首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Variants of Chinese hamster ovary and Novikoff rat hepatoma cells resistant to tubercidin and 2,5-diaminopurine, or to both drugs, were isolated, and their ability to convert adenosine and various adenosine analogs to nucleotides was compared to that of wild-type cells, both in intact cells and cell-free extracts. Adenosine deamination, and thus its conversion to nucleotides via inosine-hypoxanthine-inosine monophosphate, was inhibited by pretreatment of the cells or cell extracts with 2-deoxycoformycin. Cell-free extracts of the tubercidin-resistant variants, as well as of two adenosine-resistant mutants of Chinese hamster ovary cells, phosphorylated adenosine, tubercidin, pyrazofurin, or tricyclic nucleoside in the presence of ATP at less than 1% of the rate of extracts of wild-type cells. However, addition of phosphoribosyl pyrophosphate stimulated the conversion of adenosine to nucleotides 40-fold. Similarly, intact adenosine kinase-deficient cells failed to phosphorylate the adenosine analogs, but still converted adenosine to nucleotides at 5-10% the rate observed with wild-type cells. Phosphorylation of adenosine and tubercidin in wild-type cells was inhibited by substrate at concentration above 5-10 microM. In contrast, the rate of conversion of adenosine to nucleotides by adenosine kinase-deficient cells increased linearly up to a concentration of 400 microM adenosine, with the consequence that, at this concentration, these cells took up adenosine almost as rapidly as wild-type cells. Adenosine uptake by these kinase-deficient cells was inhibited by adenine and 5'-deoxyadenosine, and was largely abolished in mutants devoid also of adenine phosphoribosyltransferase. We conclude that adenosine is converted to nucleotides in adenosine kinase-deficient cells via adenine. Indirect evidence implicates 5'-methylthioadenosine phosphorylase as the enzyme responsible for the degradation of adenosine to adenine.  相似文献   

2.
Cells of an adenosine-resistant clone (AE1) of S49 mouse lymphoma cells were compared with cells of the parental line with respect to (a) characteristics of nucleoside transport, (b) high affinity binding of the inhibitor of nucleoside transport, nitrobenzylthionisine (NBMPR), and (c) the antiproliferative effects of the nucleoside antibiotics, tubercidin, arabinosyladenine and showdomycin. Rates of inward transport of uridine, thymidine, adenosine, 2′-deoxyadenosine, tubercidin, showdomycin, and arabinosyladenine in AE1 cells were less than 1% of those in cells of the parental S49 line. The inhibitor of nucleoside transport, NBMPR, reduced rates of inward nucleoside transport in S49 cells to levels comparable to those seen in the transport-defective mutant. S49 cells possessed high affinity sites that bound NBMPR (6.6 · 104 sites/cell, Kd  0.2 nM), whereas site-specific binding of NBMPR to AE1 cells was not demonstrable, indicating that loss of nucleoside transport activity in AE1 cells was accompanied by loss of the high affinity NBMPR binding sites. Relative to S49 cells, AE1 cells were resistant to the antiproliferative effects of tubercidin and showdomycin, but differences between the two cell lines in sensitivity toward arabinosyladenine were minor, suggesting that nucleoside transport activity was required for cytotoxicity of tubercidin and showdomycin, but not for that of arabinosyladenine.  相似文献   

3.
M Huang  J W Daly 《Life sciences》1974,14(3):489-503
The uptake and incorporation of low concentrations of radioactive adenosine into guinea pig cerebral cortical slices is effectively inhibited by dipyridamole, hexobendine, papaverine, 6-(p-nitrobenzylthio) guanosine, 5′-deoxy-adenosine and N6-phenyladenosine and ineffectively inhibited by other adenosine analogs such as 2-chloroadenosine, 3′-deoxyadenosine and tubercidin or by phosphodiesterase inhibitors such as theophylline, isobutylmethylxanthine, and N, 0-dibutyrylcyclic AMP. When uptake of 10–20
adenosine is inhibited 50–70% by dipyridamole, hexobendine, papaverine or 6-(p-nitrobenzylthio)-guanosine, the adenosine-elicited accumulation of cyclic AMP is potentiated 2–3 fold. Potentiation of the effects of low concentrations of adenosine by various agents parallels more closely their efficacy as inhibitors of adenosine uptake rather than their potency as phosphodiesterase inhibitors. Amine-elicited accumulations of cyclic AMP are enhanced by hexobendine, dipyridamole, papaverine and 6-(p-nitrobenzylthio) guanosine and this enhancement is blocked by an adenosine antagonist, theophylline. The stimulatory effects of the adenosine analogs, 5′-deoxyadenosine, 2-chloroadenosine and N6-phenyladenosine are blocked by theophylline and potentiated by hexobendine. The results are compatible with the hypothesis that the specific inhibition of uptake of adenosine potentiates adenosine or amine-elicited accumulations of cyclic AMP by increasing the effective extracellular concentration of adenosine within the slice. The inhibition or stimulation of cyclic AMP accumulation by adenosine analogs is consonant with differential activities as agonist or antagonist at an extracellular adenosine receptor.  相似文献   

4.
Time courses of [3H]uridine uptake as a function of uridine concentration were determined at 25° in untreated and ATP-depleted wild-type and uridine kinase-deficient Novikoff cells and in mouse L and P388 cells, Chinese hamster ovary cells and human HeLa cells. Short term uptake was measured by a rapid sampling technique which allows sampling of cell suspensions in intervals as short as one and one-half seconds. The initial segments of the time courses were the same in untreated, wild-type cells in which uridine is rapidly phosphorylated and in cells in which uridine phosphorylation was prevented due to lack of ATP or uridine kinase. The initial rates of uptake, therefore, reflected the rate of uridine transport. Uridine uptake, however, was approximately linear for only five to ten seconds at uridine concentrations from 20–160 μM and somewhat longer at higher concentrations. In phosphorylating cells the rate of uridine uptake (at 80 μM) then decreased to about 20–30% of the initial rate and this rate was largely determined by the rate of phosphorylation rather than transport. At uridine concentrations below 1 μM, however, the rate of intracellular phosphorylation in Novikoff cells approached the transport rate. The apparent substrate saturation of phosphorylation suggests the presence of a low Km uridine phosphorylation system in these cells. The “zero-trans” (zt) Km for the facilitated transport of uridine as estimated from initial uptake rates fell between 50 and 240 μM for all cell lines examined. The zero-trans Vmax values were also similar for all the lines (4–15 pmoles/μ1 cell H2O.sec). The time courses of uridine uptake by CHO cells and the kinetic constants for transport were about the same whether the cells were propagated (and analyzed for uridine uptake) in suspension or monolayer culture. When Novikoff cells were preloaded with 10 μM uridine the apparent Km and Vmax values (infinite-trans) were two to three times higher than the corresponding zero-trans values. Uridine transport was inhibited in a simple competitive manner by several other ribo- and deoxyribonucleosides. All nucleosides seem to be transported by the same system, but with different efficiencies. Uridine transport was also inhibited by hypoxanthine, adenine, thymine, Persantin, papaverin, and o-nitrobenzylthioinosine, and by pretreatment of the cells with p-chloromercuri-benzoate, but not by high concentrations of cytosine, D-ribose or acronycin. The inhibition of uridine transport by Persantin involved changes in both V and K. Because of the rapidity of transport, some loss of intracellular uridine occurred when cells were rinsed in buffer solution to remove extracellular substrate, even at 0°. This loss was prevented by the presence of a transport inhibitor, Persantin, in the rinse fluid or by separating suspended cells from the medium by centrifugation through oil. Metabolic conversion of intracellular uridine were also found to continue during the rinse period. The extent of artifacts due to efflux and metabolism during rinsing increased with duration of the rinse.  相似文献   

5.
[8-3H]Adenosine uptake in mouse peritoneal exudate cells, harvested following i.p. challenge with Complete Freund's Adjuvant from BALB/c mice, was found to be insensitive to common nucleoside transport inhibitors such as dilazep or 6-[(4-nitrobenzyl)mercapto]purine ribonucleoside and to require sodium ion, being inactive when sodium was replaced by lithium or potassium. These findings also applied to the adherent (macrophages) and nonadherent (polymorphonuclear cells) cell fractions prepared from the peritoneal cell mixture. Uptake was inhibited by several nucleosides including deoxyadenosine, inosine, uridine, thymidine and, to a lesser extent, by the adenosine analog tubercidin, while adenine, fructose, glucose and ribose were without effect. Uptake [8-3H]adenosine was fully matched by rapid intracellular phosphorylation to AMP, ADP and ATP. Inosine was a substrate for the transporter, but tubercidin was not. The system clearly is distinct from carrier-mediated, nonconcentrative transport and has similarities to concentrative, sodium-dependent nucleoside transporters described in other cell types.  相似文献   

6.
Abstract

The 2′-deuterio arabino analogs of tubercidin and adenosine have been prepared by Swern oxidation of the 3′,5′-TPDS derivatives of tubercidin and adenosine and reduction with NaBD4. Subsequent inversion of stereochemistry at C-2′ yielded [2′-2H]tubercidin and [2′-2H]adenosine with 98% deuterium incorporation.  相似文献   

7.
Abstract: These experiments characterize the nucleoside transport and quantify the neurotoxicity of adenosine and 2′-deoxyadenosine (dAdo) in chick sympathetic neurons. We show that [3H]adenosine transport was sensitive to low temperature, specific inhibitors of nucleoside transport, and an excess concentration of adenosine. However, many of these treatments had a marginal effect on [3H]dAdo transport. Total retention of [3H]dAdo over short and long periods was ~10 times less than that of [3H]adenosine. These data suggest that adenosine and dAdo enter sympathetic neurons by different routes. Uptake of [3H]norepinephrine ([3H]NE) decreased in neurons damaged by nucleosides and increased to control levels when neurons were protected by various agents against adenosine or dAdo toxicity. These results indicate that [3H]NE uptake serves as a quantitative index of toxicity by the nucleosides. Using this approach we demonstrate that phosphorylation of both nucleosides is essential for their lethal action. For example, iodotubercidin prevented nucleoside-induced neuronal death, but the effect was much more pronounced in the case of dAdo toxicity (IC50 of 0.83 ± 0.4 vs. 30 ± 1.6 nM). Another kinase inhibitor, 5′-amino 5′-deoxyadenosine, was effective in protecting neurons against dAdo but had no effect against adenosine toxicity. These results suggest that specific kinases are associated with the phosphorylation of adenosine and dAdo in sympathetic neurons to produce toxic metabolic products. Finally, neurons were susceptible to dAdo toxicity from the time of plating to 4 weeks in culture but were resistant to adenosine toxicity 8 h after plating. In conclusion, our results highlight major differences in the mechanism of neurotoxicity by adenosine and dAdo and provide insights for identification of biochemical pathways leading to neuronal death.  相似文献   

8.
Effects of adenosine and some of its derivatives on beef protein kinase activity were investigated in vitro. Adenosine rapidly inhibited protein kinase activity in a dose-dependent manner. Significant inhibition occured with 10 μM and half-maximal inhibition at 100 μM adenosine. Inhibition was almost complete with 5 mM adenosine. Inhibition was similar whether protein kinase activity was assayed with or without cyclic AMP. The inhibition by adenosine was reversed by increasing the concentration of ATP and Lineweaver-Burk analysis indicated that adenosine inhibition was competitive with ATP. Addition of adenosine deaminase to the incubation medium prevented the inhibition induced by adenosine. Intact 1 and N6 positions of adenosine were important for the inhibition since their mondification was associated with loss of inhibition. Modification of the 8 position of adenosine decreased, but did not abolish, the inhibition. The 2 and 3 position of ribose did not seem to be critical since 2- and 3-deoxyadenosine produced inhibition similar to that of adenosine.  相似文献   

9.
《Life sciences》1995,56(17):PL345-PL349
Two halogenated analogues of tubercidin (7-deazaadenosine) viz. 5-iodotubercidin and 5′-deoxy-5-iodotubercidin, previously were shown to be potent inhibitors of guinea-pig brain adenosine kinase activity and adenosine uptake in guinea-pig cerebral cortex slices. A further series of halogenated tubercidin analogues have been investigated; of the 9 compounds tested, 5′-deoxy-5-iodotubericidin was the most potent adenosine kinase inhibitor while 5-iodotubercidin was the most potent in inhibiting the facilitated uptake of adenosine. These compounds may be useful for elucidating the involvement of adenosine kinase in adenosine uptake, the maintenance of intracellular adenosine levels and in the neuromodulatory actions of adenosine in the CNS.  相似文献   

10.
Uptake of Adenosine by Isolated Rat Brain Capillaries   总被引:5,自引:4,他引:1  
Abstract: Adenosine uptake by isolated rat brain capillaries is a carrier-mediated, temperature- and pH-sensitive process. The K m value for adenosine uptake is 4.74 μ m and the V max is 21.7 picomol/mg protein/10 min. This is a high-affinity uptake system that can be cross-inhibited by several nucleosides and by the adenosine analogs tubercidin and 5'-deoxyadenosine. The uptake is very sensitive to inhibition by papaverine, hexobendine, and dipyridamole. These results confirm the existence of a nucleoside transport system associated with the blood-brain barrier observed during in vivo studies.  相似文献   

11.
Adenosine kinase (ATP:adenosine 5′-phosphotransferase, EC 2.7.1.20) from Lupinus luteus seeds has been obtained with good yield in almost homogeneous state by ammonium sulfate fractionation, chromatography on aminohexyl-Sepharose, and gel filtration. Active enzyme is a single polypeptide chain with a molecular weight of about 38,000 as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel nitration. Estimated molecular activity is 156. The enzyme exhibits a strict requirement for divalent metal ions. Among several ions tested the following appeared to be active as cofactors: Co2+ ? Mn2+ > Mg2+ = Ca2+ ? Ni2+ > Ba2+. The optimal metal ion concentrations were as follows: Mn2+, 0.5 mm, Mg2+ and Ca2+, 1 mm, Co2+, 1.5 mm. The adenosine kinase shows optimum activity at pH 7.0–7.5. Km values for adenosine and ATP are 1.5 × 10?6 and 3 × 10?4m, respectively. Lupin adenosine kinase is completely inhibited by antisulfhydryl reagents. ATP is the main phosphate donor and among other nucleoside triphosphates ITP, dATP, GTP, and XTP can substitute it but less effectively. Among the ribo- and deoxyribonucleosides occurring in nucleic acids adenosine is phosphorylated effectively and 2′-deoxyadenosine at a lower rate. Of other adenosine analogs tested all adenine d-nucleosides and purine derivative ribosides, besides those with a hydroxyl group at C-6, were found to be substrates for lupin adenosine kinase. Pyrimidine ribo- and deoxyribonucleosides were not phosphorylated.  相似文献   

12.
Properties of the fully developed phosphate transport system in the fertilized egg of the sea urchin, Strongylocentrotus purpuratus, were investigated. The rates of phosphate transport at concentrations of external phosphate of 1 to 44 μM, both in the absence and in the presence of 100 μM arsenate, exhibit typical saturation kinetics. At sea water concentrations of 2 μM phosphate, the rate of uptake is about 2 × 10?9 μm/egg/minute at 15°C. Arsenate is a competitive inhibitor of phosphate transport, fully and immediately reversible in its effects, yielding Ki values ranging from 10.5 to 14.1 × 10?6 M in comparison to the corresponding apparent KM (Michaelis-Menten) constants for phosphate of 5.6 to 7.5 × 10?6 M (pH 8.0, 15°C). The rate of arsenate uptake in a phosphate deficient medium amounts to 2.8 to 2.9 × 10?10 μm arsenate/egg/minute at an arsenate concentration of 2.9 to 10.2 μM arsenate (HAsO4??), which is 9.5 and 5.6% of the rate of phosphate uptake at corresponding phosphate concentrations. Arsenate has essentially the same developmental effects at initial concentrations of 5–10 μM and 100 μM arsenate, namely no observable effects for exposure periods of 7.5 hours, although longer periods result in blockage of development at the early blastula stage. Outward flux of phosphate ions cannot be demonstrated by washing prelabelled eggs with sea water containing low or high concentrations of phosphate, even when phosphorylation has been blocked by exposing the eggs to a metabolic inhibitor. Phosphate uptake rates measured in the pH range from 5.0 to 10.0 reveal a sharp optimum at pH 8.8–8.9. Reference to the apparent pK' values of the phosphoric acid system indicate that the entering species is the HPO4?? ion. The effects on rates of phosphate uptake of exposure to sea water at pH values between 7 and 10 for 30 minute periods are fully reversible, but at lower pH values, reversal is delayed, and is only partial. Sodium molybdate (0.01 M), sodium pyrophosphate (1.5 × 10?4 M), and adenosine triphosphate (1–5 × 10?4 M) for exposure periods ranging from 40 to 180 minutes did not significantly affect phosphate uptake. Omission of Ca++ ion from artificial sea water is without effect on phosphate uptake but the absence of both Ca++ and Mg++ results in profound and irreversible depression of both phosphate uptake and development. The data of this and the following paper are consistent with the conclusion that the transport of phosphate involves a surface located carrier. The apparent secondary and tertiary ionization constants of phosphoric acid in sea water (ionic strength = 0.6885) were measured, resulting in a value for pK′2 = 6.14 and for pK′3 = 10.99, at 15°C and phosphate at infinite dilution.  相似文献   

13.
Abstract

Treatment of 3′,5′-O-(tetraisopropyldisiloxanyl)adenosine and its arabino epimer with trifluoromethanesulfonyl chloride/DMAP gave the 2′-triflates in high yields. Displacements (LiN3/DMF) and deprotection gave 2′-azido-2′-deoxyadenosine and its arabino epimer which were reduced with Bu3SnH/AIBN/DMAC/benzene (or Staudinger reduction) to give 2′-amino-2′-deoxyadenosine and its epimer. Oxidation of 2′,5′-bis-O-(tert-butyldimethylsilyl)adenosine, stereoselective reduction, triflation, azide displacement, deprotection, and reduction gave 3′-amino-3′-deoxyadenosine.  相似文献   

14.
Mouse splenocytes and hamster peritoneal exudate cells (PEC), including macrophages, were shown to contain a predominantly Na(+)-dependent and inhibitor (6-[(4-nitrobenzyl)-mercapto]purine ribonucleoside, NBMPR)-resistant transport system for adenosine and other nucleosides. Adenosine (1 microM) was transported about equally in mouse thymocytes and human monocytes from peripheral blood by a Na(+)-dependent system and the NBMPR-sensitive facilitated diffusion system. Hamster PEC also transported inosine, tubercidin, formycin B, uridine, and thymidine in a NBMPR-insensitive manner. With the exception of formycin B, all nucleosides were phosphorylated intracellularly to varying degree, adenosine being almost fully phosphorylated. During the time course of routine experiments (30 s) formycin B was concentrated twofold over external medium levels (1 microM) without any drop-off in the transport rate. On the basis of metabolic studies it was estimated that uridine and tubercidin were also transported against a concentration gradient. Inosine, guanosine, 2'-deoxyadenosine, tubercidin, formycin B, and the pyrimidines uridine, thymidine, and cytidine (all 100 microM) inhibited transport of adenosine and inosine about 50-100%, while 3'-deoxyinosine showed weak inhibitory action. Transport of thymidine was strongly inhibited by nucleosides except by 3'-deoxyinosine. The Na(+)-dependent, active, and concentration transport system appears to be a feature of many immune-type cells, and its presence offers particular conceptual possibilities for the therapy of infections located in these cells.  相似文献   

15.
Five analogues of ATP and six other non-nucleotide compounds with phosphate groups were tested as gorging stimulants for second-instar larvae of Rhodnius prolixus to determine the importance of the phosphate chain. Only molecules with terminal phosphate groups were potent. Insertion of an imido group (5′-Adenylylimidodiphosphate, AMP-PNP) or a methylene group (β, γ-Methylene adenosine 5′-triphosphate, AMP-PCP) between the β and γ phosphates of ATP reduced the potency compared to ATP by ratios of 1.8 and 25.5, respectively. Substituting ribose (Adenosine 5′-diphosphoribose, AMP-PR) for the γ phosphate group or an amidate or a sulphate group (Adenosine 5′-phosphoramidate, AMP-N; Adenosine 5′-phosphosulphate, AMP-S) for the β and γ phosphate groups of ATP resulted in a complete loss of stimulatory activity.Some non-nucleotide phosphate compounds were potent phagostimulants. Pyrophosphate with an ED50 of 64 μM had a potency ratio compared with ATP of 1:17. Methylene diphosphonic acid (ED50 680 μM) and even single phosphate ions (ED50 2.5 mM) had substantial potency. Two isomers of phosphoglyceric acid differ greatly in their ability to stimulate gorging; 2-PGA was active (ED50 160 μM) whereas 3-PGA had almost no activity.A summary of known phagostimulants to R. prolixus supports the hypothesis that ATP-like gorging stimulants act by forming a temporary binding to 3 sites on a receptor protein in the membrane of the chemosensory cell. The amino group on C6 of adenine, the OH group on C2 of ribose and the terminal phosphate group(s) determine potency, presumably by determining binding affinity. However, only the phosphate group appears essential to the chemosensory process.  相似文献   

16.
Adenosine and certain adenosine analogues inhibit beef thyroid membrane adenylate cyclase. The inhibition has a rapid onset, is not directly on the catalytic or nucleotide regulatory sites, occurs with all activators tested (ITP, Gpp(NH)p, TSH, and F?), and is seen also in mouse and human thyroid membranes. Addition of manganous ion, which activates adenylate cyclase, markedly enhances the inhibition by adenosine analogues. The order of potencies is: 2′,5′-dideoxyadenosine > 5′-deoxyadenosine > 2′-deoxy-3′-phosphoadenosine > 2′-deoxyadenosine > adenosine > adeninexyloside > adenine arabinoside. Purinemodified analogues are either inactive or stimulate slightly at high concentrations. This chemical specificity, the Mn2+ requirement, and the lack of reversal by theophylline, suggest that these membranes have little “R” site activity (stringent for the ribose moiety) and primarily contain a “P” site that has stringent purine requirement but permits changes in the ribose moiety. This site appears to be associated with the catalytic unit since it persists in solubilized adenylate cyclase.  相似文献   

17.
Adenosine is present in the mouse follicular fluid and has been shown to interfere with oocyte maturation in vitro. To clarify the mechanism of adenosine action on meiotic arrest, we have characterized the synergistic action of this purine with forskolin on the meiotic resumption of mouse denuded oocytes. Forskolin delays meiotic resumption by approximately 1 hour; adenosine at concentrations ranging between 30–750 μM has no significant effect. Conversely, adenosine treatment together with forskolin produces a further delay in the resumption of meiosis. This adenosine effect is dose-dependent and mimicked by adenosine analogs like N6-phenylisopropyl adenosine (PIA), 2-chloroadensoine (2-CLA), 5′-N-ethylcarboxamide (NECA). Dipyridamole, which inhibits adenosine transport, does not prevent the meiosis-arresting synergistic effect of adenosine with forskolin. Adenosine causes a 50% increase of adenosine triphosphate (ATP) content in the oocyte. However, this increase is not directly responsible for the observed delay in the oocyte maturation for the following reasons: (1) the dose response of inhibition of meiotic resumption does not correlate with the doses of adenosine producing an increase in ATP; (2) dipyridamole blocks the increase in intracellular ATP, but it has no effect on the adenosine inhibition of maturation; (3) adenosine analogs inhibit oocyte maturation but do not affect intracellular ATP levels. These results suggest that the synergism of adenosine with forskolin on meiotic arrest does not require uptake of the nucleoside nor its conversion to ATP and that the adenosine effects are exerted at the level of the oocyte plasma membrane.  相似文献   

18.
The intracellular accumulation of free [3H] adenosine was measured by rapid kinetic techniques in P388 murine leukemia cells in which adenosine metabolism (phosphorylation and deamination) was completely prevented by depletion of cellular ATP and by treatment with deoxycoformycin. Nonlinear regression of integrated rate equations on the data demonstrate that the time courses of labeled adenosine accumulation at various extracellular adenosine concentrations in zero-trans and equilibrium exchange protocols are well described by a simple, completely symmetrical, transport model with a carrier:substrate affinity constant of about 150 μM. Adenosine transport was not affected by 1 mM deoxycoformycin indicating that this analog has a low affinity for the nucleoside transport system. The transport capacity of dog thymocytes and peripheral leukocytes was similar to that of P388 cells. Transport was not inhibited by deoxycoformycin and remained constant during the first two hours after mitogenic stimulation with concanavalin A. In untreated, metabolizing P388 cells transport was found to be the major determinant of the rate of intracellular metabolism, regardless of the extracellular adenosine concentration (up to at least 160 μM), but the long-term accumulation (longer than 30–60 seconds) of radioactivity from extracellular adenosine strictly reflected the rate of formation of nucleotides (mainly ATP). The metabolism of adenosine by whole cells was entirely consistent with the kinetic properties of the transport system and those of the metabolic enzymes. At low exogenous adenosine concentrations (1 μM and below) transport was slow enough to allow direct phosphorylation of most of the entering adenosine. The remainder was deaminated and rapidly converted to nucleotides via inosine, hypoxanthine, and IMP. At concentrations of 100 μM or higher, on the other hand, influx exceeded the maximum velocity of adenosine kinase about 100 times so that most of the entering adenosine was deaminated. But since the maximum velocity of adenosine deaminase exceeded those of nucleoside phosphorylase and hypoxanthine/guanine phosphoribosyltransferase about 5 and 100 times, respectively, hypoxanthine and inosine rapidly exited from the cells and accumulated in the medium. A 98% reduction of adenosine transport (at 100 μM), caused by the transport inhibitor Persantin, inhibited adenosine deamination by whole cells to about the same extent as transport, whereas adenosine phosphorylation was relatively little affected; thus in the presence of Persantin, transport and metabolism resembled that occurring at the low adenosine concentration. These and other results indicate that adenosine deamination is an event distinct from transport, which occurs only subsequent to adenosine's transport into the cell.  相似文献   

19.
Two cyclic AMP-independent protein kinases from rat liver nuclei were inhibited competitively by adenosine and a variety of its analogues: cardycepin, tubercidin, 6-mercaptopurine riboside, 6-methylaminopurine riboside, 6-dimethylaminopurine riboside, and 2'-deoxyadenosine. Neither enzyme was inhibited by 6-methoxypurine riboside. Kinase NI was more sensitive to cordycepin, tubercidin, 6-methylaminopurine riboside,, 2'-deoxyadenosine, and adenosine than was kinase NII. Although the effects of all analogues tested were reversed by increasing the concentration of ATP, kinases NII and NI exhibited marked differences in their affinities for adenosine. The results presented here suggest that 1) differences in the catalytic properties of nuclear protein kinases can be detected by inhibitor studies and 2) modifications in the purine ring and sugar moiety of an adenosine analogue can alter its ability to inhibit nuclear protein kinases.  相似文献   

20.
We studied the ability of purine compounds to restore the proliferation of concanavalin-A-stimulated rat T-lymphocytes under conditions of purine de novo synthesis inhibition and, on the other hand, the inhibition by purine nucleosides of the response of these cells to a mitogenic stimulation under conditions of normal purine de novo synthesis. The use of 50 μM azaserine, a potent inhibitor of purine de novo synthesis, allowed us to define the physiologically active salvage pathways of purine bases, ribo- and deoxyribonucleosides in concanavalin-A-stimulated rat T-lymphocytes. Except for guanylic compounds, all purines completely restored cell proliferation at a concentration of 50 μM. Guanine, guanosine and 2′-deoxyguanosine at concentrations up to 500 μM did not allow us to restore more than 50% of the cell proliferation. In conditions of normal purine de novo synthesis, the addition of 1000 μM adenine, adenosine, 2′-deoxyadenosine or 100 μM 2′-deoxyguanosine inhibited rat T-lymphocyte proliferation. The differences between the degree of inhibition of cell proliferation could be explained only in part by the differences between the capacities of salvage of these compounds. Furthermore, the fact that 2′-deoxyguanosine toxicity was dependent and 2′-deoxyadenosine toxicity independent on the activation state of the cells provided more evidence that the biochemical mechanisms of inhibition of cell proliferation should be different for these two nucleosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号