the wet-mesic sites. Relative differences in species richness among site types were independent of scale, ranging from 0.01 m(2) to 100 m(2). Nitrogen availability was negatively correlated with species richness. Dominance of wiregrass (in terms of biomass) was consistent across the gradient and not correlated with species richness. Regardless of site type, the community structure of the savannas was characterized by many perennial species with infrequent occurrences, a factor in the low temporal heterogeneity (percent similarity between seasons and years) and high within-site spatial heterogeneity (percent dissimilarity of vegetation composition). The coexistence of numerous species is likely due to the high frequency of fire that removes competing hardwood vegetation and litter and to the suite of fire-adapted perennial species that, once established, are able to persist. Our results suggest that soil moisture is an important factor regulating both the number of species present and community production within the defined gradient of this study.  相似文献   

17.
Abstract Evaporative aerodynamics determine the foliage projective cover of the understorey of perennial tussock grasses and associated perennial herbs in the savannah woodland dominated by Eucalyptus camalduknsis on gleyed podsolic soils in the Mediterranean climate of the South‐East District of South Australia. By the mid 1940s, winter‐spring evapotranspiration from the ‘thin’ leaves (with low leaf specific weight) of introduced annual plants was depleting surface soil water and thus reducing the annual growth of the summer‐growing savannah understorey; perennial herbs between the tussock grasses were the first to succumb to this competition. During spring, the percentage of the ground covered by the savannah understorey was increased by 10% in the subhumid zone to 30% in the humid zone as the pre‐European perennial herbs between the tussock grasses were replaced by introduced annuals. Application of phosphatic fertilizer to the understorey increased the growth of introduced annuals, which formed a dense stratum during their winter‐spring growing season, increasing evapotranspiration and leading eventually to the extinction of the native perennial grasses. When the savannah understorey, invaded by introduced annuals in the mid‐1940s, was converted to improved pasture, the percentage of ground covered by the seasonal foliage was increased by 20–30%; 100% coverage of overlapping foliage resulted in the humid zone.  相似文献   

18.
Understanding the spatial variability in plant litter processes is essential for accurate comprehension of biogeochemical cycles and ecosystem function. We assessed spatial patterns in litter processes from local to regional scales, at sites throughout the wet tropical rain forests of northern Australia. We aimed to determine the controls (e.g., climate, soil, plant community composition) on annual litter standing crop, annual litterfall rate and in situ leaf litter decomposability. The level of spatial variance in these components, and leaf litter N, P, Ca, lignin, α‐cellulose and total phenolics, was determined from within the scale of subregion, to site (1 km transects) to local/plot (~30 m2). Overall, standing crop was modeled with litterfall and its chemical composition, in situ decomposability, soil Na, and topography (r= 0.69, 36 plots). Litterfall was most closely aligned with plant species richness and stem density (negative correlation); leaf decomposability with leaf‐P and lignin, soil Na, and dry season moisture (r= 0.89, 40 plots). The predominant scale of variability in litterfall rates was local (plot), while litter standing crop and α‐cellulose variability was more evenly distributed across spatial scales. Litter decomposability, N, P and phenolics were more aligned with subregional differences. Leaf litter C, lignin and Ca varied most at the site level, suggesting more local controls. We show that variability in litter quality and decomposability are more easily accounted for spatially than litterfall rates, which vary widely over short distances possibly in response to idiosyncratic patterns of disturbance.  相似文献   

19.
Global climate change is predicted to stimulate primary production and consequently increases litter inputs. Changing precipitation regimes together with enhanced litter inputs may affect plant community composition and structure, with consequent influence on diversity and ecosystem functioning. Responses of plant community to increased precipitation and belowground litter addition were examined lasting 5 years in a semiarid temperate grassland of northeastern China. Increased precipitation enhanced community species richness and abundance of annuals by 16.8% and 44%, but litter addition suppressed them by 25% and 54.5% after 5 years, respectively. During the study period, perennial rhizome grasses and forbs had consistent negative relationship under ambient plots, whereas positive relationship between the two functional groups was found under litter addition plots after 5 years. In addition, increased precipitation and litter addition showed significant interaction on community composition, because litter addition significantly increased biomass and abundance of rhizome grasses under increased precipitation plots but had no effect under ambient precipitation levels. Our findings emphasize the importance of water availability in modulating the responses of plants community to potentially enhanced litter inputs in the semiarid temperate grassland.  相似文献   

20.
 该研究以浙江天童常绿阔叶林及退化群落的凋落物特征为内容,探讨了养分归还和土壤养分动态之间的联系。结果显示:1)常绿阔叶林退化显 著降低了凋落物的年凋落量,从成熟常绿阔叶林的13.03 Mg·hm-2下降到灌丛的6.38 Mg·hm-2。2)凋落物氮含量在成熟群落至灌丛阶段下降显 著,而磷含量无明显递减规律;氮磷归还量均随常绿阔叶林退化显著下降。 3)凋落物特征(年均值)与土壤养分的相关分析表明,土壤氮磷含 量与凋落物凋落量间呈显著线性正相关;土壤氮含量与凋落物氮含量间无显著线性关系,而与氮归还量呈显著线性正相关(p<0.05);土壤总磷 含量与凋落物磷含量和磷归还量间均呈显著线性正相关( 磷含量:p<0.01; 磷归还量: p<0.001);土壤无机氮含量与凋落物各特征间无显著相关 关系;土壤氮素硝化速率与凋落物凋落量和氮归还量间呈显著线性正相关(凋落物凋落量:p<0.01; 氮归还量: p<0.005),而与凋落物氮含量无 显著线性关系,与之相比,土壤氮素矿化速率与凋落物特征间均不存在显著线性关系。可以认为,在常绿阔叶林退化过程中,由于不同植物在 养分归还特征上的差异,导致了养分归还量的下降,从而使土壤养分库的物质来源减少,但是,群落结构简化而导致的非生物要素的改变,对 控制土壤生物过程发挥着更大的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号