首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It has often been assumed that the introduced species Chrysanthemoides monilifera is displacing native species in invaded coastal communities in Australia but no direct evidence has been presented that this displacement is occurring and, if so, to what extent. At an invaded site near Moruya, New South Wales, we found strong negative correlations between the presence (measured as cover, frequency or volume of shrub) of C. monilifera and Acacia longifolia, the hitherto dominant native species, and of C. monilifera and Lomandra longifolia. The negative correlations are partly accounted for by differences in the amounts of each species on different zones on the dune, but the negative correlations remain even within these zones. Also a comparison with uninvaded sites indicates that C. monilifera is displacing A. longifolia from the fore-dune and mid-dune but is having less effect in the swale. In addition, there is a trend towards reduced seed production of A. longifolia when growing in proximity to C. monilifera. There is no significant difference in the presence of L. longifolia in the uninvaded and invaded sites. In invaded sites, significantly fewer C. monilifera seedlings occur in the presence of L. longifolia. Thus it appears that the observed negative associations arise from different causes. Chrysanthemoides monilifera is displacing the structurally similar, and previously dominant A. longifolia, while the tussock-forming L. longifolia is locally hindering the invasion.  相似文献   

2.
The seed production, germination and regeneration characteristics of two native species (Acacia longifolia var. sophorae and Banksia integrifolia) and two invasive subspecies (Chrysanthemoides monilifera ssp. monilifera and ssp. rotundata) were compared. C. monilifera ssp. rotundata was similar in seed characteristics and regeneration to B. integrifolia in that: (1) seed production was over an extended period each year; (2) seed longevity was low (0–2% viable after burial for 3 years), but increased with depth of burial; and (3) regeneration from 26 to 28% of mature plants occurred after fire. By contrast, C. monilifera ssp. monilifera was similar to A. Iongifolia var. sophorae in that; (1) seed production was over a short period each year; (2) of the total buried, 6–13% of seeds were viable after 3 years, and again numbers increased with depth of burial (percentages of missing seeds of A. longifolia were high but all remaining seeds were viable after 3 years); and (3) regeneration after fire occurred only from seed, hence their seed longevity is an important factor for long-term survival. However, growth habit and niche occupation by ssp. rotundata is similar to that of A. longifolia and the above differences may contribute to the observed displacement of the native by the invasive species. The distribution of the two invasive subspecies is at present largely in separate areas in Australia and it is predicted this situation will continue because of their differing climatic preferences, morphology and regeneration from fire.  相似文献   

3.
Summary We studied the effects of nitrogen supply on growth, allocation, and gas exchange characteristics of two perennial grasses of dry, nutrient-poor inland dunes: Corynephorus canescens (L.) Beauv. and Agrostis vinealis Schreber. C. canescens invests more biomass in leaves and less in roots, but has less leaf area and more root length per unit plant weight than A. vinealis. A. vinealis invests more nitrogen per unit leaf weight, but less per unit leaf area, despite a similar relative nitrogen investment in leaves and plant nitrogen concentration. Between-species differences in the rate of net photosynthesis, transpiration and shoot respiration are positively related to leaf nitrogen content per unit leaf area. The rate of net photosynthesis per unit plant weight is higher for A. vinealis at both levels of nitrogen supply, due to differences in leaf area ratio (LAR), and despite the reverse differences in the rate of net photosynthesis per unit leaf area. The water use efficiency of the two species is similar and increases significantly with an increase in nitrogen supply. The photosynthetic nitrogen use efficiency on the other hand is not affected by nitrogen supply, while at both low and high nitrogen supply A. vinealis has a 10% higher photosynthetic nitrogen use efficiency than C. canescens.  相似文献   

4.
Comparisqns were made between ‘Campbell Valencia’ orange (Citrus sinensis (L.) Osbeck), and ‘Gabon Cherry-orange’ (Citropsis gabunensis (Engl.) Swing.), ‘Frost Lisbon’ lemon (Citrus limon (L.) Burm. f.) and ‘Eremolemon’ (Eremocitrus glauca (Lindl.) Swing. ×Citrus limon (L.) Burm. f.) and between diploid and autotetraploid ‘Lisbon’ lemons with respect to the influences of temperature and humidity on net photosynthesis and transpiration. Net photosynthesis, leaf conductance to water vapor and water-use-efficiency of Citropsis gabunensis were lower than with Citrus sinensis.‘Eremolemon’ had higher net photosynthesis and higher water-use-efficiency than ‘Lisbon’ lemon, but only small differences were observed between the two species in leaf conductance to water vapor. Small, nonsignificant, differences were observed between diploid and tetraploid ‘Lisbon’ lemons in responses of net photosynthesis and leaf conductance to temperature and humidity. Temperatures above 30°C and increases in vapor pressure difference caused declines in net photosynthesis and increases in vapor pressure difference resulted in decreases in leaf conductance to water vapor by all of the species used in these studies.  相似文献   

5.
Abstract Diurnal cycling of osmotic potential was studied in leaves of cotton plants (Gossypium hirsutum L.) grown in the field. Osmotic potential was determined by a pressure-volume procedure as the value coinciding with zero turgor. In plants grown under favourable conditions (no water stress or N stress), osmotic potential at zero-turgor measured at midday was initially about 0.3 MPa lower than before dawn, but this cycling disappeared during the season as the number of fruits per plant increased. In water-stressed or N-deficient plants, osmotic cycling was decreased or even eliminated. Across treatments, cycling of osmotic potential occurred only when plants carried at least 560 cm2 of leaf area per fruit. The results are interpreted to mean that diurnal cycling of osmotic potential reveals a ‘sink-limited’ condition within the plant.  相似文献   

6.
Abstract 1. Water stress may increase or reduce the suitability of plants for herbivores. The recently proposed ‘pulsed stress hypothesis’ suggests consideration of stress phenology (pulsed vs. continuous stress) to explain these conflicting effects of plant water stress on herbivore performance. 2. This hypothesis was tested for the effect of differing stress intensity on performance and preference of insect herbivores belonging to different feeding guilds, namely leaf‐chewing insects (Spodoptera littoralis caterpillars) and phloem‐feeding insects (Aphis pomi aphids), on apple plants (Malus domestica). The plants were non‐stressed or exposed to a low or high intensity of pulsed water stress. 3. Plant responses to the different stress levels were generally monotonic. Growth, stomatal conductance (gs), leaf water, and old‐leaf nitrogen concentration decreased, whereas young‐leaf nitrogen concentration and leaf mass per area (LMA) increased with increasing stress intensity. The stable isotope composition of foliar carbon (δ13C) responded non‐monotonically to the drought treatments. The δ13C values were highest in low‐stress plants, intermediate in high‐stress plants, and lowest in non‐stressed plants. 4. The preference and performance responses of the caterpillars were also non‐monotonic. Non‐stressed plants were intermediately, low‐stress plants least, and high‐stress plants most attractive or suitable. Aphid population growth was highest on non‐stressed plants and lowest on low‐stress plants. 5. The results highlight the importance of water stress intensity for the outcome of interactions between herbivores and drought‐affected plants. They show that pulsed water stress may enhance or reduce insect herbivore performance and plant resistance, depending on stress intensity.  相似文献   

7.
The influence of water stress preconditioning on dark respiration   总被引:1,自引:0,他引:1  
The respiration rate of individual leaves of cotton (Gossypium hirsutum L. cv. Stoneville 213), beans (Phaseolus vulgaris L. cv. Bush Blue Lake), and sorghum (Sorghum vulgare Pers.) which had been fully expanded prior to a series of severe water stresses was compared with those of unstressed leaves of similar age. Measurements were made over a range of leaf temperatures. The respiration rate per unit area of the leaves of all rewatered plants were significantly lower than those of the plants which had not undergone water stress. During the stress periods, the leaves of all species suffered dry matter loss. The respiration rates per unit dry matter for cotton and beans were the same for the plants which had undergone stress as they were for the plants which had not undergone stress, thus for these two C3 plants the decrease in dark respiration due to water stress may be explained entirely by the loss of dry matter. Respiration rates of the water stressed sorghum leaves expressed on a per unit weight basis were significantly lower than those which had not undergone water stress preconditioning. The lower respiration rates of the stressed leaves when expressed on both a per unit area basis and a per unit weight basis for the C4 species indicate that water stress adaptation of C4 plants may include alterations in the respiratory mechanism or on the amount of residual respirable substrate. The light compensation points of all the species were not altered by the water stress preconditioning. This indicates that the mechanisms controlling the net photosynthetic exchange per unit leaf area underwent adaptations as a result of repeated water stress which decreased its efficiency.  相似文献   

8.
Three deciduous broad-leaved trees, Quercus serrata, Castanea crenata and Carpinus laxiflora, were the main constituents of a coppice forest in central Japan. The shoot elongation and leaf emergence modes of both saplings and the canopy of the three species were investigated. The shoot elongation modes of Q. serrata and C. crenata were the same in saplings and the upper layer of the canopy. The second shoots of these two species were formed after the first shoots were elongated. C. laxiflora was different between saplings and the upper layer of the canopy. In saplings, only the first shoots took a long time to elongate. In the upper canopy layer, higher order shoots were formed in the same way as in the other two species. In the lower layer of the canopy, all three species showed the same shoot elongation mode, in which only the first shoot and its duration of elongation was short. Leaf longevity, individual leaf area, leaf mass per unit leaf area and the stem mass per unit stem length of C. laxiflora were significantly shorter or significantly smaller than those of Q. serrata and C. crenata. The length of the stem per unit leaf area of C. laxiflora was three times that of Q. serrata and five times that of C. crenata. The elongation growth of C. laxiflora was highly efficient as it occurred with a small leaf area. The shoot dynamics and the shoot structure of C. laxiflora are more suitable for elongation growth than in Q. serrata and C. crenata. Furthermore, the shoot structures of the three species were compared and ecological characteristics of the three species are discussed. Received: 29 September 1998 / Accepted: 17 September 1999  相似文献   

9.
Wheat (Triticum aestivum L.) is the largest cereal crop grown in Western Canada where drought during late vegetative and seed filling stages affects plant development and yield. To identify new physiochemical markers associated with drought tolerance, epidermal characteristics of the flag leaf of two wheat cultivars with contrasting drought tolerance were investigated. The drought resistant ‘Stettler’ had a lower drought susceptibility index, greater harvest index and water‐use efficiency than the susceptible ‘Superb’. Furthermore, flag leaf width, relative water content and leaf roll were significantly greater in Stettler than in Superb at moderate drought stress (MdS). Visible differences in epicuticular wax density on the adaxial flag leaf surfaces and larger bulliform cells were identified in Stettler as opposed to Superb. Mid‐infrared attenuated total internal reflectance spectra revealed that Stettler flag leaves had increased asymmetric and symmetric CH2 but reduced carbonyl esters on its adaxial leaf surface compared to Superb under MdS. X‐ray fluorescence spectra revealed a significant increase in total flag leaf Zn concentrations in Stettler in response to MdS. Such information on the microstructural and chemical features of flag leaf may have potential as markers for drought tolerance and thereby accelerate the selection and release of more drought‐resistant cultivars.  相似文献   

10.
Recent studies of Prosopis glandulosa have demonstrated a unique system of a deeply rooted species with significant water stress tolerance. Several growth and developmental characteristics have been correlated with water stress and nitrogen availability during field studies. Here we present a lab experiment in which a phreatophytic regime is simulated and the availability of nitrogen and water are varied. Increased ground water salinity caused lower plant water potentials and greater osmotic adjustment without significant increases in leaf Na+ concentrations. Leaf conductance was higher in the higher salinity treatments. Low water potential was also associated with reduced leaf size, reduced leaf area per plant and increased root to shoot ratio. Specific leaf weight and the transpiration ratio were unaffected by the low water potentials induced by increased salinity. Increasing nitrogen availability caused increased growth rates but did not influence water use efficiency. Net assimilation rates increased with increasing nitrogen availability but relative growth rates were more dependent on overall plant size than treatment conditions. The responses of P. glandulosa to the simulated phreatophytic environment were similar to those predicted by field measurements.  相似文献   

11.
1. To characterise geographic and small scale variation in the structure of macroinvertebrate communities in stream leaf packs, we collected one to three natural leaf pack communities from 119 reference streams in the Fraser River Basin and quantified their variability and correlation with aspects of the stream environment at several scales. We also sampled leaf packs in 19 test streams in the same geographic area exposed to stressors (nine logged, seven farmed, three mined catchments) to evaluate the leaf pack community as a tool for bioassessment. 2. There was substantial variation in the composition of invertebrate communities in leaf packs among reference streams of the Fraser River Basin. Capnia and Zapada (stoneflies), Baetis and Ephemerella (mayflies) and Tvetnia (midge) were the most common taxa found in the leaf packs. There were three types of assemblages identified by non‐metric multidimensional scaling; Capnia, Baetis and Ephemerella communities. 3. Leaf pack communities from the 19 test streams were plotted on a non‐metric multidimensional scaling ordination of the reference communities, and 14 of 19 sites fell outside the 80% confidence ellipse of the reference sites, including eight of nine logged, four of seven farmed and one of three mined catchments. Most of these streams plotted on the ordination near the Ephemerella reference communities. Reference stream communities had a similar number of genera per leaf pack (12.0) and genera per site (18.7) as the test streams (12.6 genera per leaf pack and 18.7 genera per site). Among the test sites, the farmed catchments had higher genera per leaf pack (17.8) and genera per site (21.9) than either the logged (11.5 genera per leaf pack; 19.9 genera per site) or mined (3.4 genera per leaf pack; 7.7 genera per site) catchments. 4. Heterogeneity of leaf pack communities within a site decreased as the number of genera found at the site increased. This was determined by allometric regression of the number of genera found at a site on the maximum number of genera possible, given the average number found per leaf pack. 5. There was a significant relationship between the composition of the leaf pack invertebrate community and stream geography (latitude, longitude, altitude, stream order). Canonical correspondence analysis showed differences among ‘big river’, ‘mountain stream’ and ‘southern’ communities. 6. There was no relationship between the composition of the leaf pack invertebrate community and stream channel and flow characteristics (bank dimensions, flow, slope). There was a significant relationship between the composition of the leaf pack invertebrate community and water quality of the stream (oxygen, nitrogen, phosphorus, conductivity, pH, temperature). ‘Cold, oxygen rich water’ communities were distinguishable from communities in streams with warmer, lower oxygen concentration. ‘High nutrient water’ communities were also distinct from communities in low nutrient streams. There was no relationship between the composition of the leaf pack invertebrate community and the nature of the leaf pack itself (i.e. morphology, decomposition, coniferous needle content). 7. Invertebrate communities in leaf packs show substantial, interpretable variation among reference streams. They are sensitive to human stressors at a landscape scale such as forestry and agriculture. Their diversity and composition varies at different spatial scales in a way that is at least partially explained by the environment of the stream and its catchment area.  相似文献   

12.
Large‐fronded tree ferns are critical components of many tropical forests. We investigated frond and whole‐plant allometries for Hawaiian keystone species Cibotium glaucum, for prediction and to compare with global scaling relationships. We found that C. glaucum fronds maintain geometric proportionality across a wide range of plant and frond sizes. These relationships result in strong allometries that permit rapid field estimation of frond size from simple linear dimensions. C. glaucum frond allometries complied with intra‐ and interspecific global trends for leaf area versus mass established for much smaller‐leafed species, indicating ‘diminishing returns’ in photosynthetic area per investment in mass for larger fronds. The intraspecific trend was related to declining water content in larger fronds, but not to a significantly larger investment in stipe or rachis relative to lamina. However, C. glaucum complied with the global interspecific trends for greater allocation to support structures in larger leaves. Allometries for frond number and size versus plant height showed that as plants increase in height, frond production and/or retention progressively declines, and the increases of leaf size tend to level off. These frond and whole plant‐level relationships indicate the potential for estimating frond area and mass at landscape scale to enrich studies of forest dynamics.  相似文献   

13.
Plants of Psophocarpus tetragonolobus cv. Chimbu Illinois were germinated under uniform conditions, after which they were transferred to three water treatments, ‘wet’, control and ‘stress’. Those plants given most water (i. e. ‘wet’) grew best and produced most root nodules. Water stress delayed nodule formation and quantitative microscopic examination showed that nodules from stress plants had more bacteroid-containing cells per unit area up to 4 wk than nodules from either of the other treatments. Bacteroid-containing cells were found to be vacuolated in P. tetragonolobus.  相似文献   

14.
Water transport through the xylem is essential for replacing water loss during transpiration, thus preventing desiccation and permitting photosynthesis. The occurrence of cavitation and embolism due to drought impairs transport to the transpiring leaves. Most research in this discipline has been conducted on woody plants. Less attention has been given to cavitation of crops and its physiological significance for understanding crop water relations. In this paper, hydraulic conductance and vulnerability of xylem to cavitation were studied in corn hybrids with different drought resistances. The results indicated that stems of drought-resistant ‘Pioneer 3902’ not only had a higher conductivity on both a stem area and leaf area basis but also had a greater resistance to cavitation. The estimated xylem pressure at 63.2% loss of conductivity (Weibull fitting parameter b) and at 50% loss of conductivity (P50) in ‘Pioneer 3902’ were about 0.2 MPa lower than in ‘Pride 5’. Higher conductivity in ‘Pioneer 3902’ was mainly attributed to more vascular bundles per stem area rather than greater vessel diameter. The central bundles and peripheral vascular bundles showed the same degree of cavitation although the vessels of central bundles were generally larger than in peripheral bundles.  相似文献   

15.
The distribution of two sedge species was studied in two mires which differ in abiotic environments and in distribution ofPhragmites australis. Carex lasiocarpa var.occultans dominated in nutrient-poor valley mire, andCarex thunbergii var.appendiculata dominated in nutrient-rich flood plain subject to water fluctuations.Phragmites australis grew well in nutrient-rich conditions. The distribution ofC. lasiocarpa showed a strong negative correlation withP. australis coverage, whereasC. thunbergii coverage was not affected byP. australis. The leaf area per dry leaf mass (specific leaf area: SLA) ofC. thunbergii increased with shading byP. australis, but that ofC. lasiocarpa was stable. The SLA flexibility ofC. thunbergii to light interception might enable this species to invadeP. australis patches in nutrient-rich environments. The residual nutrient ratio of nitrogen and phosphorus (the ratio of the residual nutrient content at the end of the growing season to peak nutrient content) in the vegetative ramet ofC. thunbergii was 1.7 times higher than that ofC. lasiocarpa. This low residual ratio may indicate effective nutrient recovery to storage organs. The effective nutrient recovery inC. lasiocarpa might enable this species to grow even in nutrient-poor environments. However, it may be difficult forC. lasiocarpa to expand its habitat to nutrient-rich areas whereP. australis dominates as it is not shade tolerant.  相似文献   

16.
Stomatal behaviour, transpiration and nitrogen fixation were investigated in Medicago sativa L. (cvs. Tierra de Campos and Aragon, Hidalgo-Maynar 1966), Trifolium repens L. (cv. Aberystwyth S-184) and Trifolium subterraneum L. (cv. Clare) subjected to drought by withholding water and then to three days’ recovery after rewatering. Dawn leaf water potential was measured with pressure chamber, stomatal response with a diffusion porometer and nitrogen fixation by using acetylene reduction technique. At low water potentials, the leaf resistance was higher in Medicago than in Trifolium. As water stress developed all species decreased their transpiration, T. subterraneum being the one most affected by moderate deficits. During water stress ‘Tierra de Campos’ always maintained higher acetylene reduction levels than ‘Aragon’ and the Trifolium species, except for the lowest water potentials. During recovery from water stress only ‘Tierra de Campos’ reached predeficit transpiration rates. In ‘Tierra de Campos’ acetylene reduction recovery after rewatering was more rapid and intense than in ‘Aragon’. It is concluded that, of the plants investigated, ‘Tierra de Campos’ was best adapted to water deficits.  相似文献   

17.
In order to investigate the factors causing fast growth of sprouts ofPasania edulis, photosynthetic activity and water relation characteristics of lower (mature) leaves and upper (expanding) leaves of the sprouts were compared with those of seedlings and adult trees ofP. edulis. Apparent quantum yield was generally low. Maximum photosynthetic rate was highest in the lower leaves of sprouts. Stomatal frequency was higher in sprout leaves than in seedling leaves. Osmotic potential at the water saturation point and water potential at the turgor loss point, in leaves, were higher in sprouts than in seedlings and adult trees. Symplasmic water content per unit leaf area was higher in sprouts than in seedlings. These water relation parameters in leaves indicated that sprout leaves are superior in maintaining cell turgor against water loss, but are not tolerant to water stress. In field measurements, sprout leaves showed higher stomatal conductance and transpiration rates. These results indicated that sprout leaves fully realized their high potential productivity even under field conditions. The leaf specific conductance, from the soil to the leaf, was higher in sprouts than in seedlings. Large and deep root systems of the original stumps of the sprouts may be attributed to the high leaf specific conductance.  相似文献   

18.
We investigated the anatomical and physiological characteristics of stenophyllous leaves of a rheophyte, Farfugium japonicum var. luchuence, and sun and shade leaves of a non-rheophyte, F. japonicum, comparing three different populations from coastal, forest floor, and riparian habitats. Light adaptation resulted in smaller leaves, and riparian adaptation resulted in narrower leaves (stenophylly). The light-saturated rate of photosynthesis (P max) per unit leaf area corresponded to the light availability of the habitat. Irrespective of leaf size, the P max per unit leaf mass was similar for sun and shade leaves. However, the P max per mass of stenophyllous leaves was significantly lower than that of sun and shade leaves. This was because the number and size of mesophyll cells were greater than that required for intercellular CO2 diffusion, which resulted in a larger leaf mass per unit leaf area. Higher cell density increases contact between mesophyll cells and enhances leaf toughness. Stenophyllous leaves of the rheophyte are frequently exposed to a strong water flow when the water level rises, suggesting a mechanical constraint caused by physical stress.  相似文献   

19.
The effects of 4 or 8 drought cycles on four grass species,Cenchrus pennisetiformis, Leptochloa fusca, Panicum turgidum, andPennisetum divisum were assessed in a pot experiment. There were significant differences between the species in biomass production under water stress.C. pennisetiformis andP. turgidum produced significantly greater fresh and dry matter thanP. divisum and especially thanL. fusca. L. fusca had the lowest andP. divisum highest osmotic potentials compared with the other species after the completion of 4 or 8 drought cycles. Osmotic adjustment (difference between osmotic potential of droughted/rehydrated plants and control plants) was highest inL. fusca. The stomatal conductance was significantly decreased with increased drought stress inC. pennisetiformis. The elasticity ofC. pennisetiformis, P. turgidum andP. divisum increased with increase in number of drought cycles, whereas that ofL. fusca remained unchanged.L. fusca andP. turgidum had the lowest leaf hydration of all species after 8 drought cycles. The chlorophyllsa andb in all species remained unaffected by drought treatments. The proline content ofC. pennisetiformis andL. fusca increased significantly with increased drought stress, whereas that ofP. turgidum remained unaffected after 4 or 8 drought cycles.L. fusca synthesized great amount of leaf soluble proteins during 8 drought cycles, whereasP. divisum had low protein content after 4 drought cycles. The protein contents ofC. pennisetiformis andP. turgidum remained unaffected after 8 drought cycles. The leaf epicuticular wax ofL. fusca increased consistently with increased drought stress, but leaf wax ofP. divisum increased only at the highest drought stress and that ofC. pennisetiformis andP. turgidum increased after 4 drought cycles. On the basis of these results it was established thatC. pennisetiformis andP. turgidum were the most tolerant,P. divisum intermediate, andL. fusca the most sensitive to drought stress. The osmotic adjustment did not positively correlate with the degree of drought resistance.  相似文献   

20.
  • Based on the elemental composition of major biochemical molecules associated with different biological functions, the ‘growth rate hypothesis’ proposed that organisms with a higher growth rate would be coupled to lower C:N, especially lower C:P and N:P ratios. However, the applicability of the growth rate hypothesis for plants is unclear, especially for shrubs growing under different water supply.
  • We performed an experiment with eight soil moisture levels (soil water content: 4%, 6%, 8%, 13%, 18%, 23%, 26% and 28%) to evaluate the effects of water availability on leaf C:N:P stoichiometry in the shrub Zygophyllum xanthoxylum.
  • We found that leaves grew slowly and favored accumulation of P over C and N under both high and low water supply. Thus, leaf C:P and N:P ratios were unimodally related to soil water content, in parallel with individual leaf area and mass. As a result, there were significant positive correlations between leaf C:P and N:P with leaf growth (u).
  • Our result that slower‐growing leaves had lower C:P and N:P ratios does not support the growth rate hypothesis, which predicted a negative association of N:P ratio with growth rate, but it is consistent with recent theoretical derivations of growth–stoichiometry relations in plants, where N:P ratio is predicted to increase with increasing growth for very low growth rates, suggesting leaf growth limitation by C and N rather than P for drought and water saturation.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号