首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variants of Chinese hamster ovary and Novikoff rat hepatoma cells resistant to tubercidin and 2,5-diaminopurine, or to both drugs, were isolated, and their ability to convert adenosine and various adenosine analogs to nucleotides was compared to that of wild-type cells, both in intact cells and cell-free extracts. Adenosine deamination, and thus its conversion to nucleotides via inosine-hypoxanthine-inosine monophosphate, was inhibited by pretreatment of the cells or cell extracts with 2-deoxycoformycin. Cell-free extracts of the tubercidin-resistant variants, as well as of two adenosine-resistant mutants of Chinese hamster ovary cells, phosphorylated adenosine, tubercidin, pyrazofurin, or tricyclic nucleoside in the presence of ATP at less than 1% of the rate of extracts of wild-type cells. However, addition of phosphoribosyl pyrophosphate stimulated the conversion of adenosine to nucleotides 40-fold. Similarly, intact adenosine kinase-deficient cells failed to phosphorylate the adenosine analogs, but still converted adenosine to nucleotides at 5-10% the rate observed with wild-type cells. Phosphorylation of adenosine and tubercidin in wild-type cells was inhibited by substrate at concentration above 5-10 microM. In contrast, the rate of conversion of adenosine to nucleotides by adenosine kinase-deficient cells increased linearly up to a concentration of 400 microM adenosine, with the consequence that, at this concentration, these cells took up adenosine almost as rapidly as wild-type cells. Adenosine uptake by these kinase-deficient cells was inhibited by adenine and 5'-deoxyadenosine, and was largely abolished in mutants devoid also of adenine phosphoribosyltransferase. We conclude that adenosine is converted to nucleotides in adenosine kinase-deficient cells via adenine. Indirect evidence implicates 5'-methylthioadenosine phosphorylase as the enzyme responsible for the degradation of adenosine to adenine.  相似文献   

2.
The transport of various deoxyribonucleosides by cultured Novikoff rat hepatoma cells (subline N1S1-67) follows normal Michaelis-Menten kinetics. The transport reactions are competitively inhibited by most heterologous deoxy- and ribonucleosides and by Persantin and Cytochalasin B. Comparisons of the transport kinetics of the various deoxyribonucleosides (Km and Vmax ) and of the Km/Ki ratios for the inhibitions indicate that deoxythymidine, deoxyuridine and 5-fluordeoxyuridine are transported by a single system, whereas deoxycytidine and the purine deoxyribonucleosides are transported by other systems. The data suggest that deoxyadenosine, deoxyguanosine and deoxyinosine, are not transported by a single system, but the number of transport systems involved could not be established unequivocally. Similar comparisons also suggest that the deoxyribonucleosides are transported by different systems than the ribonucleosides. All deoxyribonucleoside transport systems are inhibited to about the same extent by Persantin (Ki = 1–2 μM) and Cytochalasin B (Ki = 4–12 μM). The inhibitions of deoxynucleoside transport resulted in corresponding apparent competitive inhibitions of their incorporation into nucleic acids.  相似文献   

3.
Suspension cultures of Novikoff rat hepatoma cells were synchronized by a double hydroxyurea block. About 80% of the cells of the population doubled 5 to 8 h after the reversal of the second hydroxyurea block. At all stages of the cell cycle, thymidine was rapidly incorporated into the acid-soluble pool of the cells (mainly dTTP) and the rate of incorporation was limited by the rate of thymidine transport. The rate of thymidine transport per cell roughly doubled during the S or late S phase and decreased again to the base level during cell division. This was reflected by corresponding changes in Vmax for thymidine transport, whereas the apparent Km remained constant throughout the cell cycle.  相似文献   

4.
Regulation of polyamine transport in Chinese hamster ovary cells   总被引:1,自引:0,他引:1  
Control Chinese hamster ovary (CHO) cells and mutant CHO cells lacking ornithine decarboxylase activity (CHODC-) were used to study the regulation of polyamine uptake. It was found that the transport system responsible for this uptake was regulated by intracellular polyamine levels and that this regulation was responsible for the maintenance of physiological intracellular levels under extreme conditions such as polyamine deprivation or exposure to exogenous polyamines. Polyamine transport activity was enhanced by decreases in polyamine content produced either by inhibition of ornithine decarboxylase with alpha-difluoromethylornithine in CHO cells or via polyamine starvation of CHODC- cells. The provision of exogenous polyamines resulted in rapid and large increases in intracellular polyamine content followed by decreased polyamine transport activity. Soon after this decrease in uptake activity, intracellular polyamine levels then fell to near control values. Cells grown in the presence of exogenous polyamines maintained intracellular polyamine levels at values similar to those of control cells. Protein synthesis was necessary for the increase in transport in response to polyamine depletion, but appeared to play no role in decreasing polyamine transport. Bis(ethyl) polyamine analogues mimicked polyamines in the regulation of polyamine transport but this process was relatively insensitive to regulation by methylglyoxal bis(guanylhydrazone), a spermidine analogue known to enter cells via this transport system and to accumulate to very high levels.  相似文献   

5.
The transport of L-arginine has been characterized in Chinese hamster ovary cells (CHO). In the absence of Na+ the influx of the amino acid decreased. Both in the presence and in the absence of Na+ L-arginine influx was trans-stimulated and cis-inhibited by cationic amino acids. The amino acid entered CHO cells through an apparently non saturable mechanism and a single saturable agency whose Km increased in the absence of Na+. These results indicate that the agency devoted to transport cationic amino acids in CHO cells resembles system y+, the Na+-independent route that transports cationic amino acids in a number of mammalian models, although its activity is lowered by the replacement of extracellular sodium.  相似文献   

6.
DEAE-Sephadex chromatography of cytosols of Chinese hamster ovary cells incubated with tritium-labeled 25-hydroxycholesterol shows a peak of specific binding activity. This binding activity can be assayed by determining the amount of labeled 25-hydroxycholesterol in cytosol which is refractory to adsorption to activated charcoal at high specific activity but can be made to adsorb to charcoal in the presence of a 50-fold excess of unlabeled 25-hydroxycholesterol. The binding activity shows positive cooperatively (Hill coefficient = 2.3 ± 0.3) and high affinity (dissociation constant = 1.4 × 10?7m). Inactivation of binding by trypsin or boiling suggests that the binding activity is a protein. The sedimentation coefficient of the binding activity is 5 S. Binding of 25-hydroxycholesterol is competitive with several other sterols and correlates well with the concentrations of these compounds that inhibit cholesterol biosynthesis.  相似文献   

7.
Summary The present study was undertaken to provide information on the presence and frequency of satellite nucleoli in cells with increased nucleolar biosynthetic activity. The number of hepatocytes containing satellite nucleoli was analyzed in rat liver, regenerating liver 18 h after partial hepatectomy and in Novikoff hepatoma ascites cells. In comparison with hepatocytes of normal liver, the number of both stimulated hepatocytes and malignant hepatoma cells containing satellite nucleoli was significantly reduced. The results also indicated that whereas most satellite nucleoli contain protein C23, a smaller percentage contain protein B23.  相似文献   

8.
The rate with which Novikoff rat hepatoma cells took up exogenous hypoxanthine increased sharply towards the end of the logarithmic growth phase, remained high for several hours into the stationary phase, and then decreased again. In an effort to account for these phenomena, several biochemical parameters were monitored during culture growth: the activities of the hypoxanthine transporter, of hypoxanthine phosphoribosyltransferase, and of P-Rib-PP synthetase; and the intracellular concentrations of ATP and P-Rib-PP. All of these parameters remained virtually constant during growth of the culture, except for P-Rib-PP, which increased greater than 10-fold in a pattern similar to that for hypoxanthine uptake. The activities of the transporter, synthetase, and phosphoribosyltransferase remained stable over 7 h of treatment with cycloheximide.  相似文献   

9.
We have studied by flow cytometry the transport of fluorescein-methotrexate in Chinese hamster ovary cells. Fluorescein-methotrexate appears to enter cells via a mechanism different from the carrier-mediated system for methotrexate. This conclusion is supported by the following observations: 1) Fluorescein-methotrexate is transported equally well into normal and mutant cells defective in the inward methotrexate uptake. 2) Folic acid and its reduced states, which competitively inhibit methotrexate uptake, do not alter fluorescein-methotrexate transport. 3) Fluorescein-methotrexate accumulation exhibits a low temperature coefficient (Q10 = 1.6) compared with the influx of methotrexate (Q10 = 6-8). 4) Initial rates of fluorescein-methotrexate uptake are concentration dependent but are not saturable. 5) Fluorescein-methotrexate uptake is very slow and reaches steady state after 8 h, whereas at an equimolar concentration methotrexate reaches saturation after 20 min. 6) Initial influx rates of fluorescein-methotrexate are not affected by the presence of methotrexate. 7) Sulfhydryl-reactive mercurials, which block methotrexate transport, do not reduce fluorescein-methotrexate influx, but rather stimulate it. Thus, based on the nonsaturability of fluorescein-methotrexate inward transport, its low temperature coefficient, and lack of inhibition with structural analogs, we conclude that fluorescein-methotrexate is accumulated in hamster cells by a passive diffusion process.  相似文献   

10.
The CHO cell line stably producing recombinant rat NT-3 was established. The insertion of rNT-3 cDNA into transferred cell gonome was analyzed with Southern blot. The expressed protein was identified by Dot ELISA (enzyme-linked immunosorbent assay) and Western blot. Western blot showed a clear specifie band of about 14 ku for NT-3. The mean level of rNT-3 in four NT-3eDNA/CHO cell lines was about 2 100 ng/10~6 cells/48 h determined by EIA. The conditioned-medium (CM) of NT-3cDNA/CHO cells could promote the fiber outgrowth of the dissociated dorsal root ganglion of 8-day-old chick embryos, which shows a dose-response relationship. A half-maximal concentration of the biological activity (EC50) of the recombinant protein was approximately 16.7 ng/mL. The MoAb 3W3 of NT-3 could neutralize the biological activity of the rNT-3.  相似文献   

11.
The CHO cell line stably producing recombinant rat NT-3 was established. The insertion of rNT-3 cDNA into transferred cell gonome was analyzed with Southern blot. The expressed protein was identified by Dot ELISA (enzyme-linked immunosorbent assay) and Western blot. Western blot showed a clear specific band of about 14 ku for NT-3. The mean level of rNT-3 in four NT-3cDNA/CHO cell lines was about 2 100 ng/106 cells/48 h determined by EIA. The conditioned-medium (CM) of NT-3cDNA/CHO cells could promote the fiber outgrowth of the dissociated dorsal root ganglion of 8-day-old chick embryos, which shows a dose-response relationship. A half-maximal concentration of the biological activity (EC50) of the recombinant protein was approximately 16.7 ng/mL. The MoAb 3W3 of NT-3 could neutralize the biological activity of the rNT-3.  相似文献   

12.
Cytochalasin B competitively inhibits the transport of uridine and thymidine by Novikoff rat hepatoma cells growing in suspension culture with apparent Ki''s of 2 and 6 µM, respectively, but has no effect on the intracellular phosphorylation of the nucleosides. Choline transport is not affected by cytochalasin B. Results from pulse-chase experiments indicate that cytochalasin B has no direct effect on the synthesis of RNA, DNA, or uridine diphosphate-sugars. The inhibition of uridine and thymidine incorporation into nucleic acids by cytochalasin B is solely the consequence of the inhibition of nucleoside transport.  相似文献   

13.
L S Siegel  R W Bernlohr 《In vitro》1979,15(7):545-554
Novikoff rat hepatoma cells (subline N1S1-67) grew when 30 mM L-lactate or pyruvate was substituted for D-glucose in Swim's medium 67 supplemented with dialyzed calf bovine serum. A 2.6-fold increase in cell number (1.34 generations) was obtained. RNA, DNA, protein and dry weight increased in proportion to the cell number. In control medium lacking L-lactate, pyruvate or D-glucose, cell growth of 0.42 generation was obtained. Growth with L-lactate was dependent on the L-lactate concentration up to 30 mM at which the greatest increase in cell number occurred. Significant growth did not occur when D-lactate, glycerol, acetate, alpha-ketoglutarate, succinate or malate, each at 30 mM, was substituted for D-glucose. Growth in the medium containing L-lactate was not due to the utilization of D-glucose or some other substrate carried into the culture with the inoculum. Medium contamination by D-glucose was insufficient to explain the growth obtained in the medium containing L-lactate, but could have accounted for growth in the control medium. Throughout growth, the concentration of L-lactate in the medium remained unchanged. The increase in cell number cannot be explained by L-lactate triggering the utilization of glycogen, nor by oxidation and degradation of protein, amino acids, fatty acids, or carbohydrate moieties of glycoprotein in the medium. L-Lactate does not serve as a significant carbon or energy source in the growth of these cells.  相似文献   

14.
Incorporation of thymidine into Novikoff rat hepatoma cells was analyzed with a rapid sampling technique which allowed collection of 12 time points in 20 sec. Transport was studied in the absence of metabolism by using either ATP-depleted cells or a thymidine kinase negative subline. Transport was a rapid, saturable, nonconcentrative process with a Km of about 85 μM. The intracellular thymidine pool was also rapidly labeled in cells which phosphorylated thymidine, so that a group translocation process involving thymidine kinase can be ruled out. Under all conditions examined, phosphorylation, not the transport, of thymidine was the rate-determining step in its incorporation into the acid-soluble pool. Estimation of transport rates from total incorporation into cells which phosphorylate the substrate is invalid in this cell system and must be questioned in all instances.  相似文献   

15.
16.
17.
We have investigated the effect of colcemid-induced disassembly of microtubules, which is accompanied by retraction of the endoplasmic reticulum and fragmentation of the Golgi apparatus, on glycoprotein biosynthesis and transport in Chinese hamster ovary (CHO) cells. CHO cells were metabolically radiolabeled with [6- 3H]galactose or [2- 3H]mannose in the presence of either 0.1% dimethyl sulfoxide or 10 microM colcemid in dimethyl sulfoxide. The fine structure of glycoprotein asparagine-linked oligosaccharide structures synthesized in the presence or absence of colcemid was analyzed by lectin affinity chromatography, ion exchange chromatography, and methylation analysis using radiolabeled glycopeptides prepared by Pronase digestion. The fractionation patterns of [3H]mannose- and [3H]galactose-labeled glycopeptides on immobilized lectins indicated that processing to complex N-linked chains and poly-N-acetyllactosamine modification were similar in control and colcemid-treated cells. In addition, colcemid treatment did not alter the extent of sialylation or the linkage position of sialic acid residues to galactose. Using a trypsin release protocol, it was also found that the transport of newly synthesized glycoproteins to the cell surface was not affected by colcemid. These results demonstrate that the morphologically altered ER and Golgi apparatus in colcemid-treated CHO cells are completely functional with respect to the rate and fidelity of protein asparagine-linked glycosylation. Furthermore, movement of newly synthesized glycoproteins to and through the ER and Golgi apparatus and their transport to the cell surface in nonpolarized cells appears to be microtubule-independent.  相似文献   

18.
Pesticide clastogenicity in Chinese hamster ovary cells   总被引:3,自引:0,他引:3  
M F Lin  C L Wu  T C Wang 《Mutation research》1987,188(3):241-250
Paraquat, alachlor, butachlor, phorate and monocrotophos, several of the most extensively used pesticides in Taiwan, were investigated for their clastogenicity using chromosome aberration (CAb) induction in Chinese hamster ovary (CHO) cells. Significance levels of the binomial trend analysis and binomial mutagenicity data test were two criteria for the summary judgement of the pesticide clastogenicity. Except for phorate, all pesticides tested were clastogenic to CHO cells in the absence of in vitro metabolic activation by S9. 5 microliters/ml rat-liver extract, S9, were used as the source of in vitro metabolic activation. 3 different outcomes were found after the addition of S9. Paraquat: significant decrease in induced CAbs. Monocrotophos: concomitant occurrence of decreased cytotoxicity and increased clastogenicity. Alachlor, butachlor and phorate: increased cytotoxicities with no sign of enhancement in clastogenicity.  相似文献   

19.
Chinese hamster ovary cell mutants defective in myo-inositol transport   总被引:1,自引:0,他引:1  
By means of an in situ colony autoradiographic assay for the incorporation of [14C]inositol into the trichloroacetic acid-insoluble fraction, we have isolated a mutant of cultured Chinese hamster ovary cells defective in inositol transport, named mutant 648. Through comparison of the inositol uptake activity of 648 cells with that of the parental cells with various concentrations of inositol and sodium, it has been demonstrated that Chinese hamster ovary cells possess a sodium-dependent transport system for inositol, and that 648 cells lack this system. The sodium-dependent uptake is inhibited by 2,4-dinitrophenol and ouabain, and the intracellular concentration of inositol exceeds the extracellular concentration during the uptake period, indicating that it is active transport, at least partially driven by the sodium gradient generated by Na+,K(+)-ATPase. The apparent Km for inositol has been estimated to be 12.0 microM. It is inhibited by hyperglycemic concentration of D-glucose in a competitive fashion.  相似文献   

20.
《Mutation Research Letters》1995,346(4):221-230
Some chemical carcinogens localize preferentially in mitochondrial DNA (mtDNA) when compared with genomic DNA (gDNA). Here we compare the ability of cisplatin (cis-diamminedichloroplatimum[II]) to induce DNA adducts in both genomic and mtDNA of Chinese hamster ovary (CHO) cells in culture. Cytotoxicity was examined by cell survival 4, 8 and 24 h afer exposure to 50 μM cisplatin. Cisplatin-DNA adducts were measured in DNA from nuclear and mitochondrial fractions by dissociation-enhanced lanthanide fluoroimmunoassay (DELFIA), a sensitive competitive microtiter-based immunoassay utilizing antiserum elicited against cisplatin-modified DNA. An additional comparison of cisplatin-DNA binding in both compartments was performed by immunoelectron microscopy using the cisplatin-DNA antiserum and colloidal gold. DELFIA analysis of cisplatin-DNA adducts in gDNA and mtDNA showed a six-fold higher incorporation of drug into mtDNA as compared to gDNA. Morphometric studies of colloidal gold distribution in photomicrographs of CHO cells showed mtDNA to contain a four-fold higher concentration of cisplatin as compared to nuclear DNA. Therefore, both methods demonstrated a preferential binding of cisplatin to mtDNA versus gDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号