首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fate of parthenogenetic cells was investigated during development of fetal and early postnatal chimeras. On day 13 of embryonic development, considerable contribution of parthenogenetic cells was observed in all tissues of chimeric embryos, although selection against parthenogenetic cells seemed to start before day 13. Between days 13 and 15 of development, parthenogenetic cells came under severe selective pressure, which was most striking in tongue. The disappearance of parthenogenetic cells from tongue coincided with the beginning of myoblast fusion in this tissue. Severe selection against parthenogenetic cells was also observed in pancreas and liver, although in the latter, parthenogenetic cells were eliminated later than in skeletal muscle or pancreas. In other tissues, parthenogenetic cells may persist and participate to a considerable extent throughout the gestation period and beyond, although a significant decrease was observed in all tissues. Parthenogenetic in equilibrium fertilized chimeras were significantly smaller than their non-chimeric littermates at all developmental stages. These results suggest that the absence of paternal chromosomes is largely incompatible with the maintenance of specific differentiated cell types. Furthermore, paternally derived genes seem to be involved in the regulation of proliferation of all cell types, as indicated by the drastic growth decceleration of parthenogenetic in equilibrium fertilized chimeras and the overall decrease of parthenogenetic cells during fetal development. Chromosomal imprinting may have a role in maintaining a balance between cell growth and differentiation during embryonic development. The major exception to the selective elimination of parthenogenetic cells appear to be the germ cells; viable offspring derived from parthenogenetic oocytes were detected, sometimes at a high frequency in litters of female parthenogenetic in equilibrium fertilized chimeras.  相似文献   

2.
In the mouse the protooncogene Myc is localized to Chromosome 15. Embryos with trisomy 15 (Ts15) are severely retarded and die in utero at an early stage. The placenta of these embryos shows enlargement of the fetal spongiotrophoblast. In the spongiotrophoblast and giant cells of the normal euploid placenta, Myc expression declines from day 10.5 of gestation onward whereas Myc expression persists at a high level in Ts15 cells. At the same time these Ts15 cells show prolonged proliferation which consequently leads to the observed enlargement of that tissue layer in Ts15 placentas.  相似文献   

3.
Summary Mouse aggregation chimaeras consisting of trisomy 12 and normal euploid cells were produced. The analysis of one trisomy 12euploid chimaera, using biochemical and cytological markers, showed that the trisomic cells were able to participate in the formation of most tissues including the ovary. On the other hand, no trisomy 12 cells were found in lymphocyte populations, which is most likely due to early selection in this particular cell lineage. The viability of two adult trisomy 12 chimaeras demonstrates that trisomy 12 cells are able to develop beyond the fetal stage which is not observed in completely trisomic fetuses.Furthermore, these chimaeras did not show any sign of a trisomy 12 syndrome, indicating that the trisomy 12 cells were functionally integrated and participated normally in the differentiation of the various tissues. Our results suggest that trisomy 12 in the mouse is not autonomously cell lethal but can be rescued and is perfectly viable in the presence of normal diploid cells.This article is dedicated to the memory of Prof. A. Gropp  相似文献   

4.
Gene expression variation increase in trisomy 21 tissues   总被引:1,自引:0,他引:1  
Congenital development disorders with variable severity occur in trisomy 21. However, how these phenotypic abnormalities develop with variations remains elusive. We hypothesize that the differences in euploid gene expression variation among trisomy 21 tissues are caused by the presence of an extra copy of chromosome 21 and may contribute to the phenotypic variations in Down syndrome. We used DNA microarray to measure the differences in gene expression variance between four human trisomy 21 and six euploid amniocytes. The three publicly available data sets of fetal brains, adult brains, and fetal hearts were also analyzed. The numbers of euploid genes with greater variance were significantly higher in all four kinds of trisomy 21 tissues (p < 0.01) than in the corresponding euploid tissues. Seventeen euploid genes with significantly different variance between trisomy 21 and euploid amniocytes were found using the F test. In summary, there is a set of euploid genes that shows greater variance of expression in human trisomy 21 tissues than in euploid tissues. This change may contribute to producing the variable phenotypic abnormalities observed in Down syndrome.  相似文献   

5.
We have previously proposed that mice trisomic for chromosome 16 will provide an animal model of human trisomy 21 (Down syndrome). However, the value of this model is limited to some extent because trisomy 16 mouse fetuses do not survive as live-born animals. Therefore, in an effort to produce viable mice with cells trisomic for chromosome 16, we have used an aggregation technique to generate trisomy 16 diploid (Ts 16 2n) chimeras. A total of 79 chimeric mice were produced, 11 of which were Ts 16 2n chimeras. Seven of these Ts 16 2n mice were analyzed as fetuses, just prior to birth, and 4 were analyzed as live-born animals. Unlike nonchimeric Ts 16 mouse fetuses which die shortly before birth with edema, congenital heart disease, and thymic and splenic hypoplasia, all but 1 of the Ts 16 2n animals were viable and phenotypically normal. The oldest of the live-born Ts 16 2n chimeras was 12 months old at the time of necropsy. Ts 16 cells, identified by coat color, enzyme marker, and/or karyotype analyses, comprised 50-60% of the brain, heart, lung, liver, and kidney in the 7 Ts 16 2n chimeric fetuses and 30-40% of these organs in the 4 live-born Ts 16 2n animals. Ts 16 cells comprised an average of 40% of the thymus and 80% of the spleen in the Ts 16 2n chimeras analyzed as fetuses, with no evidence of thymic or splenic hypoplasia. However, we observed a marked deficiency to Ts 16 cells in the blood, spleen, thymus, and bone marrow of live-born Ts 16 2n chimeras as compared to 2n 2n controls. These results demonstrate that although the Ts 16 2n chimeras were, with one exception, viable and phenotypically normal, each animal contained a significant proportion of trisomic cells in a variety of tissues, including the brain. Furthermore, our results suggest that although the abnormal development of Ts 16 thymus and spleen cells observed in Ts 16 fetuses is largely corrected in Ts 16 2n fetuses, Ts 16 erythroid and lymphoid cells have a severe proliferative disadvantage as compared to diploid cells in older live-born Ts 16 2n chimeras. Ts 16 2n chimeric mice will provide a valuable tool for studying the functional consequences of aneuploidy and may provide insight into the mechanisms by which trisomy 21 leads to developmental abnormalities in man.  相似文献   

6.
Parthenogenetic cells are lost from fetal chimeras. This may be due to decreased proliferative potential. To address this question, we have made use of combined cell lineage and cell proliferation analysis. Thus, the incorporation of bromodeoxyuridine in S-phase was determined for both parthenogenetic and normal cells in several tissues of fetal day 13 and 17 chimeras. A pronounced reduction of bromodesoxyuridine incorporation by parthenogenetic cells at both developmental stages was only observed in cartilage. In brain, skeletal muscle, heart and intestinal epithelium, this reduction was either less pronounced or observed only at one of the developmental stages analysed. No difference between parthenogenetic and normal cells was observed in epidermis and ganglia. Our results show that a loss of proliferative potential of parthenogenetic cells during fetal development contributes to their rapid elimination in some tissues. The analysis of the fate of parthenogenetic cells in skeletal muscle and cartilage development demonstrated different selection mechanisms in these tissues. In skeletal muscle, parthenogenetic cells were largely excluded from the myogenic lineage proper by early post-midgestation. In primary hyaline cartilage, parthenogenetic cells persisted into adulthood but were lost from cartilages that undergo ossification during late fetal development.  相似文献   

7.
Thiruchandurai Rajan, Julie Moore and Leonard Shultz here review the evolution of technology in murine xeno-lymphohemopoietic chimeras, produced by engraftment with xenogeneic (fetal or adult) progenitor cells or mature lymphohemopoietic tissues into immunodeficient mice, and their use as hosts for hemoprotozoan parasites. Particular attention is paid to the development of chimeras that house xenogeneic peripheral red blood cells (xeno-RBC). These chimeras are potentially invaluable models for hemoprotozoan parasites, such as Babesia and Plasmodium. There are, however, daunting limitations that have to be overcome before these models can become universally acceptable systems for the study of these parasitic agents.  相似文献   

8.
In utero bone marrow transplantation to fetuses offers the potential advantage of ameliorating the effects of genetic disorders by transplanting allogeneic hematopoietic stem cells into recipients who are immunoincompetent and require no preparative regimen. Therefore, we undertook studies to examine the feasibility of in utero bone marrow transplantation of unrelated allogeneic adult bone marrow into fetal baboons. Thirty-one baboon fetuses were transplanted between the ages of 60 and 160 days gestation (normal gestation, 182 days) with unrelated allogeneic adult bone marrow containing a different isozyme of glucose-phosphate isomerase (GPI). Approximately one third of the 80-day fetuses demonstrated engraftment 1 month after transplantation. Three of three of the initial chimeras died in utero 45 to 80 days after transplantation and the remaining chimeras lost their graft. Furthermore, 80-day fetal baboons were able to recognize donor cells, maternal cells, and other adult baboon peripheral blood cells in a mixed lymphocyte culture (MLC) reaction but still could engraft with allogeneic bone marrow. In contrast all nonchimeric animals survived to term. These data suggest that fetal transplantation of primates is feasible using techniques employed in these studies and that transplantation of younger fetuses who are immunocompetent should be attempted.  相似文献   

9.
Embryonic stem cells alone are able to support fetal development in the mouse   总被引:48,自引:0,他引:48  
The developmental potential of embryonic stem (ES) cells versus 3.5 day inner cell mass (ICM) was compared after aggregation with normal diploid embryos and with developmentally compromised tetraploid embryos. ES cells were capable of colonizing somatic tissues in diploid aggregation chimeras but less efficiently than ICMs of the same genotype. When ICM in equilibrium with tetraploid and ES in equilibrium with tetraploid chimeras were made, the newborns were almost all completely ICM- or ES-derived, as judged by GPI isozyme analysis, but tetraploid cells were found in the yolk sac endoderm and trophectoderm lineage. Investigation of ES contribution in 13.5 day ES in equilibrium with tetraploid chimeras by DNA in situ hybridization confirmed the complete tetraploid origin of the placenta (except the fetal blood and blood vessels) and the yolk sac endoderm. However, the yolk sac mesoderm, amnion and fetus contained only ES-derived cells. ES-derived newborns failed to survive after birth, although they had normal birthweight and anatomically they appeared normal. This phenomenon remains unexplained at the moment. The present results prove that ES cells are able to support complete fetal development, resulting in ES-derived newborns, and suggest a useful route for studying the development of genetically manipulated ES cells in all fetal lineages.  相似文献   

10.
Overexpression of esterase D in kidney from trisomy 13 fetuses.   总被引:1,自引:0,他引:1       下载免费PDF全文
Human trisomy 13 (Patau syndrome) occurs in approximately 1 in 5,000 live births. It is compatible with life, but prolonged survival is rare. Anomalies often involve the urogenital, cardiac, craniofacial, and central nervous systems. It is possible that these abnormalities may be due to the overexpression of developmentally important genes on chromosome 13. The expression of esterase D (localized to chromosome 13q14.11) has been investigated in both muscle and kidney from trisomy 13 fetuses and has been compared with normal age- and sex-matched fetal tissues, by using northern analysis. More than a twofold increase in expression of esterase D was found in the kidney of two trisomy 13 fetuses, with normal levels in a third. Overexpression was not seen in the muscle tissues from these fetuses.  相似文献   

11.
嵌合体大鼠是研究人类疾病的重要动物模犁.用囊胚注射法研究了大鼠内细胞团(ICM)和胎儿神经干细胞(FNS)构建嵌合体的潜力.结果发现来自黑色(DA)大鼠第5天(D5)和第6天(D6)囊胚的ICM细胞注入D5 Sprague-Dawley(SD)大鼠囊胚后得到3只嵌合体大鼠:D5 SD大鼠ICM细胞注射入D5 DA囊胚后得到4只嵌合体大鼠:而体外培养的DA或SD人鼠ICM细胞注射后均未能获得嵌合体大鼠.本研究用大鼠胎儿神经干细胞(rFNS)和LacZ转染的rFNS构建嵌介体,未能获得嵌合体人鼠:但在LacZ转染的SD rFNS注射到DA大鼠囊胚后发育来的41只胎儿中,有2只胎儿其组织切片中发现少量LacZ阳性细胞.结果表明DA和SD大鼠ICM具有参与嵌合体发育的潜力,但ICM细胞经体外培养后构建嵌合体的潜力显著F降(P<0.05);大鼠胎儿神经干细胞构建嵌合体的潜力较低,可能仅具有参与早期胚胎发育的潜力.  相似文献   

12.
Type 1 NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (PGDH) is the key enzyme for metabolism of active primary prostaglandins to inactive forms in gestational tissues. The present study examined the activity and immunolocalization of PGDH in the ovine placenta, fetal membranes and uterus over the latter half of pregnancy, and its potential regulation by oestradiol. Placenta, fetal membranes and myometrium were collected from sheep with known single insemination dates on days 70, 100 and 135 of gestation and in active labour demonstrated by electromyographic activity. In addition, chronically catheterized fetuses were infused with oestradiol (100 microgram kg(-1) per 24 h) (n = 5) or saline vehicle into the fetus from day 120 to day 125. PGDH activity measured in placental extracts remained constant from day 70 to day 135 of gestation, and then significantly (P < 0.05) increased by 300% in active labour. Immunoreactive PGDH was localized in the placentome at all stages and was present predominantly in the fetal component of the placentome in uninucleate, but not in binucleate, trophoblast cells. Similarly, in the fetal membranes PGDH immuno-reactivity was present in the uninucleate trophoblast but not in the binucleate cells of the chorion. PGDH immunostaining was also present in the endometrial luminal epithelium, in the smooth muscle of the myometrium, and the glandular epithelium of the cervix. Infusion of oestradiol into the fetal circulation from day 120 to day 125 of gestation had no effect on placental PGDH activity. Immunohistochemistry was used to localize oestrogen receptor alpha in intrauterine tissues to investigate further the failure of oestradiol to increase PGDH activity. Immunoreactive oestrogen receptor alpha was not present in the fetal component of the placenta, although it was expressed in adjacent maternal-derived cells. It is concluded that (1) PGDH activity increases in late gestation; (2) PGDH is expressed in uninucleate trophoblast cells in the ovine placenta and fetal membranes, and also in the maternal endometrial epithelium and stroma, myometrium and cervix; (3) oestrogen receptor alpha is not expressed in fetal cells in the placenta or fetal membranes; and (4) the increase in PGDH activity is not regulated by oestradiol administered to the fetus.  相似文献   

13.
Genetic control of the survival of murine trisomy 16 fetuses   总被引:1,自引:0,他引:1  
D J Epstein  M Vekemans 《Teratology》1990,42(5):571-580
A mouse model that allows for the experimental induction of an aneuploid state has been employed to investigate the factors that control the survival of trisomy 16 fetuses. The prevalence of trisomy 16 fetuses on day 15 of gestation was shown to vary significantly with the genetic background of the female parent. The ability to spontaneously abort a trisomy 16 conceptus was shown to be higher in the mouse strain with a low prevalence of trisomy 16, compared to those mouse strains with a high prevalence of trisomy 16. Furthermore, the maternal ability that selects against, or promotes the survival of a trisomic conceptus was shown to be specific for the trisomy in question.  相似文献   

14.
Embryonic stem (ES) cells are capable of differentiating into all embryonic and adult cell types following mouse chimera production. Although injection of diploid ES cells into tetraploid blastocysts suggests that tetraploid cells have a selective disadvantage in the developing embryo, tetraploid hybrid cells, formed by cell fusion between ES cells and somatic cells, have been reported to contribute to mouse chimeras. In addition, other examples of apparent stem cell plasticity have recently been shown to be the result of cell fusion. Here we investigate whether ES cells contribute to mouse chimeras through a cell fusion mechanism. Fluorescence in situ hybridization (FISH) analysis for X and Y chromosomes was performed on dissociated tissues from embryonic, neonatal, and adult wild-type, and chimeric mice to follow the ploidy distributions of cells from various tissues. FISH analysis showed that the ploidy distributions in dissociated tissues, notably the tetraploid cell number, did not differ between chimeric and wild-type tissues. To address the possibility that early cell fusion events are hidden by subsequent reductive divisions or other changes in cell ploidy, we injected Z/EG (lacZ/EGFP) ES cells into ACTB-cre blastocysts. Recombination can only occur as the result of cell fusion, and the recombined allele should persist through any subsequent changes in cell ploidy. We did not detect evidence of fusion in embryonic chimeras either by direct fluorescence microscopy for GFP or by PCR amplification of the recombined Z/EG locus on genomic DNA from ACTB-cre::Z/EG chimeric embryos. Our results argue strongly against cell fusion as a mechanism by which ES cells contribute to chimeras.  相似文献   

15.
Human-animal chimeras in biomedical research   总被引:1,自引:0,他引:1  
Chimeras are individuals with tissues derived from more than one zygote. Interspecific chimeras have tissues derived from different species. The biological consequences of human-animal chimeras have become an issue of ethical debate. Ironically, human-animal chimeras with human blood, neurons, germ cells, and other tissues have been generated for decades. This has facilitated human biological studies and therapeutic strategies for disease.  相似文献   

16.
Delayed thymocyte maturation in the trisomy 16 mouse fetus   总被引:1,自引:0,他引:1  
Mouse fetuses with trisomy 16, an animal model for human trisomy 21 (Down syndrome), have severe defects in several hematopoietic stem cell populations and a marked reduction in thymocyte number. To determine whether there are other defects in the development of the trisomic thymus, the ontogeny of the cell surface antigenic determinants, Thy-1, Ly-1, CD3, CD4, CD8, and TCR v beta, was investigated. The trisomy 16 thymocytes were able to express all of determinants either during fetal life (days 14 to 19 of gestation) or in cultures of intact thymus lobes. However, in all instances (except for Thy-1, which already had a high proportion of expressing thymocytes by day 14), there was a delay in the time at which the determinants were first expressed, as manifested by reduced numbers of positively staining cells. Furthermore, there was also a delay in the rate at which the positively staining cells attained maximal Ag densities. Overall, there was an approximate 2 day lag in development of the fetal trisomic thymocytes. This lag permitted the identification of a large population of CD4-8+ cells prior to the appearance of CD4+8+ thymocytes. These findings are consistent with the identification of CD4-8+ as an intermediate stage between CD4-8- and CD4+8+ in fetal thymocyte ontogeny.  相似文献   

17.
T lymphocytes of fetal origin found in maternal circulation after gestation have been reported as a possible cause for autoimmune diseases. During gestation, mothers acquire CD34+CD38+ cells of fetal origin that persist decades. In this study, we asked whether fetal T and B cells could develop from these progenitors in the maternal thymus and bone marrow during and after gestation. RAG-/--deficient female mice (Ly5.2) were mated to congenic wild-type Ly5.1 mice (RAG+/+). Fetal double-positive T cells (CD4+CD8+) with characteristic TCR and IL-7R expression patterns could be recovered in maternal thymus during the resulting pregnancies. We made similar observations in the thymus of immunocompetent mothers. Such phenomenon was observed overall in 12 of 68 tested mice compared with 0 of 51 controls (p=0.001). T cells could also be found in maternal spleen and produced IFN-gamma in the presence of an allogenic or an Ag-specific stimulus. Similarly, CD19+IgM+ fetal B cells as well as plasma Igs could be found in maternal RAG-/- bone marrow and spleen after similar matings. Our results suggest that during gestation mothers acquire fetal lymphoid progenitors that develop into functional T cells. This fetal cell microchimerism may have a direct impact on maternal health.  相似文献   

18.
Mice homozygous for a targeted deletion of the homeobox gene Goosecoid (Gsc) have multiple craniofacial defects. To understand the mechanisms responsible for these defects, the behavior of Gsc-null cells was examined in morula aggregation chimeras. In these chimeras, Gsc-null cells were marked with beta-galactosidase (beta-gal) activity using the ROSA26 lacZ allele. In addition, mice with a lacZ gene that had been introduced into the Gsc locus were used as a guide to visualize the location of Gsc-expressing cells. In Gsc-null<->wild-type chimeras, tissues that would normally not express Gsc were composed of both Gsc-null and wild-type cells that were well mixed, reflecting the overall genotypic composition of the chimeras. However, craniofacial tissues that would normally express Gsc were essentially devoid of Gsc-null cells. Furthermore, the nasal capsules and mandibles of the chimeras had defects similar to Gsc-null mice that varied in severity depending upon the proportion of Gsc-null cells. These results combined with the analysis of Gsc-null mice suggest that Gsc functions cell autonomously in mesenchyme-derived tissues of the head. A developmental analysis of the tympanic ring bone, a bone that is always absent in Gsc-null mice because of defects at the cell condensation stage, showed that Gsc-null cells had the capacity to form the tympanic ring condensation in the presence of wild-type cells. However, analysis of the tympanic ring bones of 18.5 d.p.c. chimeras suggests that Gsc-null cells were not maintained. The participation of Gsc-null cells in the tympanic ring condensation of chimeras may be an epigenetic phenomenon that results in a local environment in which more precursor cells are present. Thus, the skeletal defects observed in Gsc-null mice may reflect a regional reduction of precursor cells during embryonic development.  相似文献   

19.
Delayed administration of donor lymphocyte infusion (DLI) to established mixed chimeras has been shown to achieve anti-tumor responses without graft-vs.-host disease (GVHD). Herein we show that de novo donor BM-derived T cells that are tolerant of the recipients are important in preventing GVHD in mixed chimeras receiving delayed DLI. Mixed chimeras lacking donor BM-derived T cells developed significantly more severe GVHD than those with donor BM-derived T cells after DLI, even though both groups had comparable levels of total T cells at the time of DLI. Post-DLI depletion of donor BM-derived T cells in mixed chimeras, as late as 20 days after DLI, also provoked severe GVHD. Although both CD4 and CD8 T cells contributed to the protection, the latter were significantly more effective, suggesting that inhibition of GVHD was not mainly mediated by CD4 regulatory T cells. The lack of donor BM-derived T cells was associated with markedly increased accumulation of DLI-derived alloreactive T cells in parenchymal GVHD target tissues. Thus, donor BM-derived T cells are an important factor in determining the risk of GVHD and therefore, offer a potential therapeutic target for preventing and ameliorating GVHD in the setting of delayed DLI in established mixed chimeras.  相似文献   

20.
Molecular studies were performed on 101 cases of confined placental mosaicism (CPM) involving autosomal trisomy. The origin of the trisomic cell line was determined in 54 cases (from 51 pregnancies), 47 of which were also analyzed for the presence of uniparental disomy (UPD) in the disomic cell line. An additional 47 cases were analyzed for parental origin in the disomic cell line only. A somatic (postmeiotic) origin of the trisomy was observed in 22 cases and included the majority of cases with CPM for trisomy 2, 7, 8, 10, and 12. Most cases of CPM involving trisomy 9, 16, and 22 were determined to be meiotic. Fetal maternal UPD was found in 17 of 94 informative CPM cases, involving trisomy 2 (1 case), 7 (1 case), 16 (13 cases), and 22 (2 cases). The placental trisomy was of meiotic origin in all 17 cases associated with fetal UPD (P = .00005). A meiotic origin also correlated with the levels of trisomy in cultured chorionic villi samples (CVS) (P = .0002) and trophoblast (P = .00005). Abnormal pregnancy outcome (usually IUGR) correlated with meiotic origin (P = .0003), the presence of fetal UPD (P = 4 x 10(-7)), and the level of trisomy in trophoblast (P = 3 x 10(-7)) but not with the level of trisomy in CVS or term chorion. The good fit of somatic errors with the expected results could have been observed only if few true meiotic errors were misclassified by these methods as a somatic error. These data indicate that molecular determination of origin is a useful predictor of pregnancy outcome, whereas the level of trisomy observed in cultured CVS is not. In addition, UPD for some chromosomes may affect prenatal, but not postnatal, development, possibly indicating that imprinting effects for these chromosomes are confined to placental tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号