首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Saccharomyces cerevisiae, chromosome congression clusters kinetochores on either side of the spindle equator at metaphase. Many organisms require one or more kinesin-8 molecular motors to achieve chromosome alignment. the yeast kinesin-8, Kip3, has been well studied in vitro but a role in chromosome congression has not been reported. We investigated Kip3''s role in this process using semi-automated, quantitative fluorescence microscopy and time-lapse imaging and found that Kip3 is required for congression. Deletion of KIP3 increases inter-kinetochore distances and increases the variability in the position of sister kinetochores along the spindle axis during metaphase. Kip3 does not regulate spindle length and is not required for kinetochore-microtubule attachment. Instead, Kip3 clusters kinetochores on the metaphase spindle by tightly regulating kinetochore microtubule lengths.Key words: Cin8, cluster, GFP-tubulin, kinesin-5, kinesin-8, kinetochore, Kip3, metaphase, microtubule, mitosis, spindle  相似文献   

2.
During cell division, condensation and resolution of chromosome arms and the assembly of a functional kinetochore at the centromere of each sister chromatid are essential steps for accurate segregation of the genome by the mitotic spindle, yet the contribution of individual chromatin proteins to these processes is poorly understood. We have investigated the role of embryonic linker histone H1 during mitosis in Xenopus laevis egg extracts. Immunodepletion of histone H1 caused the assembly of aberrant elongated chromosomes that extended off the metaphase plate and outside the perimeter of the spindle. Although functional kinetochores assembled, aligned, and exhibited poleward movement, long and tangled chromosome arms could not be segregated in anaphase. Histone H1 depletion did not significantly affect the recruitment of known structural or functional chromosomal components such as condensins or chromokinesins, suggesting that the loss of H1 affects chromosome architecture directly. Thus, our results indicate that linker histone H1 plays an important role in the structure and function of vertebrate chromosomes in mitosis.  相似文献   

3.
In Saccharomyces cerevisiae, chromosome congression clusters kinetochores on either side of the spindle equator at metaphase. Many organisms require one or more kinesin-8 molecular motors to achieve chromosome alignment. The yeast kinesin-8, Kip3, has been well studied in vitro but a role in chromosome congression has not beenreported. We investigated Kip3's role in this process using semi-automated, quantitative fluorescence microscopy and time-lapse imaging and found that Kip3 is required for congression. Deletion of KIP3 increases inter-kinetochore distances and increases the variability in the position of sister kinetochores along the spindle axis during metaphase. Kip3 does not regulate spindle length and is not required for kinetochore-microtubule attachment. Instead, Kip3 clusters kinetochores on the metaphase spindle by tightly regulating kinetochore microtubule lengths.  相似文献   

4.
Analysis of kinesin motor function at budding yeast kinetochores   总被引:1,自引:0,他引:1       下载免费PDF全文
Accurate chromosome segregation during mitosis requires biorientation of sister chromatids on the microtubules (MT) of the mitotic spindle. Chromosome-MT binding is mediated by kinetochores, which are multiprotein structures that assemble on centromeric (CEN) DNA. The simple CENs of budding yeast are among the best understood, but the roles of kinesin motor proteins at yeast kinetochores have yet to be determined, despite evidence of their importance in higher eukaryotes. We show that all four nuclear kinesins in Saccharomyces cerevisiae localize to kinetochores and function in three distinct processes. Kip1p and Cin8p, which are kinesin-5/BimC family members, cluster kinetochores into their characteristic bilobed metaphase configuration. Kip3p, a kinesin-8,-13/KinI kinesin, synchronizes poleward kinetochore movement during anaphase A. The kinesin-14 motor Kar3p appears to function at the subset of kinetochores that become detached from spindle MTs. These data demonstrate roles for structurally diverse motors in the complex processes of chromosome segregation and reveal important similarities and intriguing differences between higher and lower eukaryotes.  相似文献   

5.
The mitotic segregation apparatus composed of microtubules and chromatin functions to faithfully partition a duplicated genome into two daughter cells. Microtubules exert extensional pulling force on sister chromatids toward opposite poles, whereas pericentric chromatin resists with contractile springlike properties. Tension generated from these opposing forces silences the spindle checkpoint to ensure accurate chromosome segregation. It is unknown how the cell senses tension across multiple microtubule attachment sites, considering the stochastic dynamics of microtubule growth and shortening. In budding yeast, there is one microtubule attachment site per chromosome. By labeling several chromosomes, we find that pericentromeres display coordinated motion and stretching in metaphase. The pericentromeres of different chromosomes exhibit physical linkage dependent on centromere function and structural maintenance of chromosomes complexes. Coordinated motion is dependent on condensin and the kinesin motor Cin8, whereas coordinated stretching is dependent on pericentric cohesin and Cin8. Linking of pericentric chromatin through cohesin, condensin, and kinetochore microtubules functions to coordinate dynamics across multiple attachment sites.  相似文献   

6.
The budding yeast Saccharomyces cerevisiae provides a unique opportunity for study of the microtubule-based motor proteins that participate in mitotic spindle function. The genome of Saccharomyces encodes a relatively small and genetically tractable set of microtubule-based motor proteins. The single cytoplasmic dynein and five of the six kinesin-related proteins encoded have been implicated in mitotic spindle function. Each motor protein is unique in amino acid sequence. On account of functional overlap, no single motor is uniquely required for cell viability, however. The ability to create and analyze multiple mutants has allowed experimental dissection of the roles performed by each mitotic motor. Some of the motors operate within the nucleus to assemble and elongate the bipolar spindle (kinesin-related Cin8p, Kip1p, Kip3p and Kar3p). Others operate on the cytoplasmic microtubules to effect spindle and nuclear positioning within the cell (dynein and kinesin-related Kip2p, Kip3p and Kar3p). The six motors apparently contribute three fundamental activities to spindle function: motility, microtubule cross-linking and regulation of microtubule dynamics.  相似文献   

7.
Nucleosome positioning is important for the structural integrity of chromosomes. During metaphase the mitotic spindle exerts physical force on pericentromeric chromatin. The cell must adjust the pericentromeric chromatin to accommodate the changing tension resulting from microtubule dynamics to maintain a stable metaphase spindle. Here we examine the effects of spindle-based tension on nucleosome dynamics by measuring the histone turnover of the chromosome arm and the pericentromere during metaphase in the budding yeast Saccharomyces cerevisiae. We find that both histones H2B and H4 exhibit greater turnover in the pericentromere during metaphase. Loss of spindle-based tension by treatment with the microtubule-depolymerizing drug nocodazole or compromising kinetochore function results in reduced histone turnover in the pericentromere. Pericentromeric histone dynamics are influenced by the chromatin-remodeling activities of STH1/NPS1 and ISW2. Sth1p is the ATPase component of the Remodels the Structure of Chromatin (RSC) complex, and Isw2p is an ATP-dependent DNA translocase member of the Imitation Switch (ISWI) subfamily of chromatin-remodeling factors. The balance between displacement and insertion of pericentromeric histones provides a mechanism to accommodate spindle-based tension while maintaining proper chromatin packaging during mitosis.  相似文献   

8.
During mitosis, sister chromatids congress on both sides of the spindle equator to facilitate the correct partitioning of the genomic material. Chromosome congression requires a finely tuned control of microtubule dynamics by the kinesin motor proteins. In Saccharomyces cerevisiae, the kinesin proteins Cin8, Kip1, and Kip3 have a pivotal role in chromosome congression. It has been hypothesized that additional proteins that modulate microtubule dynamics are involved. Here, we show that the microtubule plus-end tracking protein Bik1—the budding yeast ortholog of CLIP-170—is essential for chromosome congression. We find that nuclear Bik1 localizes to the kinetochores in a cell cycle–dependent manner. Disrupting the nuclear pool of Bik1 with a nuclear export signal (Bik1-NES) leads to slower cell-cycle progression characterized by a delayed metaphase–anaphase transition. Bik1-NES cells have mispositioned kinetochores along the spindle in metaphase. Furthermore, using proximity-dependent methods, we identify Cin8 as an interaction partner of Bik1. Deleting CIN8 reduces the amount of Bik1 at the spindle. In contrast, Cin8 retains its typical bilobed distribution in the Bik1-NES mutant and does not localize to the unclustered kinetochores. We propose that Bik1 functions with Cin8 to regulate kinetochore–microtubule dynamics for correct kinetochore positioning and chromosome congression.  相似文献   

9.
We discovered that many proteins located in the kinetochore outer domain, but not the inner core, are depleted from kinetochores and accumulate at spindle poles when ATP production is suppressed in PtK1 cells, and that microtubule depolymerization inhibits this process. These proteins include the microtubule motors CENP-E and cytoplasmic dynein, and proteins involved with the mitotic spindle checkpoint, Mad2, Bub1R, and the 3F3/2 phosphoantigen. Depletion of these components did not disrupt kinetochore outer domain structure or alter metaphase kinetochore microtubule number. Inhibition of dynein/dynactin activity by microinjection in prometaphase with purified p50 "dynamitin" protein or concentrated 70.1 anti-dynein antibody blocked outer domain protein transport to the spindle poles, prevented Mad2 depletion from kinetochores despite normal kinetochore microtubule numbers, reduced metaphase kinetochore tension by 40%, and induced a mitotic block at metaphase. Dynein/dynactin inhibition did not block chromosome congression to the spindle equator in prometaphase, or segregation to the poles in anaphase when the spindle checkpoint was inactivated by microinjection with Mad2 antibodies. Thus, a major function of dynein/dynactin in mitosis is in a kinetochore disassembly pathway that contributes to inactivation of the spindle checkpoint.  相似文献   

10.
Two Saccharomyces cerevisiae kinesin-related motors, Cin8p and Kip1p, perform an essential role in the separation of spindle poles during spindle assembly and a major role in spindle elongation. Cin8p and Kip1p are also required to prevent an inward spindle collapse prior to anaphase. A third kinesin-related motor, Kar3p, may act antagonistically to Cin8p and Kip1p since loss of Kar3p partially suppresses the spindle collapse in cin8 kip1 mutants. We have tested the relationship between Cin8p and Kar3p by overexpressing both motors using the inducible GAL1 promoter. Overexpression of KAR3 results in a shrinkage of spindle size and a temperature-dependent inhibition of the growth of wild-type cells. Excess Kar3p has a stronger inhibitory effect on the growth of cin8 kip1 mutants and can completely block anaphase spindle elongation in these cells. In contrast, overexpression of CIN8 leads to premature spindle elongation in all cells tested. This is the first direct demonstration of antagonistic motors acting on the intact spindle and suggests that spindle length is determined by the relative activity of Kar3p-like and Cin8p/Kip1p-like motors.  相似文献   

11.
The Aurora B kinase coordinates kinetochore–microtubule attachments with spindle checkpoint signaling on each mitotic chromosome. We find that EB1, a microtubule plus end–tracking protein, is required to enrich Aurora B at inner centromeres in a microtubule-dependent manner. This regulates phosphorylation of both kinetochore and chromatin substrates. EB1 regulates the histone phosphorylation marks (histone H2A phospho-Thr120 and histone H3 phospho-Thr3) that localize Aurora B. The chromosomal passenger complex containing Aurora B can be found on a subset of spindle microtubules that exist near prometaphase kinetochores, known as preformed K-fibers (kinetochore fibers). Our data suggest that EB1 enables the spindle microtubules to regulate the phosphorylation of kinetochores through recruitment of the Aurora B kinase.  相似文献   

12.
The budding yeast protein Kip3p is a member of the conserved kinesin-8 family of microtubule motors, which are required for microtubule-cortical interactions, normal spindle assembly and kinetochore dynamics. Here, we demonstrate that Kip3p is both a plus end-directed motor and a plus end-specific depolymerase--a unique combination of activities not found in other kinesins. The ATPase activity of Kip3p was activated by both microtubules and unpolymerized tubulin. Furthermore, Kip3p in the ATP-bound state formed a complex with unpolymerized tubulin. Thus, motile kinesin-8s may depolymerize microtubules by a mechanism that is similar to that used by non-motile kinesin-13 proteins. Fluorescent speckle analysis established that, in vivo, Kip3p moved toward and accumulated on the plus ends of growing microtubules, suggesting that motor activity brings Kip3p to its site of action. Globally, and more dramatically on cortical contact, Kip3p promoted catastrophes and pausing, and inhibited microtubule growth. These findings explain the role of Kip3p in positioning the mitotic spindle in budding yeast and potentially other processes controlled by kinesin-8 family members.  相似文献   

13.
During mitosis, chromosome passenger complexes (CPCs) exhibit a well-conserved association with the anaphase spindle and have been implicated in spindle stability. However, their precise effect on the spindle is not clear. In this paper, we show, in budding yeast, that a CPC consisting of CBF3, Bir1, and Sli15, but not Ipl1, is required for normal spindle elongation. CPC mutants slow spindle elongation through the action of the bipolar kinesins Cin8 and Kip1. The same CPC mutants that slow spindle elongation also result in the enrichment of Cin8 and Kip1 at the spindle midzone. Together, these findings argue that CPCs function to organize the spindle midzone and potentially switch motors between force generators and molecular brakes. We also find that slowing spindle elongation delays the mitotic exit network (MEN)-dependent release of Cdc14, thus delaying spindle breakdown until a minimal spindle size is reached. We propose that these CPC- and MEN-dependent mechanisms are important for coordinating chromosome segregation with spindle breakdown and mitotic exit.  相似文献   

14.
When chromosomes are aligned and bioriented at metaphase, the elastic stretch of centromeric chromatin opposes pulling forces exerted on sister kinetochores by the mitotic spindle. Here we show that condensin ATPase activity is an important regulator of centromere stiffness and function. Condensin depletion decreases the stiffness of centromeric chromatin by 50% when pulling forces are applied to kinetochores. However, condensin is dispensable for the normal level of compaction (rest length) of centromeres, which probably depends on other factors that control higher-order chromatin folding. Kinetochores also do not require condensin for their structure or motility. Loss of stiffness caused by condensin-depletion produces abnormal uncoordinated sister kinetochore movements, leads to an increase in Mad2(+) kinetochores near the metaphase plate and delays anaphase onset.  相似文献   

15.
Metaphase and anaphase PtK1 cells show spindle elongation without concomitant chromosome motion when treated with culture medium containing 0.5 M sucrose. Electron microscopy has shown sucrose-induced changes in microtubule (MT) organization, changes in trilaminar kinetochore structure, and specific kinetochore-MT associations which may account for these results. In this paper we employ double-label immunofluorescence techniques using antibodies against tubulin and the kinetochore to analyze changes in spindle microtubule and kinetochore distribution produced by sucrose treatment. Cells treated from prometaphase through anaphase with 0.5 M sucrose from 10 min to 2 h showed spindle elongation and a distinct rearrangement of spindle microtubules into bundles, with a pronounced increase in length of interpolar microtubule bundles. In sucrose-treated mitotic cells kinetochores remained as antigenically distinct structures, similar to those found in untreated interphase cells. Kinetochore determinants remained positioned within a diffuse chromatin mass, but the orientation of sister kinetochores to opposite spindle poles was lost. Instead, kinetochore pairs were found in lateral association with microtubule bundles, with several pairs of determinants associated with a single bundle in many instances. Cells released from 0.5 M sucrose treatment showed a return of the spindle to a pretreatment arrangement for both the microtubules and kinetochore determinants.  相似文献   

16.
The accurate segregation of chromosomes requires the kinetochore, a complex protein machine that assembles onto centromeric DNA to mediate attachment of replicated sister chromatids to the mitotic spindle apparatus. This study reveals an important role for the yeast RSC ATP-dependent chromatin-remodeling complex at the kinetochore in chromosome transmission. Mutations in genes encoding two core subunits of RSC, the ATPase Sth1p and the Snf5p homolog Sfh1p, interact genetically with mutations in genes encoding kinetochore proteins and with a mutation in centromeric DNA. RSC also interacts genetically and physically with the histone and histone variant components of centromeric chromatin. Importantly, RSC is localized to centromeric and centromere-proximal chromosomal regions, and its association with these loci is dependent on Sth1p. Both sth1 and sfh1 mutants exhibit altered centromeric and centromere-proximal chromatin structure and increased missegregation of authentic chromosomes. Finally, RSC is not required for centromeric deposition of the histone H3 variant Cse4p, suggesting that RSC plays a role in reconfiguring centromeric and flanking nucleosomes following Cse4p recruitment for proper chromosome transmission.  相似文献   

17.
Summary We have found that a brief treatment of either PtK2 cells or stamen hair cells ofTradescantia virginiana during metaphase with okadaic acid, a potent protein phosphatase inhibitor, results in asynchronous entry into anaphase. After this treatment, the interval for the separation of sister chromatids can be expanded from a few seconds to approximately 5 min. We have performed a series of immunolocalizations of cells with anti-tubulin antibodies and CREST serum, asking whether okadaic acid induces asynchronous entry into anaphase through changes in the organization of the spindle microtubules or through a loss in the attachment of spindle microtubules to the kinetochores. Our experiments clearly indicate that asynchronous entry into anaphase after phosphatase inhibitor treatment is not the result of either altered spindle microtubule organization or the long-term loss of microtubule attachment to kinetochores. The kinetochore fiber bundles for all of the separating chromosomes are normally of uniform length throughout anaphase, but after asynchronous entry into anaphase, different groups of kinetochore fiber bundles have distinctly different lengths. The reason for this difference in length is that once split apart, the daughter chromosomes begin their movement toward the spindle poles, with normal shortening of the kinetochore fiber bundle microtubules. Thus, okadaic acid treatment during metaphase does not affect anaphase chromosome movement once it has begun. Our results suggest that one or more protein phosphatases appear to play an important role during metaphase in the regulatory cascade that culminates in synchronous sister chromatid separation.  相似文献   

18.
The Saccharomyces cerevisiae kinesin-related gene products Cin8p and Kip1p function to assemble the bipolar mitotic spindle. The cytoplasmic dynein heavy chain homologue Dyn1p (also known as Dhc1p) participates in proper cellular positioning of the spindle. In this study, the roles of these motor proteins in anaphase chromosome segregation were examined. While no single motor was essential, loss of function of all three completely halted anaphase chromatin separation. As combined motor activity was diminished by mutation, both the velocity and extent of chromatin movement were reduced, suggesting a direct role for all three motors in generating a chromosome-separating force. Redundancy for function between different types of microtubule-based motor proteins was also indicated by the observation that cin8 dyn1 double- deletion mutants are inviable. Our findings indicate that the bulk of anaphase chromosome segregation in S. cerevisiae is accomplished by the combined actions of these three motors.  相似文献   

19.
Eukaryotic chromosomes segregate by attaching to microtubules of the mitotic spindle through a chromosomal microtubule binding site called the kinetochore. Kinetochores assemble on a specialized chromosomal locus termed the centromere, which is characterized by the replacement of histone H3 in centromeric nucleosomes with the essential histone H3 variant CENP-A (centromere protein A). Understanding how CENP-A chromatin is assembled and maintained is central to understanding chromosome segregation mechanisms. CENP-A nucleosome assembly requires the Mis18 complex and the CENP-A chaperone HJURP. These factors localize to centromeres in telophase/G1, when new CENP-A chromatin is assembled. The mechanisms that control their targeting are unknown. In this paper, we identify a mechanism for recruiting the Mis18 complex protein M18BP1 to centromeres. We show that depletion of CENP-C prevents M18BP1 targeting to metaphase centromeres and inhibits CENP-A chromatin assembly. We find that M18BP1 directly binds CENP-C through conserved domains in the CENP-C protein. Thus, CENP-C provides a link between existing CENP-A chromatin and the proteins required for new CENP-A nucleosome assembly.  相似文献   

20.
The single cytoplasmic dynein and five of the six kinesin-related proteins encoded by Saccharomyces cerevisiae participate in mitotic spindle function. Some of the motors operate within the nucleus to assemble and elongate the bipolar spindle. Others operate on the cytoplasmic microtubules to effect spindle and nuclear positioning within the cell. This study reveals that kinesin-related Kar3p and Kip3p are unique in that they perform roles both inside and outside the nucleus. Kar3p, like Kip3p, was found to be required for spindle positioning in the absence of dynein. The spindle positioning role of Kar3p is performed in concert with the Cik1p accessory factor, but not the homologous Vik1p. Kar3p and Kip3p were also found to overlap for a function essential for the structural integrity of the bipolar spindle. The cytoplasmic and nuclear roles of both these motors could be partially substituted for by the microtubule-destabilizing agent benomyl, suggesting that these motors perform an essential microtubule-destabilizing function. In addition, we found that yeast cell viability could be supported by as few as two microtubule-based motors: the BimC-type kinesin Cin8p, required for spindle structure, paired with either Kar3p or Kip3p, required for both spindle structure and positioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号