首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Periphyton growth and diatom community structure in a cooling water pond   总被引:3,自引:3,他引:0  
Periphyton (Aufwuchs) accumulation was measured on artificial substrates in a pond in central Finland which receives warm cooling-water effluent from a power plant. The growth of periphyton was generally more rapid on the substrates during the first two weeks of colonization near the inflow of the warm water effluent than in the middle of the pond. The maximum accumulation of periphyton was in spring and autumn (dry weight maximum at warm effluent was in spring 3.5 mg DW cm−2,2.65 mg AFDW cm−2; chlorophyll a maximum 3.96 μg cm−2 was found in autumn at pond-middle station). During mid-winter months the growth was strongly limited by solar radiation, but the growth was also slow at both stations in the summer months, when the power plant was out of operation. The periphyton accumulation rate was fastest near the water surface and decreased rapidly with increasing depth. A total of 167 diatom species were found in periphyton samples. However, most species were rare; many of the dominants were common to both plankton and periphyton. Species similarity analyses (Jaccard's similarity) between 10 different diatom communities (including periphyton from 9 different types of substrates and phytoplankton) indicated low similarity index values although differences between communities were not significant.  相似文献   

2.
Periphyton constitutes an important community that is useful for assessment of ecological conditions in lotic systems. The objective of this study was to assess the effects of different mixtures of Cd and Pb on periphyton growth as well as Cd and Pb mixtures toxicity to diatom assemblages in laboratory mesocosm experiments. A natural periphyton community sampled from the Monjolinho River (South of Brazil) was inoculated into five experimental systems containing clean glass substrates for periphyton colonization. The communities were exposed to mixtures of dissolved Cd and Pb concentrations of 0.01 and 0.1 mg l−1 Cd and 0.033 and 0.1 mg l−1 Pb. Periphyton ash-free dry weight, growth rate, diatom cell density and diatom community composition were analyzed on samples collected after 1, 2 and 3 weeks of colonization. High Cd concentration (0.1 mg l−1) has negative effects on periphyton growth while high concentration of Pb (0.1 mg l−1) decreased the toxic effects of Cd on periphyton growth. Shifts in species composition (development of more resistant species like Achnanthidium minutissimum and reduction of sensitive ones like Cymbopleura naviculiformis, Fragilaria capucina, Navicula cryptocephala, Encyonema silesiacum, Eunotia bilunaris, and Gomphonema parvulum), decreases in species diversity of diatom communities with increasing Cd and Pb concentrations and exposure duration have been demonstrated in this study making diatom communities appropriate monitors of metal mixtures in aquatic systems.  相似文献   

3.
Periphyton development was studied on microscopic glass slides and leaves of Zostera noltii Hornem. in an intertidal area in the Banc d'Arguin (Mauritania). The effects of shading, tidal depth and grazing activities by the fiddler crab Uca tangeri Eydoux were evaluated. For all experiments, periphyton ash content was high (52–93%) and ash-free dry weight ranged between 0.10–0.63 mg cm–2. Slides accumulated more periphyton than leaves.Artificial shading (62–99%) for 13 days had no effect on periphyton densities on leaves. Increased tidal depth resulted in higher ash-free dry weight on slides, but in lower ash-free dry weight on leaves. Significant variation along the coastline also existed. The effect of fiddler crabs was studied using exclosures. Presence of fiddler crabs reduced periphyton density on slides, whereas light transmittance was increased. On leaves, no significant fiddler crab effect was found. This difference between leaves and slides was probably caused by a storm at the day before the end of the experiment, and by the higher periphyton density on slides as compared with leaves. As visual inspection during the experiment showed clear differences in appearance of leaves inside and outside the exclosures, the storm probably sloughed off mainly the older leaves, i.e. those on which the differences in periphyton cover were the highest.It is hypothesized that periphyton accumulation is higher with increased tidal depth, whereas fiddler crab grazing pressure also increases in this direction. The result is a decreased periphyton density with increased tidal depth.The presently found light extinction coefficients (mean 0.8 m–1) and periphyton light attenuance (up to 25%) in Banc d'Arguin are not likely to affect seagrass leaf growth.  相似文献   

4.
Suspended and benthic algal communities from a mildly acidic, third-order Rhode Island stream were examined to determine the seasonal distribution, abundance and diversity of the lotic desmids. Within a one-year sampling period, 148 species and 202 subspecific taxa of desmids were identified, representing 23 genera. Species of Cosmarium and Closterium accounted for approximately 70% of the desmids present, and were the most diverse and abundant taxa during all seasons except spring, when Hyalotheca dissiliens was the dominant desmid species. Average abundance and species richness generally were greatest during summer for both suspended and benthic desmids. Most desmids occurred in benthic habitats, and were randomly distributed among substrata. Average seasonal abundance was 7.4 × 104 cells·g?1 dry wt substratum, among 13 types of substrata. Highest desmid abundance was measured among substrata with intricate morphologies, such as Fontinalis spp., which was associated with 1.2 × 106 desmid cells·g?1 dry wt substratum, or 1.7 × 103 cells·cm?2 substratum. Cell division was observed for 70 desmid taxa, and average seasonal reproduction (based on cell numbers) among all substrata ranged from 4% in winter to 20% during summer. In addition, sexually produced zygospores were found occasionally for H. dissiliens. Desmids were distributed among most substrata examined in this stream, with abundance comparable to reported estimates from softwater lakes and acid bogs. In contrast to established dogma, lotic desmids are not incidental drift organisms, but rather comprise a viable and persistent component of the stream periphyton.  相似文献   

5.
Lipid content and lipid class composition were determined in stream periphyton and the filamentous green algae Cladophora sp. and Spirogyra sp, Sterols and phospholipids were compared to chlorophyll a (chl a) as predictors of biomass for stream periphyton and algae. Chlorophyll a, phospholipids, and sterols were each highly correlated with ash-free dry mass (AFDM) (r2 > 0.98). Stream periphyton exposed naturally to high light (HL) and low light (LL) had chl a concentrations (μg chl a-mg?1AFDM) of 7.9± 0.7 and 12.4 ± 2.9, respectively, while the sterol concentrations of these HL and LL stream periphyton (1.6 ± 0.4) were not significantly different (P > 0.05). Periphyton exposed to an irradiance of 300 μmol photons·m?2s?1 in the laboratory for 60 h had 5.6 ± 0.55 μg chl a·mg?1 AFDM, but the same periphyton exposed to 2% incident light for the same amount of time had 11.0 ± 0.56 μg chl mg?1 AFDM. Sterol concentrations in these periphyton communities remained unchanged (1.5 ± 0.3 μg·mg?1AFDM), Similar results (i.e. changes in chl a but stability of sterol concentrations in response to irradiance changes) were also found for Cladophora and Spirogyra in laboratory experiments. Sterols can be quantified rapidly from a few milligrams of algae and appear to be a useful predictor of eukaryote biomass, whereas cellular levels of chl a vary substantially with light conditions. Phospholipids (or phospholipid fatty acids) are considered to be a reliable measure of viable microbial biomass. Nevertheless, phospholipid content varied substantially and unpredictably among algae and periphyton under different light regimes. Irradiance also had a significant effect on storage lipids: HL Cladophora and HL periphyton had 2 × and 5 × greater concentrations of triacylglycerols, respectively, compared to their LL forms. HL and LL algae also differed in the concentration of several major fatty acids. These light-induced changes in algal lipids and fatty acids have important implications for grazers.  相似文献   

6.
Efforts to increase the productivity of microalgal cultures have been focused on the improvement of photobioreactors, but little attention has been paid to the nutritional requirements of microalgae in order to improve culture media formulation. In this study, the main goal was obtaining a high productivity for Tetraselmis suecica (Chlorophyta) in semicontinuous culture by adding magnesium (Mg), silicon (Si), and strontium (Sr) at concentrations from 0.01 to 10 mM; at the time, the effect on steady-state cell density, biochemical composition, and antioxidant activity of T. suecica was evaluated. Because productivity is higher in high-density cultures, the work was focused many times to cell density. Mg (3 mM) and Sr (0.1 mM) added separately reached the highest steady-state cell density (7.0?×?106?±?0.4 cells mL?1) in comparison to control (4.2?±?0.1 cells mL?1), but simultaneous addition had a synergic effect, achieving 8.7?×?106?±?0.6 cells mL?1. Silicon (3 mM) significantly affected the steady-state cell density, reaching 6.0?±?0.3 cells mL?1 and increased the cell ash-free dry weight, reaching 127?±?7.9 pg cell?1 in comparison to control (102.7?±?5.0 pg cell?1), resulting in an ash-free dry weight productivity of 0.75?±?0.07 g?L?1 day?1. The highest fatty acids content and antioxidant activity, measured by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) method were obtained with Sr 10 mM. Sr treatments showed a high correlation (R 2?=?0.98) between DPPH inhibition and polyphenolic content, explaining its high antioxidant activity. Therefore, the addition of Mg, Si, and Sr to culture medium of T. suecica is recommended to achieve high steady-state cell density in semicontinuous cultures.  相似文献   

7.
The Florida Everglades is a mosaic of short and long-hydroperiod marshes that differ in the depth, duration, and timing of inundation. Algae are important primary producers in widespread Everglades’ periphyton mats, but relationships of algal production and community structure to hydrologic variability are poorly understood. We quantified differences in algal biomass and community structure between periphyton mats in 5 short and 6 long-hydroperiod marshes in Everglades National Park (ENP) in October 2000. We related differences to water depth and total phosphorus (TP) concentration in the water, periphyton and soils. Long and short-hydroperiod marshes differed in water depth (73 cm vs. 13 cm), periphyton TP concentrations (172μg g−1 vs. 107 μg g−1, respectively) and soil TP (284 μg g−1 vs. 145 μg g−1). Periphyton was abundant in both marshes, with short-hydroperiod sites having greater biomass than long-hydroperiod sites (2936 vs. 575 grams ash-free dry mass m−2). A total of 156 algal taxa were identified and separated into diatom (68 species from 21 genera) and “soft algae” (88 non-diatom species from 47 genera) categories for further analyses. Although diatom total abundance was greater in long-hydroperiod mats, diatom species richness was significantly greater in short- hydroperiod periphyton mats (62 vs. 47 diatom taxa). Soft algal species richness was greater in long-hydroperiod sites (81 vs. 67 soft algae taxa). Relative abundances of individual taxa were significantly different among the two site types, with soft algal distributions being driven by water depth, and diatom distributions by water depth and TP concentration in the water and periphyton. Periphyton communities differ between short and long-hydroperiod marshes, but because they share many taxa, alterations in hydroperiod could rapidly promote the alternate community. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

8.
为全面了解着生藻类在建群中群落变化的生态学特性,揭示着生藻类的建群规律,在以丝状藻类为优势藻的生态塘中,采用花岗岩和瓷砖为附着材料,设置水体底部和中部为附着位点,进行频次为10d的采样分析。结果表明,生态塘中共检出8门73属117种着生藻类,其中以硅藻、蓝藻、绿藻为优势类群。同时不同人工基质和不同空间层次条件下着生藻类的建群特征较一致,早期以单细胞硅藻如舟形藻(Navicula sp.)、脆杆藻(Fragilaria sp.)、曲壳藻(Achnanthes sp.)等为优势,后期以丝状藻类如鞘丝藻(Lyngbya sp.)、颤藻(Oscillatoria sp.)、伪鱼腥藻(Pseudanabaena sp.)等为优势;研究结果发现不同人工基质(花岗岩和瓷砖)对着生藻类的种类组成、细胞密度、生物量和藻类多样性无显著影响,花岗岩和瓷砖上附着的着生藻类具有较高的相似性;但不同的空间层次对着生藻类建群特征影响明显,水体底部具有更多的硅藻种类数,中部具有更多的绿藻,随着建群时间的发展,蓝藻比例不断增加;就生物量而言,底部的着生藻类叶绿素a显著高于水体中部,但两者的细胞密度无显著性差异;随着建群过程的发展,水体底部的着生藻类生物量达峰值所需的时间比中部更长。通过相关性分析,生态塘中着生藻类的生长主要受总磷的影响。  相似文献   

9.
Benthic diatoms form a particularly important community in oligotrophic lakes, but factors influencing their distribution are not well known. This study reports the depth distribution of living motile and total diatoms (living plus dead diatoms) on both natural (from sand to fine organic mud) and artificial substrates in an oligotrophic lake. On artificial substrates, motile diatom densities peaked in abundance (24–30 cells · mm?2) between 0.6 and 1.9 m depth; on natural sediment surfaces, motile diatoms were generally more numerous and peaked in abundance (925 cells · mm?2) at 1.3 m depth. Total diatom densities on artificial substrates were highest (1260 valves · mm?2) at 0.6 m depth, with very low values below 3 m depth; on natural sediment surfaces, total diatom abundances were generally much higher (21600 valves · mm?2) at 3 m depth and declined gradually with depth. Significant relationships were found between light and diatom densities on the artificial substrate. Ordination analysis indicated that substrate type significantly correlated with the variation of diatom composition on artificial and natural substrates. Our results suggest that in oligotrophic lakes, light influences benthic diatom abundance, whereas substrate type has more influence on benthic diatom composition.  相似文献   

10.
Periphytic diatom communities’ colonization patterns were studied at three sampling stations of the Red–Nhue–Tolich hydrosystem presenting different urban pollution levels by using artificial substrates for 6 weeks in dry season 2005. Structural characteristics of periphytic diatoms developed on glass substrates at each sampling site were followed and compared. This experiment showed, through various general criteria (total diatom density, dry weight biomass) and specific criteria (relative diatom abundances, indices) that the structure of benthic diatoms developed on these substrates was strongly affected by pollution as early as the second week of colonization. Communities exposed to heavily and moderately polluted sites contained species which are known to be saprophilous or tolerant to organic pollution such as Nitzschia umbonata, Nitzschia palea, Cyclotella meneghiniana, Eolimna minima. Growth inhibition of diatom communities at the heavily polluted site was mostly related to a strong increase of organic load rather than to low metallic input, though metallic (Cd and Zn) burdens have been successfully quantified in the biofilms developed at the three studied sites. Nevertheless, no significant difference in species richness and diversity index between colonization duration times was observed. Based on values of diatom indices Indice de Polluosensibilité (IPS) and diatom assemblage index to organic water pollution (DAIPo), water quality could be classified as medium quality at Red site, polluted at NT2 and heavily polluted at TL. Thus, the use of diatoms as a tool for water assessment appears suitable for monitoring rivers in Vietnam, as it is in several other countries.  相似文献   

11.
Submerged macrophytes are a central component of lake ecosystems; however, little is known regarding their long‐term response to environmental change. We have examined the potential of diatoms as indicators of past macrophyte biomass. We first sampled periphyton to determine whether habitat was a predictor of diatom assemblage. We then sampled 41 lakes in Quebec, Canada, to evaluate whether whole‐lake submerged macrophyte biomass (BiomEpiV) influenced surface sediment diatom assemblages. A multivariate regression tree (MRT) was used to construct a semiquantitative model to reconstruct past macrophyte biomass. We determined that periphytic diatom assemblages on macrophytes were significantly different from those on wood and rocks (ANOSIM R = 0.63, P < 0.01). A redundancy analysis (RDA) of the 41‐lake data set identified BiomEpiV as a significant (P < 0.05) variable in structuring sedimentary diatom assemblages. The MRT analysis classified the lakes into three groups. These groups were (A) high‐macrophyte, nutrient‐limited lakes (BiomEpiV ≥525 μg · L?1; total phosphorus [TP] <35 μg · L?1; 23 lakes); (B) low‐macrophyte, nutrient‐limited lakes (BiomEpiV <525 μg · L?1; TP <35 μg · L?1; 12 lakes); and (C) eutrophic lakes (TP ≥35 μg · L?1; six lakes). A semiquantitative model correctly predicted the MRT group of the lake 71% of the time (P < 0.001). These results suggest that submerged macrophytes have a significant influence on diatom community structure and that sedimentary diatom assemblages can be used to infer past macrophyte abundance.  相似文献   

12.
In this study we determined grazing effects of the South Andean endemic mayfly Meridialaris chiloeensis on periphyton at different stages of successional development. Grazing effects were studied through a two‐factor experimental design (colonization stages X grazer density) in a stream‐side channel in spring and winter. Our results showed an absence of proportionality between grazer density and periphyton decline in response to grazers at low and intermediate levels of periphytic biomass; however, when periphyton biomass was high a direct inverse relationship was observed between post‐grazing biomass and grazer density. The relationship between periphytic algae (chlorophyll a concentration) and periphyton (total periphytic ash‐free dry mass) (C/OM index) was used as an estimation of the autotrophic fraction in the total periphyton matrix. Grazing did not alter the C/OM index indicating that both autotrophic and heterotrophic fractions of the periphyton components were reduced in the same proportion. Ordination of samples using the relative abundance of diatom species showed that herbivore effect was less evident at intermediate and late stage of colonization than at early one. These results support the statement that the outcome of the herbivore‐periphyton interaction may depend on the successional stage of the periphyton community. In spring Fragilaria pinnata relative abundance, on the basis of cell counts, was reduced by grazing and Nitzschia palea was enhanced. In the winter experiment, grazing decreased Achnanthes minutissima relative abundance. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
14.
Growing algae to scrub nutrients from manure presents an alternative to the current practice of land application and provides utilizable algal biomass as an end product. The objective of this study was to assess algal growth, nutrient removal, and nitrification using higher light intensities and manure loading rates than in the previous experiments. Algal turfs, with periphyton mainly composed of green algal species, were grown under two light regimes (270 and 390 μmol photons·m?2· s?1) and anaerobically digested flushed dairy manure wastewater (ADFDMW) loading rates ranging from 0.8 to 3.7 g total N and 0.12 to 0.58 g total P·m?2·d?1. Filamentous cyanobacteria (Oscillatoria spp.) and diatoms (Navicula, Nitzschia, and Cyclotella sp.) partially replaced the filamentous green algae at relatively high ADFDMW loading rates and more prominently under low incident light. Mean algal production increased with loading rate and irradiance from 7.6±2.71 to 19.1±2.73 g dry weight· m?2·d?1. The N and P content of algal biomass generally increased with loading rate and ranged from 2.9%–7.3% and 0.5%–1.3% (by weight), respectively. Carbon content remained relatively constant at all loading rates (42%–47%). The maximum removal rates of N and P per unit algal biomass were 70 and 13 mg·g?1 dry weight·m?2·d?1, respectively. Recovery of nutrients in harvested algal biomass accounted for about 31%–52% for N and 30%–59% for P. Recovery of P appeared to be uncoupled with N at higher loading rates, suggesting that algal potential for accumulation of P may have already been saturated. It appears that higher irradiance level enhancing algal growth was the overriding factor in controlling nitrification in the algal turf scrubber units.  相似文献   

15.
Production of toxic secondary metabolites by cyanobacteria, collectively referred to as cyanotoxins, has been well described for eutrophied water bodies around the world. However, cohesive cyanobacterial mats also comprise a significant amount of biomass in subtropical oligotrophic wetlands. As these habitats generally do not support much secondary production, cyanotoxins, coupled with other physiological attributes of cyanobacteria, may be contributing to the minimized consumer biomass. Periphyton from the Florida Everglades has a diverse and abundant cyanobacterial assemblage whose species produce toxic metabolites; therefore, by screening periphyton representative of the greater Everglades ecosystem, six different cyanotoxins and one toxin (domoic acid) produced by diatoms were identified, ranging in content from 3 × 10?9 to 1.3 × 10?6 (g · g?1), with saxitoxin, microcystin, and anatoxin‐a being the most common. While content of toxins were generally low, when coupled with the tremendous periphyton biomass (3–3,000 g · m?2), a significant amount of cyanotoxins may be present. While the direct effects of the toxins identified here on the local grazing community need to be determined, the screening process utilized proved effective in showing the broad potential of periphyton to produce a variety of toxins.  相似文献   

16.
Short-lived, high-intensity turbulence in aquatic environments—or episodic turbulence—has been shown to cause mortality in zooplankton, but its effects on marine phytoplankton have rarely been investigated. Episodic turbulence derives from anthropogenic and natural causes such as boat propellers, strong winds, and breaking waves. This study focused on the effects of episodic turbulence on two diatoms: Thalassiosira weissflogii and Skeletonema costatum. 45 s exposure to turbulence intensities above 2.5 cm2 s?3 reduced diatom abundance by up to 32% and increased the number of intact dead cells by 22%. After exposure to 4.0 cm2 s?3, photosynthetic efficiency decreased by 25 and 9% in T. weissflogii and S. costatum, respectively. Turbulence also caused extracellular release of optically reactive DOM and biologically important trace metals such as iron. The turbulence levels tested are comparable to those under breaking surface waves and are substantially lower than those generated by boat propellers. An improved technique using the Evans Blue stain was developed to enable visual live/dead plankton cell determinations. When used in conjunction with preservation and flow cytometry, this staining method provides a way to study phytoplankton mortality due to turbulence and other environmental stresses.  相似文献   

17.
A characteristic of aquatic systems in karstic region is the formation of tufa – the product of calcium carbonate precipitation. Artificial substrata (glass slides) were used to investigate the influence of tufa deposits at two different current velocities (5 cm s–1 and 50 cm s–1) on the ciliate assemblages in periphyton. After two-month exposure periods, periphyton biomass and tufa deposit were c. three times greater at 50 cm s–1 than at 5 cm s–1. Ciliate population density was also higher on artificial substrata exposed in a lotic than in a lentic microhabitat (the overall mean number of ciliates at 5 cm s–1 was 122 ind. cm–2, and at 50 cm s–1 497 ind. cm–2). At each of the two observed current velocities, a Principal Components (PCA) ordination of the colonized ciliate associations showed a spatial separation of the associations that developed under two different conditions of tufa deposition. During the period of greater tufa deposit, associated with greater periphyton overgrowth rate, the ciliate communities had higher species diversity (a higher number of species and a lower number of individuals). Species diversity of ciliates had a positive nonlinear relation to tufa deposition rate. These results suggest that artificial surfaces covered by a rough tufa layer associated with greater periphyton biomass offer diverse conditions for colonization by ciliates.  相似文献   

18.
Previous studies have shown major differences in the way biomass of stream periphyton is controlled by spatial variations in velocity. We hypothesize that these differences may be the result of different growth forms within the community. Some dense and coherent growth forms (e.g. mucilaginous diatom/cyanobacterial mats) may be resistant to diffusion and also resistant to dislodgment by shear stress. Higher velocities applied to such communities could therefore be expected to enhance biomass accrual by increasing rates of mass transfer, but without greatly increasing losses through sloughing. Conversely, other growth forms (e.g. long filamentous green algae) have an open matrix, and high rates of diffusion into the mats can potentially occur even at low velocity. However, as velocities increase, high skin friction and form drag should lead to higher rates of sloughing. The overall result of these processes should be that maximum biomass occurs at low velocities. This “subsidy-stress” hypothesis was tested twice with each of three different periphytal growth forms: a coherent, mucilaginous, diatom community; a moderately coherent, stalked/ short, filamentous diatom community; and an open-weave, long, filamentous green algal community. A monotonic increase in chl a biomass occurred as a function of near-bed velocities for the first of the two mucilaginous diatom communities investigated. No biomass-velocity relationship was found, however, with the second mucilaginous community, probably because the waters were highly enriched and mass transfer driven by molecular diffusion was probably high throughout the velocity gradient. Biomass was moderate at low velocities, peaked at near-bed velocities from 0.18 to 0.2 m·s?1 (~0.40–0.45 m·s?1 mean column velocity), and then decreased at higher velocities in both of the stalked/ short filament communities of diatoms analyzed. With the long filamentous green algal communities, a monotonic reduction in biomass occurred as a function of increases in velocity. Proliferations greater than 100 mg·m?2 chl a occurred at low near-bed velocities (i.e. <0.2 m·s?1), after which biomass declined nearly exponentially as a function of increasing velocity to less than 10 mg·m?2 chl a at velocities greater than 0.4 m·s?1. These biomass-velocity trends support our hypothesis that community growth form determines periphytal responses to spatial variations in velocity within stream reaches.  相似文献   

19.
The present study attempts to assess the potential of artificial substrates to enhance fish production in inland saline groundwater ponds through periphyton production. Grey mullet, Mugil cephalus, was cultured for 100 days in ponds with substrate (treatment ponds) and without substrate (control ponds). To enhance the surface area, bamboo poles were used as substrate. The periphyton population, pigment concentration and hydrobiological characteristics of pond water were monitored. The studies revealed little difference in most of the water quality parameters observed in the two treatments. However, turbidity (27.0 ± 0.1–35.0 ± 0.1 Nephalo Turbidity Unit (NTU)), chlorophyll ‘a’ (6.6 ± 0.6–7.6 ± 0.6 μg L?1), plankton population (phytoplankton 8.4 × 103–9.4 ×103 numbers L?1; zooplankton 4.0 × 103–5.1 × 103 numbers L?1) and NH4–N (2.0 ± 0.2–2.3 ± 0.1 mg L?1) were high in the treatment with no additional substrate; however, in the treatment with substrate the total Kjeldahl nitrogen (9.8 ± 0.8–10.8 ± 0.7 mg L?1) and o‐PO4 (0.1 ± 0.01–0.1 mg L?1) remained significantly (P < 0.05) higher. Highest periphyton biomass in terms of dry matter (DM) (0.8 ± 0.01–1.4 ±0.01 mg cm?2), ash free DM (0.4 ± 0.0–0.6 ± 0.01 mg cm?2), chlorophyll ‘a’ (3.1 ± 0.2–8.1 ± 0.8 μg cm?2) and pheophytin ‘a’ (1.9 ± 0.4–3.9 ± 0.5 μg cm?2) was observed at 50 cm depth in ponds provided with additional substrate. Fifteen plankton genera showing periphytic affinity colonized the bamboo substrates. Fish growth (mean fish weight 524.3 ± 8.7 g and SGR 2.5 ± 0.1) was significantly (P < 0.05) higher in ponds provided with additional substrate compared with control ponds (387.2 ± 6.0). Length–weight relationship (LWR) (W = cLn) also showed that the exponential value (‘n’) of length was high in substrate‐supported ponds (n = 2.36) in comparison with controls (n = 1.09). These studies suggest that a periphyton‐supported aquaculture system can be used successfully for the culture of herbivorous brackishwater fish species like M. cephalus in inland saline groundwaters and thus could contribute to the development of sound and sustainable aquaculture technology.  相似文献   

20.
The electrophoretic mobility of L5178Y cells in 0.0145 M NaCl, 4.5% sorbitol, 0.6 mM NaHCO3, pH 7.2, at 25°C was — 1.78 μ·s?1·V?1·cm?1 while that of an L-asparaginase resistant subline, L5178Y/ASN, was — 1.11 μm·s?1·V?1·cm?1. Both cell lines were characterized by terminal sialic acid residues on their surfaces. Treatment of L5178Y cells for 90 min with 10 units of L-asparaginase per ml in saline decreased the electrophoretic mobility of the cells to — 1.65 μm·s?1·V?1·cm?1 while treatment in Fischer's medium decreased the mobility to — 1.25 μm·s?1·V?1·cm?1; neither treatment had a significant effect on the L5178Y/ASN electrophoretic mobility. The results suggest that L-asparaginase has an immediate and specific effect on synthesis of cell surface asparaginyl glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号