首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the effects of organic cosolvents (monohydric alcohols and formamide) on the oxygen affinity of human fetal hemoglobin stripped of phosphates and have compared them with the effects of the same cosolvents on the oxygen affinity of human adult hemoglobin under the same experimental conditions. Our results confirm that, in fetal hemoglobin, the T in equilibrium R conformational equilibrium is more displaced toward the T conformation than in the adult form and indicate that increased electrostatic and hydrophobic protein-solvent interactions contribute to this effect. The data reported are discussed in terms of the known amino acid substitutions between the beta- and gamma-chains and an attempt is made to rationalize the results with a molecular mechanism based on the crystallographic structure of fetal deoxyhemoglobin.  相似文献   

2.
Levantino M  Cupane A  Zimányi L 《Biochemistry》2003,42(15):4499-4505
Using a sol-gel encapsulation technique, we have prepared samples of CO saturated human adult hemoglobin locked in the R or T quaternary conformation. We report time-resolved spectra of these samples in the Soret region following flash photolysis, in the time interval ranging from 250 ns to 200 ms and in the temperature interval of 100-170 K. A suitable analysis of the measured difference spectra enables us to obtain the spectral contribution of deoxyHb and HbCO molecules as a function of time and/or of the fraction N(t) of deoxyHb molecules. In our experimental time window geminate CO rebinding to hemoglobin in the T quaternary conformation is about 2 orders of magnitude slower than to hemoglobin in the R conformation: this suggests that the barrier distribution for the CO rebinding, g(H), depends strongly on the protein quaternary structure. In our temperature interval, spectral shifts due to kinetic hole burning (KHB) are present: for HbCO the KHB effect is large in the R conformation and small in the T conformation. For deoxyHb the opposite is true. We attribute the observed behavior to the effect of interconversion between the relevant substates. This effect is stronger for HbCO molecules in the T conformation and for deoxyHb molecules in the R conformation; it confirms the quaternary structure dependence of the hemoglobin energy landscape and suggests enhanced dynamics of ligation intermediate species such as T-state HbCO or R-state deoxyHb.  相似文献   

3.
We studied the effects of some organic cosolvents (monohydric alcohols and amides) on the reaction of hemoglobin with oxygen. We present evidence showing that our data can be analyzed within the framework of the Monod-Wyman-Changeux model and that the main effect of cosolvents is to alter the T ? R conformational equilibrium of hemoglobin, without significantly affecting the intrinsic oxygen dissociation constants. Following a previously described phenomenological approach, the overall effects have been separated into effects related to the variation of the bulk dielectric constant of the solvent and effects not related to the variation of this constant.  相似文献   

4.
We studied the kinetics of replacement of O2 by CO in hemoglobin in the presence and absence of organic cosolvents (methanol, ethanol, iso-propanol, n-propanol, formamide, acetamide, N-methyl-formamide) and at 10 and 25°C. Quantitative analysis of the results indicates that these cosolvents do not affect the intrinsic binding constants of ligands to the heme when hemoglobin is in the R conformation. The present results confirm the previously reported suggestion that the effects of the above cosolvents on the oxygen affinity of hemoglobin are related to effects on the T ? R conformational equilibrium.  相似文献   

5.
We use the low-temperature recombination kinetics of carbon monoxide with carp hemoglobin to determine that the R and T states of hemoglobin exhibit different low-temperature geminate recombination kinetics. The peak of the fitted Gaussian activation energy spectrum is at 1.5 kcal/mol for R state and 1.8 kcal/mol for T state. The distribution in activation energies is fit well by the Agmon-Hopfield linear strain model. The T state is fit with a stronger elastic constant than R, and has a larger displacement of the protein conformation coordinate than does the R state, indicating that the T state does have a significantly greater rigidity and also stores more strain energy in its conformational states than does R hemoglobin. The pre-exponential in the activation energy spectrum is only a factor of two greater in the R than the T state and the low-temperature activation energy spectrum does not correctly predict the difference in the on rates for R and T states at 300 degrees K, indicating that processes removed from the binding site are important in cooperativity.  相似文献   

6.
We studied the effects of methanol, ethanol, iso-propanol, and n-propanol on the reaction of hemoglobin with oxygen at various temperatures. The analysis of the results in terms of the Monod-Wyman-Changeux model allowed determination of the overall contribution of the alcohols to the standard enthalpy and entropy differences between the T and R states of hemoglobin. A phenomenological approach allowed us to obtain separately the contributions related to the variations of the bulk dielectric constant of the solvent (bulk electrostatic contributions) and the contributions related to other effects (non-bulk-electrostatic contributions). The values of non-bulk-electrostatic contributions to ΔΔH and ΔΔS supported the suggestion that these contributions are mainly related to protein-solvent hydrophobic interactions.  相似文献   

7.
We studied the effect of methanol, ethanol, iso-propanol, and n-propanol on the reaction of hemoglobin with oxygen. The oxygen affinity was found to decrease with increasing alcohol concentration and alkyl group size; no detectable effect on Hill's constant was found. Difference spectroscopy indicated KR not to be affected by the presence of alcohols; the lowered affinity was then attributed to an altered equilibrium between T and R conformations of hemoglobin. The results have been analyzed in such a way as to allow separation of electrostatic contributions to free energy difference between the T and R states from nonelectrostatic ones. The nonelectrostatic term has been attributed to protein–solvent hydrophobic interactions. Values of hydrophobic free energy are in good agreement with analogous data estimated by correlating different results previously reported in the literature.  相似文献   

8.
We have studied the structure-function relationships in newly discovered hemoglobin (Hb) mutants with substitutions occurring at the tight and highly hydrophobic cluster between the B and G helices in the beta chains, namely, Hb Knossos or beta A27S and Hb Grange-Blanche or beta A27V. The beta A27S mutant has a 50% decrease in oxygen affinity relative to native human Hb A, while the beta A27V mutant has an increased oxygen affinity. We have also engineered the artificial beta A27T mutation through site-directed mutagenesis. This new mutant exhibits functional properties similar to those of Hb A. None of these mutants is unstable. X-ray analyses show that the substitution of Val for Ala may reduce the relative stability of the T structure of the molecule through packing effects in the beta chains; for the beta A27S mutant a new hydrogen bond between serine and the carbonyl O at beta 23 (B5) Val is observed and is likely to increase the relative stability of the T structure in the mutant hemoglobin. However, no significant changes in the crystals were observed for these mutants between the quaternary R and T structures relative to native Hb A. We conclude that small tertiary structural changes in the tight hydrophobic B-G helix interface are sufficient to induce functional abnormalities resulting in either low or high intrinsic oxygen affinities.  相似文献   

9.
We have measured the forward and reverse rates of the allosteric transition of hemoglobin A with three CO molecules bound by using modulated excitation coupled with fluorescence quenching of the DPG analogue, PTS (8-hydroxy-1,3,6 pyrene trisulfonic acid). This dye is observed to bind to the T state with significantly larger affinity than to the R state, and thus provides an unequivocal marker for the molecule's conformational change. The allosteric rates obtained with the fluorescent dye (pH 7.0, bis-Tris buffer) are (3.4 +/- 1.0) x 10(3)s-1 for the R to T transition and (2.1 +/- 0.5) x 10(4)s-1 for the T to R transition. This gives an equilibrium constant L3 of 0.16 +/- 0.06. These results provide good agreement with modulated difference spectra calibrated from model compounds, arguing that there is little if any difference in the kinetics observed by the heme spectra and the kinetics of the full subunit motion. The equilibrium constant between structures (L3) is smaller in the absence of phosphates than observed in phosphate buffer (0.33). However, the rates of the allosteric transition increase in the absence of phosphates as compared with the corresponding rates in phosphate buffer of 1.0 x 10(3)s-1 and 3.0 x 10(3)s-1. The effects of inorganic phosphates on the equilibrium can be separated from the effects on kinetics. We find that phosphates also affect the dynamic behavior of hemoglobin, and the presence of 0.15 M phosphate can be viewed as raising the transition state energy between R and T conformations by approximately 0.5 kcal/mol exclusive of the T state stabilization. Dissociation constants for the dye were measured to be 104 +/- 25 microM for unligated T state and 930 +/- 300 microM for the fully ligated R state. The best fit equilibrium constant (125 +/- 40 microM) for three ligands bound does not differ significantly from that measured without ligands bound. Incidental to the measurement technique is the determination of the rates of binding and release of the dye. The association rate for binding to the T state is large, (at least 4 x 10(9) M-1 s-1) and may be diffusion limited, while the association and dissociation rates for R state binding, while not determined with precision, are clearly much smaller, of the scale of 10(5) M-1 s-1 for association.  相似文献   

10.
Safo MK  Abraham DJ 《Biochemistry》2005,44(23):8347-8359
The liganded hemoglobin (Hb) high-salt crystallization condition described by Max Perutz has generated three different crystals of human adult carbonmonoxy hemoglobin (COHbA). The first crystal is isomorphous with the "classical" liganded or R Hb structure. The second crystal reveals a new liganded Hb quaternary structure, RR2, that assumes an intermediate conformation between the R form and another liganded Hb quaternary structure, R2, which was discovered more than a decade ago. Like the R2 structure, the diagnostic R state hydrogen bond between beta2His97 and alpha1Thr38 is missing in the RR2 structure. The third crystal adopts a novel liganded Hb conformation, which we have termed R3, and it shows substantial quaternary structural differences from the R, RR2, and R2 structures. The quaternary structure differences between T and R3 are as large as those between T and R2; however, the T --> R3 and T --> R2 transitions are in different directions as defined by rigid-body screw rotation. Moreover, R3 represents an end state. Compared to all known liganded Hb structures, R3 shows remarkably reduced strain at the alpha-heme, reduced steric contact between the beta-heme ligand and the distal residues, smaller alpha- and beta-clefts, and reduced alpha1-alpha2 and beta1-beta2 iron-iron distances. Together, these unique structural features in R3 should make it the most relaxed and/or greatly enhance its affinity for oxygen compared to the other liganded Hbs. The current Hb structure-function relationships that are now based on T --> R, T -->R --> R2, or T --> R2 --> R transitions may have to be reexamined to take into account the RR2 and R3 liganded structures.  相似文献   

11.
We compare the role of a conformational switch and that of a point mutation in the thermodynamic stability of a protein solution and in the consequent propensity toward aggregation. We study sickle-cell hemoglobin (HbS), the beta6 Glu-Val point mutant of adult human hemoglobin (HbA), in its R (CO-liganded) conformation, and compare its aggregation properties to those of both HbS and HbA in their T (unliganded) conformation. Static and dynamic light scattering measurements performed for various hemoglobin concentrations showed critical divergences with mean field exponents as temperature was increased. This allowed determining spinodal data points T(S)(c) by extrapolation. These points were fitted to theoretical expressions of the T(S)(c) spinodal line, which delimits the region where the homogeneous solution becomes thermodynamically unstable against demixing in two sets of denser and dilute mesoscopic domains, while remaining still liquid. Fitting provided model-free numerical values of enthalpy and entropy parameters measuring the stability of solutions against demixing, namely, 93.2 kJ/mol and 314 J/ degrees K-mol, respectively. Aggregation was observed also for R-HbS, but in amorphous form and above physiological temperatures close to the spinodal, consistent with the role played in nucleation by anomalous fluctuations governed by the parameter epsilon = (T - T(S))/T(S). Fourier transform infrared (FTIR) and optical spectroscopy showed that aggregation is neither preceded nor followed by denaturation. Transient multiple interprotein contacts occur in the denser liquid domains for R-HbS, T-HbS, and T-HbA. The distinct effects of their specific nature and configurations, and those of desolvation on the demixing and aggregation thermodynamics, and on the aggregate structure are highlighted.  相似文献   

12.
The kinetics of O2 and CO binding to R-state human hemoglobin A0 and human hemoglobin cross-linked between the alpha chains at Lys99 residues were examined using ligand displacement and partial photolysis techniques. Oxygen equilibrium curves were measured by Imai's continuous recording method (Imai, K. (1981) Methods Enzymol. 76, 438-449). The rate of the R to T transition was determined after full laser photolysis of the carbon monoxide derivative by measuring the resultant absorbance changes at an isosbestic point for ligand binding. Chemical cross-linking caused the R-state O2 affinity of alpha subunits to decrease 6-fold compared with unmodified hemoglobin. This inhibition of O2 binding was the result of both a decrease in the rate constant for ligand association and an increase in the rate constant for dissociation. The O2 affinity of R-state beta subunits was reduced 2-fold because of an increase in the O2 dissociation rate constant. These changes were attributed to proximal effects on the R-state hemes as the result of the covalent cross-link between alpha chain G helices. This proximal strain in cross-linked hemoglobin was also expressed as a 5-fold higher rate for the unliganded R to T allosteric transition. The fourth O2 equilibrium binding constant, K4, measured by kinetic techniques, could be used to analyze equilibrium curves for either native or cross-linked hemoglobin. The resultant fitted values of the Adair constants, a1, a2, and a3 were similar to those obtained when K4 was allowed to vary, and the fits were of equal quality. When K4 was fixed to the kinetically determined value, the remaining Adair constants, particularly a3, became better defined.  相似文献   

13.
We compare various allosteric models that have been proposed to explain cooperative oxygen binding to hemoglobin, including the two-state allosteric model of Monod, Wyman, and Changeux (MWC), the Cooperon model of Brunori, the model of Szabo and Karplus (SK) based on the stereochemical mechanism of Perutz, the generalization of the SK model by Lee and Karplus (SKL), and the Tertiary Two-State (TTS) model of Henry, Bettati, Hofrichter and Eaton. The preponderance of experimental evidence favors the TTS model which postulates an equilibrium between high (r)- and low (t)-affinity tertiary conformations that are present in both the T and R quaternary structures. Cooperative oxygenation in this model arises from the shift of T to R, as in MWC, but with a significant population of both r and t conformations in the liganded T and in the unliganded R quaternary structures. The TTS model may be considered a combination of the SK and SKL models, and these models provide a framework for a structural interpretation of the TTS parameters. The most compelling evidence in favor of the TTS model is the nanosecond - millisecond carbon monoxide (CO) rebinding kinetics in photodissociation experiments on hemoglobin encapsulated in silica gels. The polymeric network of the gel prevents any tertiary or quaternary conformational changes on the sub-second time scale, thereby permitting the subunit conformations prior to CO photodissociation to be determined from their ligand rebinding kinetics. These experiments show that a large fraction of liganded subunits in the T quaternary structure have the same functional conformation as liganded subunits in the R quaternary structure, an experimental finding inconsistent with the MWC, Cooperon, SK, and SKL models, but readily explained by the TTS model as rebinding to r subunits in T. We propose an additional experiment to test another key prediction of the TTS model, namely that a fraction of subunits in the unliganded R quaternary structure has the same functional conformation (t) as unliganded subunits in the T quaternary structure.  相似文献   

14.
The molecular details of the mechanism of action of allosteric effectors on hemoglobin oxygen affinity are not clearly understood. The global allostery model proposed by Yonetani et al. suggests that the binding of allosteric effectors can take place both in the R and T states and that they influence oxygen affinity through inducing global tertiary changes in the subunits. Recently published high pressure studies yielded dissociation constants at atmospheric pressure that showed a stabilizing effect of heterotropic allosteric effectors on the dimer interface in the R state, and a more pronounced destabilizing effect in a T state model. In the present work, we report on computational modeling used to interpret the high pressure experimental data. We show structural changes in the hemoglobin interdimeric interfaces, indicative of a global tertiary structural change induced by the binding of allosteric effectors. We also show that the number of water molecules bound at the interface is significantly influenced by binding effectors in the T state in accordance with the experimental data. Our results suggest that the binding of effectors at definite sites leads to tertiary changes that propagate to the interfaces and results in overall structural re-organizations.  相似文献   

15.
K C Cho  J J Hopfield 《Biochemistry》1979,18(26):5826-5833
The molecular mechanism of hemoglobin cooperativity was studied kinetically by flash photolysis on mixed-state hemoglobins which consist of three ferrous carboxy subunits and one hybrid ferric subunit including fluoromet, azidomet, cyanatomet, and thiocyanatomet. The effects of conformational transitions on the hybrid subunit were detected by kinetic absorption spectroscopy after the CO was fully photodissociated from the binding sites by a large pulse of light from a tunable dye laser. The hemoglobin conformational transition rate was observed to depend on its state of ligation. At 22 degrees C, pH 7, and 0.1 M phosphate, the deoxy R yields T conformational change rate is 4 x 10(4)s-1. The rate decreases to 1.4 x 10(4)s-1 for singly ligated hemoglobin. The R yields T conformation change alters the energy separation between high- and low-spin states for azidomet, cyanatomet, and thiocyanatomet subunits by about 700, 300, and 300 cal/mol, respectively. There are two possible implications of this result: (1) the iron atom spin state is not the only major factor in the determination of its position with respect to the heme plane or (2) the change with conformation of the protein force exerted by the proximal histidine on the iron atom (for an iron to heme-plane displacement of less than 0.3 A) is less than 50% of that expected from simple models in which this motion is responsible for cooperativity.  相似文献   

16.
M Wind  A Stern  S Simon  L Law 《Biochemistry》1976,15(23):5161-5167
The pH dependence of several functional properties of human fetal and adult hemoglobins have been studied to determine the relative stabilities of the high and low affinity (R and T) quaternary conformations of the two proteins under different conditions. Fetal aqumethemoglobin undergoes changes in sulfhydryl reactivity, absorption spectrum, and circular dichroism in the presence of insitol hexaphospahte which are consistent with a transition from the R to T quaternary state, but only at pH values below 6.8. In adult hemoglobin this transition can be induced pH values below 7.2. Even in the absence of phosphates, the ultraviolet (uv) circular dichroism spectrum of fetal aquomethemoglobin at low pH indicates the presence of some T conformation. The initial value for the second-order rate constant for combination of fetal deoxyhemoglobin with carbon monoxide is comparable to that for adult hemoglobin in the absence of organic phosphates and is not reduced by organic phosphates as much as that for the adult protein. The apparent first-order rate constant for dissociation of CO from fully liganded fetal hemoglobin, measured by replacement with NO, increases threefold in the absence of organic phosphates, and fourfold in the presence of organic phosphates, with decreasing pH; the midpoint of the pH dependent transition occurs around 6.8. A similar increase in the apparent first-order rate constant for O2 dissociation as measured by replacement with CO, can also be seen with decreasing pH. NO-hemoglobin F can be converted to the T state even when fully liganded simply by lowering the pH, as judged by uv circular dichroism, visible difference spectrum in the region of the alpha and beta bands, and a dramatic increase in the rate of NO dissociation, measured by replacement with CO in the presence of dithionite. These results are all consistent with a model for fetal hemoglobin in which the organic phosphate site may be functionally weakened by replacement of a residue involved in ionic interactions with the negatively charged phosphate groups, but in which the low affinity T conformation is intrinsically more stable than that of adllt hemoglobin. According to this model,the differences between fetal and adult hemoglobin can be accounted for primarily in terms of the relative stabilities of R and T conformations in each of the proteins with differences in the intrinsic properties of the individual conformations contributing effects of only secondary importance.  相似文献   

17.
We studied the kinetics of O2 release by oxyhemoglobin caused by sodium dithionite, in the presence and in the absence of organic cosolvents (monohydric alcohols and formamide) at 10°C. This study was performed by using standard stopped-flow techniques coupled with microprocessor-based data acquisition. We have fitted the experimental data to a mathematical expression obtained on the basis of a two-state model that takes into account the kinetic heterogeneity between α- and β-chains and the presence of αβ-dimers in oxyhemoglobin solutions. Results indicate that the cosolvents mainly affect the allosteric parameter L, i.e., the T ? R conformational equilibrium of hemoglobin, leaving the intrinsic deoxygenation rates of both R and T states almost unaltered. The L values obtained in the present work are in excellent agreement with analogous values previously estimated from oxygen equilibrium measurements.  相似文献   

18.
In this study, temperature-related structural changes were investigated in human, duck-billed platypus (Ornithorhynchus anatinus, body temperature T(b) = 31-33 degrees C), and echidna (Tachyglossus aculeatus, body temperature T(b) = 32-33 degrees C) hemoglobin using circular dichroism spectroscopy and dynamic light scattering. The average hydrodynamic radius (R(h)) and fractional (normalized) change in the ellipticity (F(obs)) at 222 +/- 2 nm of hemoglobin were measured. The temperature was varied stepwise from 25 degrees C to 45 degrees C. The existence of a structural transition of human hemoglobin at the critical temperature T(c) between 36-37 degrees C was previously shown by micropipette aspiration experiments, viscosimetry, and circular dichroism spectroscopy. Based on light-scattering measurements, this study proves the onset of molecular aggregation at T(c). In two different monotremal hemoglobins (echidna and platypus), the critical transition temperatures were found between 32-33 degrees C, which are close to the species' body temperature T(b). The data suggest that the correlation of the structural transition's critical temperature T(c) and the species' body temperature T(b) is not mere coincidence but, instead, is a more widespread structural phenomenon possibly including many other proteins.  相似文献   

19.
We have examined the effects of phenylhydrazine-induced anemia on the in vivo synthesis of specific hemoglobins at larval, metamorphic, and post-metamorphic stages of the bullfrog Rana catesbeiana, and have found that at all stages the animals qualitatively and quantitatively regenerate their pre-anemia hemoglobin profiles, with one exception: Animals approaching or undergoing the metamorphic hemoglobin switch synthesize only adult hemoglobin during recovery from anemia. We conclude that the ontogenetic progression of hemoglobins in R. catesbeiana is regulated at the level of differentiation of distinct erythroid cell lines, each committed to expressing a particular hemoglobin phenotype; this regulation is unperturbed by anemia.  相似文献   

20.
Calorimetric measurements at 25 degrees of the differential heat of CO binding by hemoglobin trout I have been examined together with the CO binding isotherms for the protein at 4 degrees and 20 degrees. Simultaneous treatment of these data sets by a statistically rigorous technique permits evaluation of all the thermodynamic parameters for both the Adair and the Monod, Wyman, Changeux (MWC) models. The results show the details of the unusual temperature dependent cooperativity which this hemoglobin exhibits. In the Adair formalism the increasingly favorable free energy change for successive steps of ligand binding are nearly linearly paralleled by increasingly negative enthalpy changes for these steps. This causes the enhanced cooperativity observed as the temperature is decreased. For the MWC case, lowering the temperature increases the stability of the unligated T state relative to the unligated R state since the enthalpy of the T leads to R transition is 29.4 kcal mol-1. Simultaneously, the favorability of ligating R forms relative to T is enhanced since R form ligation is 14.1 kcal (mol CO)-1 more exothermic than that of T. The balance between these opposing effects is to increase ligand binding cooperativity at low temperatures. The predicted temperature dependence of the Hill coefficient for the MWC and Adair models is identical at low and intermediate temperatures, but, interestingly, would show a strong divergence at high temperatures where negative cooperativity is suggested for the Adair case and positive cooperativity for the MWC case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号