共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
P. M. Service E. W. Hutchinson M. R. Rose 《Evolution; international journal of organic evolution》1988,42(4):708-716
We present the results of selection experiments designed to distinguish between antagonistic pleiotropy and mutation accumulation, two mechanisms for the evolution of senescence. Reverse selection for early-life fitness was applied to laboratory populations of Drosophila melanogaster that had been previously selected for late-life fitness. These populations also exhibited reduced early-age female fecundity and increased resistance to the stresses of starvation, desiccation, and ethanol, when compared to control populations. Reverse selection was carried out at both uncontrolled, higher larval rearing density and at controlled, lower larval density. In the uncontrolled-density selection lines, early-age female fecundity increased to control-population levels in response to the reintroduction of selection for early-age fitness. Concomitantly, resistance to starvation declined in agreement with previous observations of a negative genetic correlation between these two characters and in accordance with the antagonistic-pleiotropy mechanism. However, resistance to stresses of desiccation and ethanol did not decline in the uncontrolled-density lines during 22 generations of reverse selection for early-life fitness. The latter results provide evidence that mutation accumulation has also played a role in the evolution of senescence in this set of Drosophila populations. No significant response in early-age fecundity or starvation resistance was observed in the controlled-density reverse-selection lines, supporting previous observations that selection on Drosophila life-history characters is critically sensitive to larval rearing density. 相似文献
3.
4.
5.
Amitabh Joshi Laurence D. Mueller 《Evolution; international journal of organic evolution》1993,47(1):176-184
Six populations of Drosophila melanogaster have been kept at extreme population densities, three high and three low, for 175 generations. Larvae from the high density populations pupate 50%-100% higher than larvae from the low density populations. At high larval test densities there is both a directional and a stabilizing component to selection, with viabilities ranging from 0.14 to 0.992, depending on the choice of pupation site. The directional component is stronger on the populations which have evolved at low densities, while the stabilizing component is stronger on the populations which have evolved at high densities. There is no indication that the evolution of this trait, in response to density, has altered its phenotypic plasticity. 相似文献
6.
7.
Several models for sexual selection, both by male-male competition and female choice, predict that a character which covaries with mating success should be near an equilibrium where the intensity of sexual selection opposes viability selection. This prediction was used to design experiments for estimating the intensity of sexual and viability selection on wing length in a recently captured population of Drosophila melanogaster. Observations of matings by males color-marked for wing length indicated that the standardized sexual selection differential on wing length was 0.24 under a wide range of effective sex ratios. After estimating the heritability of wing length to be 0.62, the expected standardized response due to sexual selection was calculated as 0.15 (SE = 0.15). The response due to viability selection was then estimated by comparing wing lengths of progeny of flies that had been randomly mated, thereby preventing sexual selection, with progeny of flies that had been allowed to acquire mates in a mass-mating chamber. The results support an equilibrium model in that the standardized response due to viability selection (?0.31, SE = 0.08) was opposite in sign and similar in magnitude to the estimated response due to sexual selection. Observations of females orienting in front of males which differed in wing length indicated that the mating advantage accruing to long-winged males was not due to female choice. Instead, male-male competition in which the larger of two randomly chosen males succeeded in mating, explains the observed sexual selection. An experimental analysis of genotype-environment interaction revealed that larval density had a nonlinear effect on mean wing length within sibships. If a population is displaced from equilibrium, therefore, the evolutionary trajectory of mean wing length will depend both on the intensity of selection and the environment in which that selection is operating. 相似文献
8.
9.
10.
Kevin F. Chess John M. Ringo 《Evolution; international journal of organic evolution》1985,39(4):869-877
The effects of texture and larval residues in the medium on oviposition site selection (OSS) by Drosophila melanogaster and Drosophila simulans were studied. Drosophila melanogaster laid over 95% of its eggs in sieved medium (vs. unsieved medium); D. simulans laid all of its eggs in sieved medium. Surgical removal of antennal segments, and of fore-, mid-, or hindtarsi did not affect this result, indicating that sense organs involved in discriminating between sieved and unsieved medium are not confined to only one of the tested structures. In a “multiple choice” experiment, females were allowed to lay eggs in sieved medium of three types: unconditioned (fresh) medium, medium conditioned by D. melanogaster larvae (i.e., medium containing larval residues of D. melanogaster), and medium conditioned by D. simulans larvae. This choice experiment was performed with D. melanogaster and with D. simulans, using three densities of females (10, 20, and 40 per experimental unit). Both species laid more eggs in unconditioned medium than in either of the conditioned media, and density had no effect. D. melanogaster laid more eggs near the edges of food patches than in the center, whereas D. simulans showed no preference for edge or center. Under crowded conditions, both species survived at a higher rate in conditioned media (egg-to-adult survival) than in unconditioned medium, leading to the anomalous conclusion that females of these species seem not to maximize the survival of their offspring. This anomaly was partially resolved by the finding that medium already containing larvae gave lower survival rates than unoccupied medium. 相似文献
11.
12.
Gerald S. Wilkinson Kevin Fowler Linda Partridge 《Evolution; international journal of organic evolution》1990,44(8):1990-2003
The genetic covariance and correlation matrices for five morphological traits were estimated from four populations of fruit flies, Drosophila melanogaster, to measure the extent of change in genetic covariances as a result of directional selection. Two of the populations were derived from lines that had undergone selection for large or small thorax length over the preceding 23 generations. A third population was constituted using flies from control lines that were maintained with equivalent population sizes as the selected lines. The fourth population contained flies from the original cage population from which the selected and control lines had been started. Tests of the homogeneity of covariance matrices using maximum likelihood techniques revealed significant changes in covariance structure among the selected lines. Prediction of base population trait means from selected line means under the assumption of constant genetic covariances indicated that genetic covariances for the small population differed more from the base population than did the covariances for the large population. The predicted small population means diverged farther from the expected means because the additive genetic variance associated with several traits increased in value and most of the genetic covariances associated with one trait changed in sign. These results illustrate that genetic covariances may remain nearly constant in some situations while changing markedly in others. Possible developmental reasons for the genetic changes are discussed. 相似文献
13.
14.
David Scott 《Evolution; international journal of organic evolution》1994,48(1):112-121
Comparisons between the Canton-S and Tai-Y strains of Drosophila melanogaster (both wild type) revealed variation in female mate discrimination based on chemical courtship signals present as hydrocarbons on the male cuticle. Mating tests indicated that 7-tricosene, which is the primary hydrocarbon on the Canton-S male cuticle but is nearly absent from Tai-Y, was a significant component of the signal. The discrimination was asymmetrical in that Canton-S females clearly distinguished between the two types of males in no-choice tests, but Tai-Y females did not. F1 females expressed an intermediate ability to discriminate, and female progeny of backcrosses expressed a mating phenotype very similar to that of the parental strain to which the backcross was made. Analysis of independent effects from the X and both major autosomes indicated that the discrimination is controlled by gene(s) on chromosome 3. 相似文献
15.
16.
Frederick M. Cohan Jean-Daniel Graf 《Evolution; international journal of organic evolution》1985,39(2):278-293
We have introduced a device for selecting Drosophila for increased resistance to very high concentrations of ethanol fumes. This device has enabled us to: 1) select quickly and easily over a thousand flies at a time, and 2) score the knockdown time of every fly in the distribution, while causing very little injury to the flies. A sample of nine west coast populations of Drosophila melanogaster showed a significant trend toward higher knockdown resistance in more northern populations. A population's level of knockdown resistance was virtually uncorrelated with its alcohol dehydrogenase (Adh) allele frequencies. Five of the above nine populations were then subjected to selection for further knockdown resistance. Each population was divided randomly into four groups of 256 flies: two lines to be selected, and two lines to remain unselected as control lines. In every generation each selected line was measured for knockdown resistance, and the last quartile of flies to be knocked down was saved to continue the selection cycle. Population sizes of the selected and unselected lines were all maintained at 256. Realized heritability, based on the responses to selection of the first four generations, was calculated for each selected line. The five populations were significantly heterogeneous for heritability estimates; the average heritability of the five populations pooled was 0.143 ± 0.019. Over the course of twelve generations, the ten selected lines increased their knockdown times by an average factor of 2.40. Before selection, the five populations were heterogeneous for knockdown resistance, and resistance was greatest among the most northern populations. The amount of change of knockdown resistance over the course of selection was also correlated with latitude: the most southern population increased its knockdown time by a factor of 2.23, and the most northern population increased it by a factor of 2.55. After ten generations of selection, the cline of knockdown resistance was about 4.5 times as steep as that before selection. Small phenotypic differences among populations before selection were thus exaggerated by the action of selection. The differences among populations in their rates of response to selection were attributed to genetic differences that existed before selection. The pattern of change of Adh frequencies over the course of selection was very inconsistent, both among and within populations. From this inconsistency of change of Adh alleles with selection, and the lack of correlation between Adh frequencies and knockdown resistance before selection, we concluded that Adh frequency changes could not have had much effect on the responses of the selected lines. 相似文献
17.
Linda Partridge Kevin Fowler 《Evolution; international journal of organic evolution》1993,47(1):213-226
Two sets of four replicate lines of Drosophila melanogaster were selected for large and small thorax with controls. F, progeny of crosses between the selected lines within each size category showed (a) a reduction in preadult viability in large lines relative to control and small lines when they were cultured at medium or high density in competition with a standard mutant marked competitor stock, and (b) an increase in larval development time in large lines relative to control and small lines. Natural selection for increased body size in adults may therefore be opposed by adverse effects on larval viability. The results are discussed in terms of the developmental mechanisms probably responsible for the change in body size. The preadult survival of the large and control lines was measured at three different temperatures, and there was no evidence for a significant interaction between size and temperature. The observed evolutionary increase in body size in response to reduced temperature in Drosophila must therefore involve either different genes from those subject to selection for size at a single temperature, or a fitness component other than preadult survival. There was no significant asymmetry in response to selection, and thorax length showed heterosis in crosses between the selected lines. 相似文献
18.
19.
Linda Partridge Kevin Fowler 《Evolution; international journal of organic evolution》1992,46(1):76-91
Aging may be a consequence of mutation accumulation or of negative pleiotropic correlations between performance late and earlier in the lifespan. This study used artificial selection on flies derived from two different base stocks to produce “young” and “old” lines, propagated by breeding from young and old adults respectively. Virgin and mated adults of both sexes from the “old” lines lived longer than “young” line flies. “Young” and “old” mated females did not differ in fecundity or fertility early in the lifespan, but “old” line females had higher fecundity and fertility late in life. The results therefore suggested either that the response to selection had revealed the effect of mutation accumulation, or that pleiotropy involving characters other than early fecundity must have been involved. Development time from egg to adult was longer in the “old” lines. Competition of selected line larvae from one base stock against mutant marked larvae from the same base stock revealed that, at a wide range of larval densities, “old” line larvae showed lower survival rates than “young” line larvae. Thorax length and wet weight were significantly greater in the “old” line flies from one base stock. The results may imply that the selection regime in the “old” lines favored extended growth during development to produce a more durable adult soma, despite the cost in increased larval mortality and delayed reproduction, because the potential reproductive benefits later in life were increased. However, the differences between larvae from “old” and “young” lines could also be attributable to density differences, and this possibility needs systematic investigation. 相似文献