首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper provides answers to the questions which of the toxins present in the venom of the wasp Philanthus triangulum may be responsible for the previously reported blockage of transmission through the sixth abdominal ganglion of the cockroach, and whether this may occur by block of synaptic transmission or by affecting axonal exitability. In current clamp experiments the crude venom induces a slight depolarization of the membrane of the giant axon from the sixth abdominal ganglion of the cockroach and a small and irreversible decrease in the amplitude of the action potential. These marginal effects are not seen with relatively high concentrations of the philanthotoxins β-PTX and δ-PTX. It appears that neither the crude venom nor the toxins significantly affect the excitability of the cockroach giant axon. At a concentration of 20 μg ml?1 δ-PTX causes a slowly reversible block of synaptic transmission from the cercal nerve XI to a giant interneuron without any change in resting membrane potential, whereas β-PTX is inactive. Iontophoretically evoked acetylcholine potentials of the giant neuron are more sensitive to δ-PTX than excitatory postsynaptic potentials. This suggests that the toxin acts on the postsynaptic membrane.  相似文献   

2.
The bundle of tonic fibres situated at the proximal end of the locust metathoracic extensor tibialis muscle is innervated by the dorsal unpaired median neurone (DUMETi) as well as by the slow excitatory (SETi)) and common inhibitor (CI) neurones. It is not innervated by the fast excitatory neurone (FETi).These fibres contract spontaneously and rhythmically. The myogenic rhythm can be modified by neural stimulation.Spontaneous slow depolarizing potentials resembling the pacemaker potentials of insect cardiac muscle were demonstrated in these fibres.The actions of glutamate on the tonic muscle fibres are not compatible with its being a specific excitatory transmitter. Glutamate can stimulate weak contractions of the muscle, but this action is inhibited when chloride ions are removed from the saline.10?6 M Octapamine hyperpolarizes the tonic fibre membrane. Octopamine, GABA and glutamate all inhibit the myogenic contractions and reduce the force of the neurally evoked contractions.The tonic muscle is very responsive to proctolin. At 5 × 10?11 M proctolin enhances the force and increases the frequency of myogenic contractions. At 10?9 M it depolarizes the muscle membrane potential, and at that and higher concentrations it causes the muscle to contract. At 2 × 10?7 M proctolin induces contractures which resemble those evoked by sustained high-frequency neural stimulation. Iontophoretic experiments show that proctolin receptors occur at localized sites on the tonic fibre membrane.  相似文献   

3.
Both octopamine and proctolin potentiate nerve-evoked skeletal muscle contractions in the horseshoe crab, Limulus. The threshold concentration for octopamine was 10?9 to 10?8M, while for proctolin it was 3 × 10?9M. Norepinephrine and dopamine produced effects similar to octopamine but at higher thresholds; tyramine and serotonin were ineffective. Octopamine caused significant increases in amplitudes of excitatory postsynaptic potentials (epsps) of muscle fibers, but had little effect on muscle fiber input resistance or membrane potential. Also, octopamine did not affect depolarization of muscle fibers and subsequent contraction due to the direct action of exogenously applied glutamate. These results suggest that octopamine potentiates nerve-evoked contractions primarily by facilitating release of neuromuscular transmitter. At concentrations above 10?7M, however, octopamine sometimes caused muscle spikes in response to motoneuron stimulation, a finding that suggests that octopamine may also have some postsynaptic action. Proctolin potentiated the muscle contractions evoked by glutamate but had little effect on glutamate-evoked muscle fiber depolarization, muscle fiber input resistance, or membrane potential. Thus, proctolin appears to act directly on skeletal muscle to enhance contractility. The proctolin-induced potentiations of contraction were sometimes accompanied by modest increases in epsp amplitude, so that unlike lobster skeletal and Limulus cardiac neuromuscular preparations, proctolin may have a secondary direct synaptic effect. Both octopamine and proctolin have been found in Limulus cardiac ganglion. This potential access to the hemolymph and the relatively low threshold concentrations needed for physiological action suggest that octopamine and proctolin could function as hormonal modulators of neuromuscular function in Limulus.  相似文献   

4.
1. The molecular structure of β-philanthotoxin (β-PTX), a toxin from the insect paralysing venom of the wasp Philanthus triangulum, has been elucidated using NMR and mass spectrometry. β-PTX has a polyamine character: C5H11·NH·CO·(CH2)4·NH·(CH2)3·NH2. This structure has been confirmed by synthesis.2. In the locust muscle fibre β-PTX blocks iontophoretically evoked glutamate potentials in a non-activation induced manner. β-PTX also blocks the nicotinic transmission in the insect CNS, however, at much higher toxin concentrations.3. β-PTX reduces the frequency of postsynaptic channel opening and reduces the duration of open times.4. These results suggest an effect of β-PTX on kinetics of glutamate activated ion channels, different from acting as an open channel blocker.  相似文献   

5.
Abstract

We report the optimization of production of a halotolerant, thermoalkaline protease by Bacillus cereus SIU1, at shake-flask and bench-scale bioreactor level, using conventional and response surface methods. The basal medium supplemented with optimized (w/v) 0.8% glucose, 1.5% peptone, and 0.4% yeast extract produced 224 Uml? 1 alkaline protease after 20 h incubation. Enzyme yield was further increased to 491 Uml? 1 when the fermentation broth was supplemented with 0.02% (w/v) Ca2+. Optimization of physical factors resulted in still higher protease level of 651 Uml? 1 within 18 h fermentation at initial pH 9.0, 50°C, and 150 rpm agitation. Statistically designed experiments revealed significant effects of peptone and CaCl2 on protease production. A maximum of 749 protease Uml? 1 was produced at optimum factor levels (w/v) of peptone 1.75%, yeast extract 0.4%, CaCl2 0.025%, and pH 9.0 after 18 h incubation. Optimization of agitation and aeration rates in bench-scale bioreactors further enhanced the enzyme yield to 941 protease Uml? 1 at 125 rpm and 2.0 vvm aeration. Optimization of protease production by conventional and statistical approaches resulted in a ~10.7-fold increase (941 Uml? 1) compared to un-optimized conditions (88 Uml? 1).  相似文献   

6.
The neuropeptide proctolin has distinguishable excitatory effects upon premotor cells and motorneurons of Homarus cardiac ganglion. Proctolin's excitation of the small, premotor, posterior cells is rapid in onset (5–10 s) and readily reversible (< 3 min). Prolonged bursts in small cells often produce a “doublet” ganglionic burst mode via interactions with large motorneuron burst-generating driver potentials. In contrast to small cell response, proctolin's direct excitatory effects upon motorneuron are slow in onset (60–90 s to peak) and long-lasting (10–20 min). The latter include: (a) a concentration-dependent (10?9–10?7M) depolarization of the somatic membrane potential; (b) increases in burst frequency and (c) enhancement of the rate of depolarization of the interburst pacemaker potential. Experiments on isolated large cells indicate: (a) the slow depolarization is produced by a decrease in the resting GK and (b) proctolin can produce or enhance motorneuron autorhythmicity. A two-tiered non-hierarchical network model is proposed. The differential pharmacodynamics exhibited by the two cell types accounts for the sequential modes of ganglionic burst activity produced by proctolin.  相似文献   

7.
B E Brown 《Life sciences》1975,17(8):1241-1252
The slow, striated muscles of the proctodeum (hindgut) of the cockroach, Periplaneta americana (L.), were examined pharmacologically with reference to the responses evoked by nerve stimulation, glutamate, 5-HT, and proctolin, a myotropic peptide from Periplaneta recently isolated and identified. The graded contractions evoked by repetitive nerve stimulation were simulated by 5-HT and proctolin at threshold concentrations of about 10−7 and 10−9 M respectively; responses to glutamate (∼10−4 M) were not similarly graded. The 5-HT receptors are distinct from other receptors, including the post-synaptic receptors, since they were specifically blocked by bromolysergic acid diethylamide. Proctolin was fully active on TTX-treated or surgically denervated muscle indicating that the proctolin receptors are located on the muscle fibre membrane. Tyramine, at threshold levels 5×10−8 M, reversibly antagonized the responses evoked by proctolin and by nerve stimulation but was without effect on the 5-HT and glutamate responses. Neurally evoked responses were potentiated by subthreshold concentrations of proctolin but not by glutamate. Pharmacologically, the proctolin and post-synaptic receptors appear to be identical and distinct from the glutamate and 5-HT receptors. Since proctolin is known to be a constituent of an efferent pathway of the proctodeal nerves, the evidence suggests that it may function as an excitatory transmitter substance. Peptidergic transmission is discussed in relation to the ultrastructural organization of the proctodeal nerve terminals which contain neurosectory granules in addition to electron-lucent, synaptic vesicles.  相似文献   

8.
The effects of various pharmacological agents on neurally evoked contractions of the visceral muscles of the oviduct of Locusta migratoria have been examined. The pentapeptide, proctolin, at low concentrations (10?11 M?10?10 M), induced an increase in the amplitude of neurally evoked contractions and basal tonus, and induced the appearance and increased the frequency of myogenic contractions. Glutamate, at 10?4 M, produced a small transient contraction which in some preparations was accompanied by a reduction in amplitude of neurally evoked contractions. Octopamine, at 10?6 M, reduced the amplitude of neurally evoked contractions and also resulted in a relaxation of the muscles. The octopaminergic effects were inhibited by the α-aminergic antagonist phentolamine. Neurally evoked contractions were unaffected by dopamine, 5-HT or the acetylcholine receptor antagonists atropine and hexamethonium. Acetylcholine increased the amplitude of neurally evoked contractions, but only at the high concentration of 10?3 M. The possible role of proctolin and glutamate as excitatory neuro-transmitters and the inhibitory action of octopamine is discussed.  相似文献   

9.
Abstract

Resting cells of Gordonia terrae with nitrilase (EC 3.5.5.1) activity were investigated for transformation of p-hydroxybenzonitrile to p-hydroxybenzoic acid. The maximum conversion was observed in 0.1 M potassium phosphate buffer, pH 8.0, using 40 mM substrate and resting cells corresponding to 0.70 Uml? 1 nitrilase activity at 35°C. A 500 mL fed batch reaction was designed for synthesis of p-hydroxybenzoic acid with six feedings of substrate at an interval of 1 h. A total of 14.4 g of p-hydroxybenzoic acid (> 98.7%) was obtained in 6 h with a productivity of 0.78 gh? 1g? 1DCW of G. terrae.  相似文献   

10.
The addition of glutamate to the bathing medium increased the average firing rate of cerebellar rat Purkinje cells in vitro. At concentrations lower than 10?6 M, there was no deviation from controls in the firing pattern or rate that was detectable. At 10?3 M glutamate, the amplitude of the action potentials was gradually decreased until all activity was abolished. The action of glutamate was rapid in onset and reversible. Glycine produced sustained depression of firing at concentrations higher than 10?3 M. This inhibition was strychnine-insensitive and considered nonspecific. Strychnine, on the other hand, exerted an excitatory influence on Purkinje cells when applied at low concentrations (10?8 to 10?6 M). The firing became more irregular and complex discharges appeared. Higher concentrations of strychnine (>10?5 M) inhibited the spontaneous activity. The effect of strychnine was partly reversible. The data suggest that low concentrations of strychnine lower the threshold for inputs at excitatory as well as inhibitory synapses.  相似文献   

11.
Some physiological parameters of the antennal heart, an accessory circulatory organ in the head of Periplaneta americana and the effect of the neuropeptide proctolin on it were investigated. The beat frequency of the antennal heart in vivo or semiisolated is about 2–3 times slower than that of the dorsal vessel and not coordinated with the latter. The extracellular ECG of the antennal heart has a simple biphasic shape with a total duration of 588.7 ± 38.2 ms. Intracellularly recorded parameters showed characteristics typical of myogenic rhythmicity: a slow depolarization with a rate of rise of 7.5 ± 0.7 mV/s, followed by an action potential of 54.9 ± 1.2 mV with a relatively long duration of 201.6 ± 10.8 ms, absence of overshoots and resistance to TTX. Proctolin produced a marked enhancement of the frequency of beat of the antennal heart up to about 400% with a high sensitivity (threshold concentrations: 5·10?9M). The dose-response curve shows a linear relationship between the logarithm of the concentration and the percentage increase in beat frequency. The electrical event most influenced by proctolin was the slow pacemaker depolarization, whose rate of rise was enhanced up to 240%. The action potential remained unchanged; the depolarization of the resting potential was very small and the input resistance did not change. The antennal heart responds to neurohormone D, another neuropeptide in insects, in a similar way as it does to proctolin. The mode of action of proctolin on the antennal heart is discussed in comparison to that found in other systems.  相似文献   

12.
The neuropeptide proctolin causes a sustained contraction of the opener muscle of the dactyl of the lobster walking leg. This substance acts directly on the muscle at concentrations as low as 10?10M. The contraction is dependent on extracellular calcium. Neither a significant depolarization nor a detectable change in the input resistance accompanies the response. No presynaptic action of proctolin is indicated; excitatory and inhibitory junctional potential sizes and the frequency of spontaneous miniature excitatory junctional potentials are unaffected.  相似文献   

13.
Abstract The peptides proctolin, crustacean cardioactive peptide (CCAP) and FMRFamide, which are known to modulate insect muscle contractions, were assayed for their action on oviduct contractions in Hylobius abietis. A video microscopy technique and computer‐based method of data acquisition and analysis were used to investigate the effects of theses peptides on spontaneous contractions of continuously perfused oviducts. All three peptides tested stimulate spontaneous contraction activity of the pine weevil oviduct, increasing the frequency and amplitude of phasic contractions in a dose‐dependent manner. Proctolin is more potent as a stimulator than CCAP. For proctolin a threshold response of oviduct muscles is at concentration of peptide 10?11–10?10 mol/L and for CCAP at concentration range 10?10–10?9 mol/L. FMRFamide exerts a weak stimulatory effect on the oviduct, and at higher concentrations of the peptide (above 10?8 mol/L). The peptides exert different responses on oviduct contractions and they may play a role as functional regulators in such processes as egg movement and oviposition.  相似文献   

14.
The efflux of [3H]GABA or [14C]GABA from superfused neocortical thin slices, held on quick transfer electrodes, has been compared with that of the non-transmitter amino acid model [14C]α- amino-isobutyrate (AIB), and, to a lesser extent, with [3H]norepinephrine. Electrical stimulation of the slices with sine-wave current (50 Hz); rectangular, biphasic pulses, (80/s, 3 ms); or rectangular, monophasic pulses (100/s, 5 ms), was unable to release GABA at stimulating potentials that are able to release known transmitter substances. Release of GABA and AIB was only seen with higher applied potentials, when also non-transmitter amino acids were released. It was also found that amino-oxyacetic acid(10-5 M and 5 × 10-5 M) increased the excitability of the slices, and allowed the release of both GABA and AIB to occur with weaker stimuli. This effect was independent of extracellular calcium.  相似文献   

15.
We present 42 dual-isotope nitrate analyses of fresh water samples collected in the St. Lawrence River between June 2006 and July 2008. Measured δ15N–NO3 ? and δ18O–NO3 ? values correlate negatively, while δ18O–NO3 ? displays no negative correlation with nitrate concentration. This suggests that nitrate uptake and/or elimination by denitrification is not the main driver of observed variations in nitrate concentration and isotopic signature in the St. Lawrence River. In addition, δ18O–NO3 ? is negatively correlated with the seasonally variable δ18O of ambient water, indicating that the variation in the isotopic signature of nitrate is barely modulated by in-stream nitrate regeneration (nitrification). It rather is constrained by along-river changes in the external sources of nitrate. Given the distinct nitrogen (N) and oxygen (O) isotopic signature of atmospheric nitrate, we argue that observed seasonal variations of δ15N–NO3 ? and δ18O–NO3 ? in the St. Lawrence River are due to variable contributions of snowmelt-derived water. Based on a N and O isotope mass balance, we show that total nitrate loading in the St. Lawrence River is dominated by a N input from the Great Lakes (47 ± 28 %) and from nitrate regeneration of both internal and external N (48 ± 22 %). While temporal nitrate N and O isotope dynamics in the St. Lawrence River are mainly influenced by the atmospheric N input fluctuations, with an increase in atmospheric loading during spring, atmospheric N plays overall a rather insignificant role with regards to the N budget (5 ± 4 %).  相似文献   

16.
J Dudel  C Franke    H Hatt 《Biophysical journal》1990,57(3):533-545
Completely desensitizing excitatory channels were activated in outside-out patches of crayfish muscle membrane by applying glutamate pulses with switching times of approximately 0.2 ms for concentration changes. Channels were almost completely activated with 10 mM glutamate. Maximum activation was reached within 0.4 ms with greater than or equal to 1 mM glutamate. Channel open probability decayed with a time constant of desensitization of 2 ms with 10 mM glutamate and more rapidly at lower glutamate concentrations. The rate of beginnings of bursts (average number of beginnings of bursts per time bin) decayed even faster but approximately in proportion to the glutamate concentration. The dose-response curve for the channel open probability and for the rate of bursts had a maximum double-logarithmic slope of 5.1 and 4.2, respectively. Channels desensitized completely without opening at very low or slowly rising glutamate concentrations. Desensitization thus originates from a closed channel state. Resensitization was tested by pairs of completely desensitizing glutamate pulses. Sensitivity to the second pulse returned rapidly at pulse intervals between 1 and 2 ms and was almost complete with an interval of 3 ms. Schemes of channel activation by up to five glutamate binding steps, with desensitization by glutamate binding from closed states, are discussed. At high agonist concentrations bursts are predominantly terminated by desensitization. Quantal currents are generated by pulses of greater than 1 mM glutamate, and their decay is determined by the duration of presence of glutamate and possibly by desensitization.  相似文献   

17.
The temporal variation in the stable carbon and nitrogen isotope ratios of particulate organic matter (POM) in the Rhone River was investigated on a monthly basis during a 2-year period (2004–2005). In spite of high month-to-month variation, interannually consistent seasonal trends appeared, with significantly lower δ13C (<?28.2‰) in spring than in the other seasons. In contrast, δ15N did not exhibit significant temporal variation. In spring and summer, high chlorophyll a and b concentrations were associated with low C/N values (<8) and a high percentage of organic carbon (%C) and organic nitrogen (%N), testifying to high development of autochthonous riverine phytoplankton (mainly diatoms and chlorophytes). In fall and winter, higher δ13C (>?27.2‰) and C/N (>8) values, and lower %C, %N, and chlorophylls concentrations indicated the predominance of allochthonous terrestrial detritus material in the river POM. The lower δ13C values recorded in spring–summer, when the phytoplankton biomass was high, were related to the lower carbon isotopic signatures of freshwater diatoms and chlorophytes compared to those of terrestrial plants. Overall, Rhone River POM was mainly composed of terrestrially derived material (90%), with autochthonous phytoplankton representing only 10% as a mean, in spite of a higher mean contribution of phytoplankton (27%) to river POM in summer.  相似文献   

18.
Action potentials evoked by depolarizing pulses were studied in immature cultured cerebral cortical neurons from chick embryos. The majority of action potentials were rather small, and they were still elicited in the presence of 10?7 gm/ml tetrodotoxin (TTX), but were almost completely abolished in Na+-free solution or by 10?5 gm/ml TTX in Tyrode's solution. The elevation of external Ca2+ concentration not only increased the maximum rates of rise of action potentials in normal Tyrode's solution with and without low (10?7 gm/ml) TTX but also regenerated action potentials in high (10?5 gm/ml) TTX-containing Tyrode's solution or in Na+-free solution. These high Ca2+ effects were blocked by Mn2+ or Co2+. These results suggest that action potentials, which were predominantly Na-dependent, are partially contributed by Ca ions in immature chick cerebral cortical neurons.  相似文献   

19.
Stable isotopes of nitrogen (N) in plants are increasingly used to evaluate ecosystem N cycling patterns. A basic assumption in this research is that plant δ15N reflects the δ15N of the N source. Recent evidence suggests that plants may fractionate on uptake, transport, or transformation of N. If the dominant source of plant N is via roots, a difference in δ15N by tissue type would suggest fractionation on transport and assimilation of N. In order to evaluate differences between species and plant parts, we measured δ15N in root, stem, and leaf tissues of individual sugar maple (Acer saccharum; SM) and American beech (Fagus grandifolia; BE) plants ranging in age from germinants to mature trees at the Hubbard Brook Experimental Forest, New Hampshire (USA). For SM, root δ15N > stem δ15N > leaf δ15N; for BE seedlings, root δ15N > stem δ15N and root δ15N > leaf δ15N. These differences suggest that fractionation occurs during plant transport and assimilation of N. Beech δ15N (root, stem, and leaf) was consistently higher than SM δ15N for 1–7 year-old seedlings. At one site, we found no differences with age in foliar δ15N (range: 4.1–4.8 ‰) for seedlings, saplings, and trees which suggests that it may be possible to compare foliar δ15N of plants of different ages at some sites. However, at another site, foliar and root δ15N were higher for trees than 1–2 year-old seedlings. This study suggests that physiological differences in N assimilation and transport processes that differ by species likely control plant δ15N.  相似文献   

20.
Abstract. The effects in vivo of cardioactive peptides proctolin, CCAP and leucomyosuppressin (LMS) are investigated by means of noninvasive optocardiographic or thermographic techniques in postdiapause pupae of Manduca sexta. A constant pattern of heartbeat reversal in these pupae is manifested by regular alternations of the forward orientated (anterograde) and the backward orientated (retrograde) cardiac pulsations, with a periodicity of some 5–10 min. The heartbeat pattern is monitored continuously for several hours before and 24 h after injection of the investigated peptides. Injections of Ringer solution alone cause a slight, almost immediate increase of the rate of the pupal heartbeat (0–10%), which lasts only for 20–30 min. Injection of proctolin, CCAP or LMS does not show any immediate cardiostimulating effects (beyond those of Ringer) at concentrations up to 2 × 10−6 M (calculated from µg of the injected peptide and 70% pupal water content; 5–7 g pupal body mass). By contrast, injections of proctolin and CCAP in the range of 10-9 − 10-6 M concentrations cause delayed effects on the heartbeat, which are manifested only several hours after the injections. The delayed effects involve prolonged, or even continuous periods of unidirectional, more efficient and faster anterograde pulsations. Consequently, the flow of haemolymph through the head and thoracic parts of the pupal body increases. In the case of proctolin, the prolonged anterograde cardiac activity usually starts 5 h after the injections and the effect persists for 7–12 h. Using CCAP, the stimulation of anterograde activity starts 2.5–3 h after injections and lasts usually 7–8 h. Very small doses of peptides (10-8 − 10-9 M) do not change the latency period significantly, but they decrease the duration of the response. The frequency of the systolic contractions of the heart does not increase during the prolonged anterograde phase. Injections of LMS to produce a final concentration of 10−6 M in the pupa induce pathophysiological disturbances of heartbeat reversal and peristalsis. The effects start with a delay of some 1.5–2.5 h after the injections. By contrast to the effects of proctolin and CCAP, LMS does not produce delayed anterograde cardiac pulsations. These results show that the most intensively investigated cardiostimulating peptides in vitro, proctolin and CCAP, have no direct cardiostimulating activity under physiological conditions in vivo. It is concluded therefore that the delayed pharmacological effects of these peptides observed in the pupae of M. sexta, represent a secondary effect, resulting from stimulation of nonspecific, extracardiac myotropic or other physiological functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号