首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Genetic polymorphisms of flowering plants can influence pollinator foraging but it is not known whether heritable foraging polymorphisms of pollinators influence their pollination efficacies. Honey bees Apis mellifera L. visit cranberry flowers for nectar but rarely for pollen when alternative preferred flowers grow nearby. 2. Cranberry flowers visited once by pollen‐foraging honey bees received four‐fold more stigmatic pollen than flowers visited by mere nectar‐foragers (excluding nectar thieves). Manual greenhouse pollinations with fixed numbers of pollen tetrads (0, 2, 4, 8, 16, 32) achieved maximal fruit set with just eight pollen tetrads. Pollen‐foraging honey bees yielded a calculated 63% more berries than equal numbers of non‐thieving nectar‐foragers, even though both classes of forager made stigmatic contact. 3. Colonies headed by queens of a pollen‐hoarding genotype fielded significantly more pollen‐foraging trips than standard commercial genotypes, as did hives fitted with permanently engaged pollen traps or colonies containing more larvae. Pollen‐hoarding colonies together brought back twice as many cranberry pollen loads as control colonies, which was marginally significant despite marked daily variation in the proportion of collected pollen that was cranberry. 4. Caloric supplementation of matched, paired colonies failed to enhance pollen foraging despite the meagre nectar yields of individual cranberry flowers. 5. Heritable behavioural polymorphisms of the honey bee, such as pollen‐hoarding, can enhance fruit and seed set by a floral host (e.g. cranberry), but only if more preferred pollen hosts are absent or rare. Otherwise, honey bees' broad polylecty, flight range, and daily idiosyncrasies in floral fidelity will obscure specific pollen‐foraging differences at a given floral host, even among paired colonies in a seemingly uniform agricultural setting.  相似文献   

2.
The foraging behavior of bees is a complex phenomenon that depends on numerous physical features of flowers. Of particular importance are accessibility of floral rewards, floral proportions, symmetry and orientation. The flowers of Roepera are characterized by the presence of staminal scales (SS), which play an important role in nectar protection. We studied two species of Roepera with different symmetry and flower orientation, which are mainly visited by honeybees (Apis mellifera). We aimed to show how the foraging behavior of honey bees is affected by the function of SS, floral symmetry and orientation. The foraging behavior was documented by video photography. Handling time, access to nectar, percentage of pollen/nectar foraging, percentage of pollen contact and pollen deposition site on the honey bee's body were assessed. The morphometric features of the honey bees and flowers were analyzed. We found that the SS restricted pollinator access to nectar. Our results indicated consistency of visitation patterns in zygomorphic, laterally oriented flowers of R. fuscata versus random patterns in actinomorphic, diversely oriented flowers of R. leptopetala. The relative proportions of SS and proboscis length appear to be crucial for the success of pollinators. The directionality of the honey bees' movement, together with the different positioning of reproductive organs, plays an important role in the accuracy of pollen transfer and pollination efficiency.  相似文献   

3.
Bees foraging for nectar should choose different inflorescences from those foraging for both pollen and nectar, if inflorescences consist of differing proportions of male and female flowers, particularly if the sex phases of the flowers differ in nectar content as well as the occurrence of pollen. This study tested this prediction using worker honey bees (Apis mellifera L.) foraging on inflorescences of Lavandula stoechas. Female flowers contained about twice the volume of nectar of male flowers. As one would predict, bees foraging for nectar only chose inflorescences with disproportionately more female flowers: time spent on the inflorescence was correlated with the number of female flowers, but not with the number of male flowers. Inflorescence size was inversely correlated with the number of female flowers, and could be used as a morphological cue by these bees. Also as predicted, workers foraging for both pollen and nectar chose inflorescences with relatively greater numbers of both male and female flowers: time spent on these inflorescences was correlated with the number of male flowers, but not with the number of females flowers. A morphological cue inversely associated with such inflorescences is the size of the bract display. Choice of flowers within inflorescences was also influenced predictably, but preferences appeared to be based upon corolla size rather than directly on sex phase.  相似文献   

4.
Feeding by honeyeaters was found to maintain nectar at low levels at three sites studied on Kangaroo Island in May-June 1978. The productivity of nectar at a site and position in a dominance hierarchy appeared to determine which bird species used each site. Correa was the main nectar source in the poorest area and produced 0.05 kJ m?2 per day. The small eastern spinebill was the most abundant honeyeater. The purple-gaped honeyeater also occurred but fed mostly on honeydew. The medium sized New Holland honeyeater was common and territorial in the second area, where Banksia marginata and B. ornata inflorescences and Adenanthos flowers produced 0.7 kJ m?2 of nectar per day. Spinebills and crescent honeyeaters also visited flowers and were sometimes chased by New Holland honeyeaters. The richest site was a flowering Eucalyptus cosmophylla tree (5.1 kJ m?2 of nectar per day). A red wattlebird, the largest honeyeater, held a territory in part of this tree and chased other honeyeaters from the territory. New Holland, crescent and purple-gaped honeyeaters fed on flowers in other parts of the tree. The spinebill was absent. We conclude that nectar was partitioned along a spectrum of rich to poor sources. Larger more aggressive species used and sometimes defended the richest sources while the smaller birds used the poorer sources.  相似文献   

5.
Abstract. The role of pollen odour cues in the foraging behaviour of honey bees (Apis mellifera L.) is poorly understood. Using classical conditioning of the proboscis extension response, in which bees learn to associate an odour with a sucrose reward, the present study tests whether odours of bee-collected pollen from the hive environment or odours of fresh pollen on the anthers of flowers could be used in pollen foraging. Honey bees efficiently learn odours from field-bean (Vicia faba) bee-collected pollen and oilseed-rape (Brassica napus) bee-collected pollen, hand-collected pollen, anthers and whole flowers, demonstrating that honey bees can learn pollen odours associatively in biologically realistic concentrations. Honey bees learn pollen odours of oilseed rape better than field bean and, although they generalize these two odours, they easily distinguish between them in discrimination tests, suggesting that pollen odours may be used in species recognition/discrimination. There is little evidence that honey bees can recognize whole flowers based on previous experience of bee-collected pollen odour. However, they generalize the odours of oilseed-rape anthers and whole flowers, suggesting that anther pollen in situ may play a more prominent role than bee-collected pollen in foraging behaviour.  相似文献   

6.
Introduced honeybees have become well established throughout Australia and concerns have been raised about their impact on the native flora and fauna. Such concerns include the possible depletion of nectar resources by honeybees to the detriment of native animals and the ability of honeybees to pollinate Australian plants. The foraging patterns and resource utilization of honeybees (Apis mellifera) and native insects on flowers of yellow Mallee (Eucalyptus costata) (Behr & F. Muell, ex F. Muell.) were studied in Wyperfeld National Park during spring 1994. Seventy-four insect species visited the flowers with the most prevalent being honeybees, native bees (Lasioglossum and Hylaeus) and ants (Iridiomyrmex). Honeybees began foraging at lower temperatures than native bees and hence had initial access to the nectar supply that was primarily produced overnight by E. costata. However, the majority (90%) of early morning visits to flowers by honeybees involved the collection of pollen. Honeybees did not forage for nectar in substantial numbers until after native insects were active. Despite both consumption and evaporation, nectar supplies remained available at midday and at one site remained available for consumption at dusk. Honeybees regularly made contact with the receptive stigmata while foraging for pollen and hence had pollen loads consisting of numerous E. costata grains present on their body. These activities are indicative of the behaviour required by insects to facilitate pollination. Given the unique morphology of many native flowers and the contrasting findings from studies to date, it is critical that generalisations about the effect of honeybees in the Australian environment are not made from studies on a limited number of native plant species.  相似文献   

7.
《Journal of Asia》2022,25(2):101882
Honey bees and stingless bees are generalist visitors of several wild and cultivated plants. They forage with a high degree of floral fidelity and thereby help in the pollination services of those plants. We hypothesized that pollination efficiency might be influenced by flowering phenology, floral characteristics, and resource collection modes of the worker bees. In this paper, we surveyed the foraging strategies of honey bees (Apis cerana, Apis dorsata, and Apis florea) and stingless bees (Tetragonula iridipennis) concerning their pollination efficiencies. Bees showed different resource gathering strategies, including legitimate (helping in pollination as mixed foragers and specialized foragers) and illegitimate (serving as nectar robbers and pollen thieves) types of flower visitation patterns. Foraging strategies are influenced by the shape of flowers, the timing of the visitation, floral richness, and bee species. Honey bees and stingless bees mainly acted as legitimate visitors in most plants studied. Sometimes honey bees served as nectar robbers in tubular flowers and stingless bees as pollen thieves in large-sized flowers. Among the legitimate categories, mixed foragers have a comparatively lower flower visitation rate than the specialized nectar and pollen foragers. However, mixed foragers have greater abundance and higher values of the single-visit pollination efficiency index (PEi) than nectar and pollen foragers. The value of the combined parameter ‘importance in pollination (PI)’ was thus higher in mixed foragers than in nectar and pollen foragers.  相似文献   

8.
In the European honey bee, Apis mellifera, pollen foragers have a higher sucrose responsiveness than nectar foragers when tested using a proboscis extension response (PER) assay. In addition, Africanized honey bees have a higher sucrose responsiveness than European honey bees. Based on the biology of the Eastern honey bee, A. cerana, we hypothesized that A. cerana should also have a higher responsiveness to sucrose than A. mellifera. To test this hypothesis, we compared the sucrose thresholds of pollen foragers and nectar foragers in both A. cerana and A. mellifera in Fujian Province, China. Pollen foragers were more responsive to sucrose than nectar foragers in both species, consistent with previous studies. However, contrary to our hypothesis, A. mellifera was more responsive than A. cerana. We also demonstrated that this higher sucrose responsiveness in A. mellifera was not due to differences in the colony environment by co-fostering two species of bees in the same mixed-species colonies. Because A. mellifera foragers were more responsive to sucrose, we predicted that their nectar foragers should bring in less concentrated nectar compared to that of A. cerana. However, we found no differences between the two species. We conclude that A. cerana shows a different pattern in sucrose responsiveness from that of Africanized bees. There may be other mechanisms that enable A. cerana to perform well in areas with sparse nectar resources.  相似文献   

9.
The numbers of honeyeaters present at particular sites in the Jarrah forest varied significantly from month to month, with peak abundance occurring between May and September. Numbers also varied from site to site, depending upon the major plant species present. Honeyeater abundance was not limited by arthropod availability, but in many instances was closely correlated with the availability of nectar, particularly that produced by Dryandra sessilis. Large honeyeaters, such as Anthochaera chrysoptera and Phylidonyris novaehollandiae, were generally most abundant at times and sites of greatest nectar production. Small honeyeaters, such as Acanthorhynchus superciliosis, were never abundant but were present for most of the year. The production of nectar between October and December was such that more honeyeaters could have been supported than were actually present. Low numbers at these times can be explained in terms of reduced foraging efficiency that would have resulted from more widely dispersed flowers, and the possible availability of more rewarding nectar resources at other sites.  相似文献   

10.
Summary During October and November, 1977, a study of nectar production and nectarivore foraging in Eucalyptus incrassata was conducted at Wyperfeld National Park in south-eastern Australia in order to evaluate the extent to which introduced honeybees (Apis mellifera) compete with native honeyeaters for floral nectar. Data on nectar production, nectar availability, ambient air temperature and the numbers of visiting honeyeaters and honeybees were collected. Most of the daily nectar production in E. incrassata occurs early in the morning when temperatures are too low for insects to forage. In addition, insects, particularly honeybees, are unable to exploit nectar in the youngest flowers because the stamens are clustered tightly around the style. As a result of these temporal and structural characteristics of the flowers, honeyeaters are able to harvest most of the nectar. Honeybees potentially have access to 35–47% of the average daily production of floral nectar in E. incrassata and actually harvest considerably less. These data show that E. incrassata flowers are adapted to restrict insect foragers despite their superficially unspecialized appearance. Eight forest and woodland eucalypts do not have a flower stage which excludes insects and the significance of this difference is discussed.  相似文献   

11.
Summary Amino acids occur in most floral nectars but their role in pollinator attraction is relatively unstudied. Nectars of butterfly-pollinated flower tend to have higher concentrations of amino acids than do flowers pollinated by bees and many other animals, suggesting that amino acids are important attractants of butterflies to flowers. In order to determine whether amino acids are important in attracting butterflies and bees, we tested the preference of cabbage white butterflies (Pieris rapae) and honey bees (Apis mellifera) by allowing them to feed from artificial flowers containing sugar-only or sugar-amino acid mimics ofLantana camara nectar. Honey bees and female cabbage white butterflies consumed more sugar-amino acid nectar than sugar-only nectar. In addition, female cabbage white butterflies visited artificial flowers containing sugar-amino acid nectars more frequently than flowers containing sugar-only nectars; honey bees spent more time consuming the sugar-amino acid nectar. Male cabbage white butterflies did not discriminate between the two nectars. These results support the hypothesis that the amino acids of nectar contribute to pollinator attraction and/or feeding.  相似文献   

12.
Nectar is a vital source of energy for bees and other pollinators and pollen represents the only source of protein in the diet of bees. Nectar and pollen quality and quantity can therefore affect foraging choices. Strawberry, Fragaria × ananassa (Rosaceae), is a flowering crop that requires insect pollination for the berries to develop optimally. The solitary red mason bee, Osmia bicornis L. (Hymenoptera: Megachilidae), occurs naturally but like the eusocial western honeybee, Apis mellifera mellifera L. (Hymenoptera: Apidae), it is also a commercially reared pollinator used in strawberry production. We hypothesized that strawberry nectar and pollen quality would affect the foraging choice of these two types of bees. In this study nectar and pollen quality is represented by various levels of sugar and protein content, respectively, as well as the number of open strawberry flowers in the experimental field, would affect the foraging choice of these two types of bees. Consistent with previous studies, we found significant and major differences between strawberry varieties in proportions of sucrose in the nectar sugar and in pollen viability – a proxy for pollen protein content. All measured parameters had a significant effect on red mason bee visitation frequency. Contrary to expectations, honeybee foraging behavior was only affected by the number of open flowers and not by any of the quality parameters measured. Our findings indicate that red mason bees were capable of assessing nectar and pollen quality and prioritize accordingly. The pattern observed indicates that individual red mason bees changed foraging focus between strawberry varieties depending on whether nectar or pollen was collected. Our results suggest that targeted breeding of varieties toward high levels of nectar sugar and sucrose concentrations and high pollen protein content may increase pollination success from red mason bees and possibly other solitary bees.  相似文献   

13.

The interactions between plants and their pollinators are the result of convergent evolution of floral attributes reflecting pressure exerted by pollinators. Nonetheless, the strategies employed by floral visitors to collect floral resources are extremely complex, and commonly involve theft or robbery in addition to pollination. We describe here the behavioral repertory of Apis mellifera during the collection of the floral resources, and evaluated the robbing rates of A. mellifera on the buds and flowers of Pyrostegia venusta during periods of intense and sparse flowering. We recorded the behaviors exhibited by foraging bees while collecting floral resources, quantified the numbers of floral buds and flowers with perforations in their corolla tissues, and determined whether that damage reduced nectar production. The evaluations were conducted during two distinct periods: during the period of intense flowering of P. venusta, and during the period of sparse flowering. Nectar robbing was observed during 93.4% of the visits of foraging A. mellifera bees, while nectar theft was observed during only 0.7% of the visits, and pollen theft during 5.9%. The robbing of floral buds and flowers was most intense during the period of heavy flowering. Flowers that had been intensely robbed secreted significantly less nectar than those non-robbed. The unusual nectar robbing activities of A. mellifera, especially during the period of intense flowering indicates an optimization of access to larger volumes of food resources. Our results therefore point to a major limitation of nectar per floral unit during the intense flowering period of P. venusta due to the high activity of nectar robbing by A. mellifera bees.

  相似文献   

14.
1. Sympatric flower visitor species often partition nectar and pollen and thus affect each other's foraging pattern. Consequently, their pollination service may also be influenced by the presence of other flower visiting species. Ants are solely interested in nectar and frequent flower visitors of some plant species but usually provide no pollination service. Obligate flower visitors such as bees depend on both nectar and pollen and are often more effective pollinators. 2. In Hawaii, we studied the complex interactions between flowers of the endemic tree Metrosideros polymorpha (Myrtaceae) and both, endemic and introduced flower‐visiting insects. The former main‐pollinators of M. polymorpha were birds, which, however, became rare. We evaluated the pollinator effectiveness of endemic and invasive bees and whether it is affected by the type of resource collected and the presence of ants on flowers. 3. Ants were dominant nectar‐consumers that mostly depleted the nectar of visited inflorescences. Accordingly, the visitation frequency, duration, and consequently the pollinator effectiveness of nectar‐foraging honeybees (Apis mellifera) strongly decreased on ant‐visited flowers, whereas pollen‐collecting bees remained largely unaffected by ants. Overall, endemic bees (Hylaeus spp.) were ineffective pollinators. 4. The average net effect of ants on pollination of M. polymorpha was neutral, corresponding to a similar fruit set of ant‐visited and ant‐free inflorescences. 5. Our results suggest that invasive social hymenopterans that often have negative impacts on the Hawaiian flora and fauna may occasionally provide neutral (ants) or even beneficial net effects (honeybees), especially in the absence of native birds.  相似文献   

15.
1. Females of the desert solitary bee Anthophora pauperata collect nectar and pollen almost exclusively from Alkanna orientalis (Boraginaceae). The bee and plant are found together in the early spring, living in the bottom of steep-sided wadis (dry river valleys) at an altitude of 1500 m in Egyptian Sinai. 2. Female A. pauperata showed clear morning and afternoon peaks in foraging activity, separated by a 2–3 h midday period spent in their underground nests. This study analyses the following in order to identify the factors structuring this daily pattern: thermal aspects of the bee and its environment, temporal patterns of resource provision by the plant, and female nectar and pollen foraging behaviour. 3. Although A. pauperata can generate substantial heat endothermically, morning and evening ambient temperatures well below 10 °C defined a thermal window within which foraging occurred. Maximum air temperatures were moderate (25–30 °C), and examination of the physiology and behaviour of A. pauperata suggests that the midday reduction in flight activity was not due to thermal constraints. 4. Alkanna orientalis produces protandrous hermaphroditic flowers. Female A. pauperata collected pollen from male-phase flowers and harvested nectar preferentially from female-phase flowers. Although the nectar standing crop was relatively constant throughout the day, pollen availability peaked strongly in the early afternoon. 5. Female A. pauperata visited young male-phase flowers as soon as they opened, generating an early afternoon peak in pollen foraging activity and depleting the pollen standing crop rapidly. A morning peak in pollen foraging occurred when females gleaned remnant pollen from flowers that had opened the previous day. Pollen availability in the morning was far lower than in the early afternoon, and the time taken to collect a full pollen load in the morning was significantly longer. Collection of pollen in the morning despite very low resource availability suggests that pollen may be a limiting resource for A. pauperata. 6. In contrast to many existing examples of bimodal activity patterns in highly endothermic bees, the bimodal activity patterns of female A. pauperata appear to be driven not by thermal considerations but by daily patterns of pollen release from its principal food source.  相似文献   

16.
Honey bees, Apis mellifera, forage readily on flowers of upland cotton, Gossypium hirsutum, to harvest nectar. The abundant pollen gets caught in the haircoat of the bees, but cotton pollen is nevertheless rarely collected. Honey bee pollen collection effectiveness was therefore investigated in a flight room using cotton and five other spheroidal pollen taxa presented in sequence. Honey bees visited all pollen dishes, but okra pollen (Abelmoschus esculentus) was never packed successfully by the bees landing in the pollen dish. Cotton pollen was collected by 16% of the landing foragers, pumpkin pollen (Cucurbita pepo) by 71%, and pollen of corn (Zea mays), pigweed (Amaranthus palmeri), and sunflower (Helianthus annuus) were readily collected by nearly all foragers. The amount of time spent in the pollen dish was always short (1 to 9 seconds) and homogeneous among all pollen taxa, indicating that none of them was strongly repellent to the bees. The reduced effectiveness with which honey bees collected cotton pollen was demonstrated by the longer amount of time needed for pollen grooming and packing between two consecutive landings in the pollen dish and the small size of cotton pollen pellets (averages of 0.42 mg and 8.23 mg per pellet for cotton and corn pollen, respectively). This reduced efficiency in cotton pollen collection was associated primarily with the length of the spines on cotton pollen which physically interfered with the pollen aggregating process used by honey bees.  相似文献   

17.
  • Analyses of resource presentation, floral morphology and pollinator behaviour are essential for understanding specialised plant‐pollinator systems. We investigated whether foraging by individual bee pollinators fits the floral morphology and functioning of Blumenbachia insignis, whose flowers are characterised by a nectar scale‐staminode complex and pollen release by thigmonastic stamen movements.
  • We described pollen and nectar presentation, analysed the breeding system and the foraging strategy of bee pollinators. We determined the nectar production pattern and documented variations in the longevity of floral phases and stigmatic pollen loads of pollinator‐visited and unvisited flowers.
  • Bicolletes indigoticus (Colletidae) was the sole pollinator with females revisiting flowers in staminate and pistillate phases at short intervals, guaranteeing cross‐pollen flow. Nectar stored in the nectar scale‐staminode complex had a high sugar concentration and was produced continuously in minute amounts (~0.09 μl·h?1). Pushing the scales outward, bees took up nectar, triggering stamen movements and accelerating pollen presentation. Experimental simulation of this nectar uptake increased the number of moved stamens per hour by a factor of four. Flowers visited by pollinators received six‐fold more pollen on the stigma than unvisited flowers, had shortened staminate and pistillate phases and increased fruit and seed set.
  • Flower handling and foraging by Bicolletes indigoticus were consonant with the complex flower morphology and functioning of Blumenbachia insignis. Continuous nectar production in minute quantities but at high sugar concentration influences the pollen foraging of the bees. Partitioning of resources lead to absolute flower fidelity and stereotyped foraging behaviour by the sole effective oligolectic bee pollinator.
  相似文献   

18.
19.
Introduced plants may be important foraging resources for honey bees and wild pollinators, but how often and why pollinators visit introduced plants across an entire plant community is not well understood. Understanding the importance of introduced plants for pollinators could help guide management of these plants and conservation of pollinator habitat. We assessed how floral abundance and pollinator preference influence pollinator visitation rate and diversity on 30 introduced versus 24 native plants in central New York. Honey bees visited introduced and native plants at similar rates regardless of floral abundance. In contrast, as floral abundance increased, wild pollinator visitation rate decreased more strongly for introduced plants than native plants. Introduced plants as a group and native plants as a group did not differ in bee diversity or preference, but honey bees and wild pollinators preferred different plant species. As a case study, we then focused on knapweed (Centaurea spp.), an introduced plant that was the most preferred plant by honey bees, and that beekeepers value as a late‐summer foraging resource. We compared the extent to which honey bees versus wild pollinators visited knapweed relative to coflowering plants, and we quantified knapweed pollen and nectar collection by honey bees across 22 New York apiaries. Honey bees visited knapweed more frequently than coflowering plants and at a similar rate as all wild pollinators combined. All apiaries contained knapweed pollen in nectar, 86% of apiaries contained knapweed pollen in bee bread, and knapweed was sometimes a main pollen or nectar source for honey bees in late summer. Our results suggest that because of diverging responses to floral abundance and preferences for different plants, honey bees and wild pollinators differ in their use of introduced plants. Depending on the plant and its abundance, removing an introduced plant may impact honey bees more than wild pollinators.  相似文献   

20.
Bumblebees and honeybees deposit short-lived scent marks on flowers that they visit when foraging. Conspecifics use these marks to distinguish those flowers that have recently been emptied and, so, avoid them. The aim of this study was to assess how widespread this behavior is. Evidence for direct detection of reward levels was found in two bee species: Agapostemon nasutus was able to detect directly pollen availability in flowers with exposed anthers, while Apis mellifera appeared to be able to detect nectar levels of tubular flowers. A third species, Trigona fulviventris, avoided flowers that had recently been visited by conspecifies, regardless of reward levels, probably by using scent marks. Three further bee/flower systems were examined in which there was no detectable discrimination among flowers. We argue that bees probably rely on direct detection of rewards where this is allowed by the structure of the flower and on scent marks when feeding on flowers where the rewards are hidden. However, discrimination does not always occur. We suggest that discrimination may not always make economic sense; when visiting flowers with a low handling time, or flowers that are scarce, it may be more efficient to visit every flower that is encountered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号