首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 418 毫秒
1.
Centrosomin is a 150 kDa centrosomal protein of Drosophila melanogaster. To study the function of Centrosomin in the centrosome, we have recovered mutations that are viable but male and female sterile (cnnmfs). We have shown that these alleles (1, 2, 3, 7, 8 and hk21) induce a maternal effect on early embryogenesis and result in the accumulation of low or undetectable levels of Centrosomin in the centrosomes of cleavage stage embryos. Hemizygous cnn females produce embryos that show dramatic defects in chromosome segregation and spindle organization during the syncytial cleavage divisions. In these embryos the syncytial divisions proceed as far as the twelfth cycle, and embryos fail to cellularize. Aberrant divisions and nuclear fusions occur in the early cycles of the nuclear divisions, and become more prominent at later stages. Giant nuclei are seen in late stage embryos. The spindles that form in mutant embryos exhibit multiple anomalies. There is a high occurrence of apparently linked spindles that share poles, indicating that Centrosomin is required for the proper spacing and separation of mitotic spindles within the syncytium. Spindle poles in the mutants contain little or no detectable amounts of the centrosomal proteins CP60, CP190 and (gamma)-tubulin and late stage embryos often do not have astral microtubules at their spindle poles. Spindle morphology and centrosomal composition suggest that the primary cause of these division defects in mutant embryos is centrosomal malfunction. These results suggest that Centrosomin is required for the assembly and function of centrosomes during the syncytial cleavage divisions.  相似文献   

2.
Successful divisions of eukaryotic cells require accurate and coordinated cycles of DNA replication, spindle formation, chromosome segregation, and cytoplasmic cleavage. The Caenorhabditis elegans gene lin-5 is essential for multiple aspects of cell division. Cells in lin-5 null mutants enter mitosis at the normal time and form bipolar spindles, but fail chromosome alignment at the metaphase plate, sister chromatid separation, and cytokinesis. Despite these defects, cells exit from mitosis without delay and progress through subsequent rounds of DNA replication, centrosome duplication, and abortive mitoses. In addition, early embryos that lack lin-5 function show defects in spindle positioning and cleavage plane specification. The lin-5 gene encodes a novel protein with a central coiled-coil domain. This protein localizes to the spindle apparatus in a cell cycle- and microtubule-dependent manner. The LIN-5 protein is located at the centrosomes throughout mitosis, at the kinetochore microtubules in metaphase cells, and at the spindle during meiosis. Our results show that LIN-5 is a novel component of the spindle apparatus required for chromosome and spindle movements, cytoplasmic cleavage, and correct alternation of the S and M phases of the cell cycle.  相似文献   

3.
Protoplast cultures of Vicia hajastana have a high division frequency. However, 20–40% of the microcolonies fail to develop beyond the 20-30-cell stage. Aneuploids and polyploids were found in early divisions and persisted in older cultures. The resulting protoplast-derived suspension culture differed karyologically from the original culture. Karyokinesis and cytokinesis were studied using simultaneous staining of microtubules (MT) by immunofluorescence, DNA by Hoechst 33258 (2-[2-(4-hydroxyphenyl)-6-benzimidazoyl]-6-[1-methyl-4-piperazyl]benzimidazole) and cell walls by Calcofluor. Freshly prepared protoplasts showed mitoses and high frequencies of binucleate cells, which probably resulted mainly from failure of cytokinesis. In early divisions, many mitoses showed metaphase chromosomes with kinetochore MT but lacking polar MT. These aberrant mitoses probably accounted for an increase in hyperploid cells observed in protoplast cultures. Multipolar spindles, which gave rise to hypoploid cells, were also seen in the early divisions. Telophase abnormalities included dislocated phragmoplasts and incomplete formation of cross walls. Many divisions resulted in daughter nuclei of unequal size. Unequal segregation of chromosomes was detected by cytofluorimetric measurements of telophase nuclei stained with Hoechst. After 5 d of culture, 91% of the divisions with incomplete cross walls also contained different-size nuclei; conversely, 78% of the divisions with fully formed cross walls contained nuclei of equal size. The malfunctioning of spindles and phragmoplasts in the same cells indicates a functional interdependence of the different MT configurations in mitosis. During the first 24 h of culture, a high frequency of abnormalities was found in spindles, cross-wall formation and chromosome segregation; this was reduced substantially in the cells undergoing first division by 48 h. The data indicate that it may be possible to manipulate the frequency of abnormalities by controlling the onset of the first division in protoplast cultures.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - MT microtubule(s) - PB prophase band(s) - PNF perinuclear fluorescence - PPB pre-prophase band  相似文献   

4.
Heteropeza pygmaea (syn. Oligarces paradoxus) can reproduce as larvae by paedogenesis or as imagines (Fig. 1). The eggs of imagines may develop after fertilization or parthenogenetically. The fertilized eggs give rise to female larvae, which develop into mother-larvae with female offspring (Weibchenmütter). Only a few of the larvae which hatch from unfertilized eggs become motherlarvae with female offspring; the others die. Spermatogenesis is aberrant, as it is in all gall midges studied to date. The primary spermatocyte contains 53 or 63 chromosomes. The meiotic divisions give rise to two sperms each of which contains only 7 chromosomes (Figs. 5–11). The eggs of the imago are composed of the oocyte and the nurse-cell chamber. In addition to the oocyte nucleus and the nurse-cell nuclei there are three other nuclei in the eggs (Figs. 15–17). They are called small nuclei (kleine Kerne). In prometaphase stages of the first cleavage division it could be seen that these nuclei contain about 10 chromosomes. Therefore it is assumed that these nuclei originate from the soma of the mother-larva. The chromosome number of the primary oocyte is approximately 66. The oocyte completes two meiotic divisions. The reduced egg nucleus contains approximately 33 chromosomes. The polar body-nuclei degenerate during the first cleavage divisions. The fertilized egg contains 2–3 sperms. The primary cleavage nucleus is formed by the egg nucleus and usually all of the sperm nuclei and the small nuclei (Figs. 21–29). The most frequent chromosome numbers in the primary cleavage nuclei are about 77 and 67. The first and the second cleavage divisions are normal. A first elimination occurs in the 3rd, 4th, and 5th cleavage division (Fig. 30). All except 6 chromosomes are eliminated from the future somatic nuclei. Following a second elimination (Figs. 33, 34), the future somatic nuclei contain 5 chromosomes. No elimination occurs in the divisions of the germ line nucleus. In eggs which develop parthenogenetically the primary cleavage nucleus is formed by the egg nucleus and 2–3 small nuclei. It's chromosome number is therefore about 53 or 63. After two eliminations, which are similar to the ones which occur in fertilized eggs, the soma contains 5 chromosomes. The somatic nuclei of male larvae which arrise by paedogenesis contain 5 chromosomes; while the somatic nuclei of female larvae of paedogenetic origin contain 10 chromosomes. It was therefore assumed earlier that sex was determined by haploidy or diploidy. But the above results show that larvae from fertilized as well as from unfertilized eggs of imagines have 5 chromosomes in the soma, but are females, and the female paedogenetic offspring of larvae from unfertilized eggs have either 5 or 10 chromosomes in their somatic cells. Therefore sex determination is not by haploidy-diploidy but by some other, unknown, mechanism. The cytological events associated with paedogenetic, bisexual, and parthenogenetic reproduction in Heteropeza pygmaea are compared (Fig. 37). The occurrence and meaning of the small nuclei which are found in the eggs of most gall midges are discussed. It has been shown here that these nuclei function to restore the chromosome number in fertilized eggs; it is suggested that they function similarity in certain other gall midges. Consideration of the mode of restoration of the germ-line chromosome number leads to the conclusion that in Heteropeza few, if any, of the chromosomes are limited to the germ-line, i.e. can never occur in somatic cells (p. 124).  相似文献   

5.
红鲤(♀)×银鲫(♂)的杂种胚胎均不能成活。受精细胞学研究结果表明,雌核发育银鲫的精核在两性融合生殖的鲤鱼卵质中能转化为雄性原核,并和雌性原核融合成合子核。但在卵裂开始后,可观察到某些异常现象,如染色体丢失,多极纺锤体形成,以及第二次卵裂时受精卵的两分裂球的非同步性分裂等。我们初步认为,雌核发育银鲫的染色体和两性融合生殖的鱼类染色体之间存在某种不相容性,表现为彼此间的互相排斥。出现这种现象可能和银鲫染色体组的雌核发育遗传背景有关。  相似文献   

6.
Three sets of histone variants are coexisting in the embryo at larval stages of sea urchin's development: the maternally inherited cleavage stage variants (CS) expressed during the two initial cleavage divisions, the early histone variants, which are recruited into embryonic chromatin from middle cleavage stages until hatching and the late variants, that are fundamentally expressed from blastula stage onward. Since the expression of the CS histones is confined to the initial cleavage stages, these variants represent a very minor proportion of the histones present in the plutei larvae, whereas the late histone variants are predominant. To determine the position of these CS in the embryonic territories, we have immunolocalized the CS histone variants in plutei larvas harvested 72 h post-fertilization. In parallel, we have pulse labeled the DNA replicated during the initial cleavage cycle with bromodeoxyuridine (BrdU) and its position was further determined in the plutei larvas by immunofluorescence. We have found that the CS histone variants were segregated to specific territories in the plutei. The position in which the CS histone variants were found to be segregated was consistent with the position in which the DNA molecules that were replicated during the initial cleavage divisions were localized. These results strongly suggest that a specification of embryonic nuclei occurs at the initial cleavage divisions which is determined by a chromatin organized by CS histone variants.  相似文献   

7.
Meiosis produces haploid gametes by accurately reducing chromosome ploidy through one round of DNA replication and two subsequent rounds of chromosome segregation and cell division. The cell divisions of female meiosis are highly asymmetric and give rise to a large egg and two very small polar bodies that do not contribute to development. These asymmetric divisions are driven by meiotic spindles that are small relative to the size of the egg and have one pole juxtaposed against the cell cortex to promote polar body extrusion. An additional unique feature of female meiosis is that fertilization occurs before extrusion of the second polar body in nearly all animal species. Thus sperm-derived chromosomes are present in the egg during female meiosis. Here, we explore the idea that the asymmetry of female meiosis spatially separates the sperm from the meiotic spindle to prevent detrimental interactions between the spindle and the paternal chromosomes.  相似文献   

8.
Neuregulins and their Erbb receptors have been implicated in neuromuscular synapse formation by regulating gene expression in subsynaptic nuclei. To analyze the function of Erbb2 in this process, we have inactivated the Erbb2 gene in developing muscle fibers by Cre/Lox-mediated gene ablation. Neuromuscular synapses form in the mutant mice, but the synapses are less efficient and contain reduced levels of acetylcholine receptors. Surprisingly, the mutant mice also show proprioceptive defects caused by abnormal muscle spindle development. Sensory Ia afferent neurons establish initial contact with Erbb2-deficient myotubes. However, functional spindles never develop. Taken together, our data suggest that Erbb2 signaling regulates the formation of both neuromuscular synapses and muscle spindles.  相似文献   

9.
Correct segregation of chromosomes is particularly challenging during the rapid nuclear divisions of early embryogenesis. This process is disrupted by HorkaD, a dominant-negative mutation in Drosophila melanogaster that causes female sterility due to chromosome tangling and nondisjunction during oogenesis and early embryogenesis. HorkaD also renders chromosomes unstable during spermatogenesis, which leads to the formation of diplo//haplo mosaics, including the gynandromorphs. Complete loss of gene function brings about maternal-effect lethality: embryos of the females without the HorkaD-identified gene perish due to disrupted centrosome function, defective spindle assembly, formation of chromatin bridges, and abnormal chromosome segregation during the cleavage divisions. These defects are indicators of mitotic catastrophe and suggest that the gene product acts during the meiotic and the cleavage divisions, an idea that is supported by the observation that germ-line chimeras exhibit excessive germ-line and cleavage function. The gene affected by the HorkaD mutation is lodestar, a member of the helicase-related genes. The HorkaD mutation results in replacement of Ala777 with Thr, which we suggest causes chromosome instability by increasing the affinity of Lodestar for chromatin.  相似文献   

10.
Populations of hormone-stimulated starfish oocytes and fertilized sea urchin eggs undergo synchronous meiotic and mitotic divisions. We have studied the requirement for protein phosphorylation during these events by testing the effects of 6-dimethylaminopurine (6-DMAP) upon the incorporation of [32P]orthophosphate. It was found that 6-DMAP blocked meiosis reinitiation and early cleavage and simultaneously inhibited protein phosphorylation, without changing the rate of [35S]methionine incorporation or pattern of protein synthesis. The protein, cyclin (54 kDa in starfish and 57 kDa in sea urchin), continues to be synthesized in the presence of 6-DMAP. This protein is destroyed at first and second cell cycles when 6-DMAP is added 30 min following fertilization but not when this drug is present before fertilization. Thus, cyclin breakdown does not depend on the completion of the nuclear events of M-phase, and its time of breakdown is set at an early step between fertilization and first cleavage. Using tubulin immunostaining, we found that 6-DMAP did not affect the cortical microtubules and resting female centrioles of prophase-arrested starfish oocytes, whereas it induced a precocious disappearance of spindle fibers when applied to hormone-stimulated oocytes. While an early addition of 6-DMAP precluded nuclear breakdown and spindle formation in both systems, a late treatment always allowed chromosome separation and centriole separation. Under these conditions pericentriolar tubulin persisted and could organize new spindles after the inhibitor was removed. It is suggested that (1) the assembly of cortical and centriolar-associated microtubules is not controlled by the same factors as spindle-associated tubulin; (2) specific proteins which are required for the cell to enter the following M-phase can become operative only via a process depending upon protein phosphorylation; (3) microtubule-associated kinases may play an important role in MPF function and spindle dynamics.  相似文献   

11.
F L Shamanski  T L Orr-Weaver 《Cell》1991,66(6):1289-1300
Mutations in the Drosophila maternal genes plutonium (plu) and pan gu (png) have the striking phenotype that DNA replication initiates in unfertilized eggs. Fertilized eggs from plu or png mutant mothers also have a mutant phenotype; DNA replication is uncoupled from nuclear division, resulting in giant, polyploid nuclei. Analysis of multiple alleles of these genes indicates that their wild-type function is required to maintain repression of DNA replication until fertilization. The phenotype of two png alleles suggests that this gene also may play a direct role in coupling S phase and mitosis during the early cleavage divisions. We describe genetic interactions among png, plu, and the previously identified gene gnu that demonstrate these three genes regulate the same process.  相似文献   

12.
In Sciara, unfertilized embryos initiate parthenogenetic development without centrosomes. By comparing these embryos with normal fertilized embryos, spindle assembly and other microtubule-based events can be examined in the presence and absence of centrosomes. In both cases, functional mitotic spindles are formed that successfully proceed through anaphase and telophase, forming two daughter nuclei separated by a midbody. The spindles assembled without centrosomes are anastral, and it is likely that their microtubules are nucleated at or near the chromosomes. These spindles undergo anaphase B and successfully segregate sister chromosomes. However, without centrosomes the distance between the daughter nuclei in the next interphase is greatly reduced. This suggests that centrosomes are required to maintain nuclear spacing during the telophase to interphase transition. As in Drosophila, the initial embryonic divisions of Sciara are synchronous and syncytial. The nuclei in fertilized centrosome-bearing embryos maintain an even distribution as they divide and migrate to the cortex. In contrast, as division proceeds in embryos lacking centrosomes, nuclei collide and form large irregularly shaped nuclear clusters. These nuclei are not evenly distributed and never successfully migrate to the cortex. This phenotype is probably a direct result of a failure to form astral microtubules in parthenogenetic embryos lacking centrosomes. These results indicate that the primary function of centrosomes is to provide astral microtubules for proper nuclear spacing and migration during the syncytial divisions. Fertilized Sciara embryos produce a large population of centrosomes not associated with nuclei. These free centrosomes do not form spindles or migrate to the cortex and replicate at a significantly reduced rate. This suggests that the centrosome must maintain a proper association with the nucleus for migration and normal replication to occur.  相似文献   

13.
Summary We describe the mitotic cleavage patterns during blastoderm stage of the house flyMusca domestica L. Nuclear divisions up to mitotic stage 11 are apparently synchronous. Beginning with stage 12, nuclear divisions in the posterior third of the embryo lag behind, resulting first in a parasynchronous and finally in an asynchronous cleavage pattern. Thus a stage exists where all nuclei in the anterior region have completed 14 nuclear division cycles, while those in the posterior region have completed only 13 cycles. The border region between these nuclei is well defined and lies at 35% EL (egg length), the expression border of a gap gene. This border region is about 4–5 nuclei wide and shows a specialized mitotic behaviour.  相似文献   

14.
Cloning by nuclear transfer remains inefficient but is more efficient when nuclei from embryonic cells or embryonic stem cells (ECNT) are employed as compared with somatic cells (SCNT). The factors determining efficiency have not been elucidated. We find that somatic and embryonic nuclei differ in their ability to organize meiotic and mitotic spindles of normal molecular composition. Calmodulin, a component of meiotic and mitotic spindle chromosome complexes (SCCs), displays sharply reduced association with the SCC forming after SCNT but not ECNT. This defect persists in mitotic spindles at least through the second mitosis, despite abundant calmodulin expression in the cell, and correlates with slow chromosome congression. We propose that somatic cell nuclei lack factors needed to direct normal SCC formation in oocytes and early embryos. These results reveal a striking control of SCC formation by the transplanted nucleus and provide the first identified molecular correlate of donor stage-dependent restriction in nuclear potency.  相似文献   

15.
Oocytes of the surf clam, Spisula solidissima, underwent germinal vesicle breakdown and two meiotic divisions to give off polar bodies when they were fertilized or parthenogenetically activated with KCl. Fertilized eggs further proceeded to mitosis and cleaved, while parthenogenetically activated eggs remained uncleaved. We examined changes in microtubule-containing structures during meiotic divisions and subsequent mitotic processes by immunofluorescence. A monoclonal anti-tubulin antibody was applied to alcohol-fixed eggs from which the vitelline membrane had been removed by protease digestion. Up to the stage of second polar body formation, the pattern of microtubule organization in the first and second meiotic spindles was identical in both fertilized and parthenogenetically activated eggs. However, while fertilized eggs formed a sperm aster and mitotic spindles later, activated eggs formed only monaster- or ring-shaped microtubule-containing structures which underwent cycles of alternating formation and breakdown. Lactoorecin staining of parthenogenetically activated eggs revealed that the chromosome cycle could occur in these eggs, in phase with this microtubule cycle.  相似文献   

16.
A I Ivanov 《Ontogenez》1991,22(1):90-93
Distribution of tissues of XX and XO genotype in gynandromorphs resulting from elimination of unstable ring X-chromosome during initial cleavage divisions was studied. Predominantly XX-nuclei proved to give rise to cell nuclei in tissues of cranial and caudal regions of mosaics. XX nuclei are proposed to be more migrationally active than XO nuclei.  相似文献   

17.
The establishment of bipolar spindles during meiotic divisions ensures faithful chromosome segregation to prevent gamete aneuploidy. We analyzed centriole duplication, as well as centrosome maturation and separation during meiosis I and II using mouse spermatocytes. The first round of centriole duplication occurs during early prophase I, and then, centrosomes mature and begin to separate by the end of prophase I to prime formation of bipolar metaphase I spindles. The second round of centriole duplication occurs at late anaphase I, and subsequently, centrosome separation coordinates bipolar segregation of sister chromatids during meiosis II. Using a germ cell‐specific conditional knockout strategy, we show that Polo‐like kinase 1 and Aurora A kinase are required for centrosome maturation and separation prior to metaphase I, leading to the formation of bipolar metaphase I spindles. Furthermore, we show that PLK1 is required to block the second round of centriole duplication and maturation until anaphase I. Our findings emphasize the importance of maintaining strict spatiotemporal control of cell cycle kinases during meiosis to ensure proficient centrosome biogenesis and, thus, accurate chromosome segregation during spermatogenesis.  相似文献   

18.
Nuclear division and migration of cleavage nuclei in the embryos of Bradysia tritici (Diptera : Sciaridae) have been studied by light microscopy and nuclear staining. There are 8 cleavage cycles up to the syncytial blastoderm stage (4.5 hr), and during the 11th cycle cellularization begins (6.5 hr). The first 3 divisions take about 30 min each. During the 5th and 6th cycles, the maximum rate of division is reached (12 min/cycle at 22°C). After pole cell formation, the duration of the following mitotic cycles increases progressively. During nuclear migration, the presumptive germ line nuclei reach the egg cortex first, followed by anterior somatic nuclei and finally, posterior somatic nuclei reach the egg cortex. Possibly as a result of this region-specific nuclear migration, nuclear divisions become parasynchronous after 3 hr of embryogenesis (4th cycle). Several mitotic cycles later, between the 8th and 10th cycle in different embryos, X-chromosome elimination in somatic nuclei begins at the anterior egg pole and progresses in anteroposterior direction. Our observations suggest that the observed region-specific differences may be due to the activity of localized factors in the egg that control migration and nuclear cycle of the somatic nuclei.  相似文献   

19.
As rapid divisions without growth generate progressively smaller cells within an embryo, mitotic chromosomes must also decrease in size to permit their proper segregation, but this scaling phenomenon is poorly understood. We demonstrated previously that nuclear and spindle size scale between egg extracts of the related frog species Xenopus tropicalis and Xenopus laevis, but show here that dimensions of isolated mitotic sperm chromosomes do not differ. This is consistent with the hypothesis that chromosome scaling does not occur in early embryonic development when cell and spindles sizes are large and anaphase B segregates chromosomes long distances. To recapitulate chromosome scaling during development, we combined nuclei isolated from different stage Xenopus laevis embryos with metaphase-arrested egg extracts. Mitotic chromosomes derived from nuclei of cleaving embryos through the blastula stage were similar in size to replicated sperm chromosomes, but decreased in area approximately 50% by the neurula stage, reproducing the trend in size changes observed in fixed embryos. Allowing G2 nuclei to swell in interphase prior to mitotic condensation did not increase mitotic chromosome size, but progression through a full cell cycle in egg extract did, suggesting that epigenetic mechanisms determining chromosome size can be altered during DNA replication. Comparison of different sized mitotic chromosomes assembled in vitro provides a tractable system to elucidate underlying molecular mechanisms.  相似文献   

20.
The present study was designed to investigate the effects of nicotine on development of bovine embryos derived from parthenogenetic activation (PA) and in vitro fertilization (IVF). Nicotine caused disfigured secondary meiotic spindle structures and affected embryonic development in a dose-dependent manner. Concentrations at 0.01-0.5 mM resulted in cleavage and blastocyst rates similar to the controls for both PA and IVF embryos. Nicotine at 2.0 and 4.0 mM significantly decreased the cleavage rates and none of the embryos developed beyond the 16-cell stage. Nicotine might disrupt the polymerization of microfilaments leading to impaired chromosome alignment or segregation, and induce the formation of polynuclei with a variety of abnormal nuclear structures such as 2-6 nuclei, 2-4 metaphase plates, 2-4 sets of anaphase/telophase plates, and the co-existence of polynuclei and 2-4 sets of anaphase/telophase plates. Nicotine adversely affected blastocyst chromosomal composition. Fifty-six to 70% of the IVF blastocysts and 71-88% of the PA blastocysts were polyploid and/or mixoploid after culture in 0.2-1.0 mM nicotine-containing media, which were higher (P < 0.05 or P < 0.01) than the controls. Cell numbers of the nicotine-cultured blastocysts were significantly lower than the control. In conclusion, nicotine induced disfigured spindles and irregular chromosome alignment and possibly impaired cytokinesis, which lead to decreased quality of the yielded blastocysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号