首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Cancer is characterized by aberrant patterns of expression of multiple genes. These major shifts in gene expression are believed to be due to not only genetic but also epigenetic changes. The epigenetic changes are communicated through chemical modifications, including histone modifications. However, it is unclear whether the binding of histone-modifying proteins to genomic regions and the placing of histone modifications efficiently discriminates corresponding genes from the rest of the genes in the human genome. We performed gene expression analysis of histone demethylases (HDMs) and histone methyltransferases (HMTs), their target genes and genes with relevant histone modifications in normal and tumor tissues. Surprisingly, this analysis revealed the existence of correlations in the expression levels of different HDMs and HMTs. The observed HDM/HMT gene expression signature was specific to particular normal and cancer cell types and highly correlated with target gene expression and the expression of genes with histone modifications. Notably, we observed that trimethylation at lysine 4 and lysine 27 separated preferentially expressed and underexpressed genes, which was strikingly different in cancer cells compared to normal cells. We conclude that changes in coordinated regulation of enzymes executing histone modifications may underlie global epigenetic changes occurring in cancer.  相似文献   

3.
4.
5.
6.
More than 160,000 people are expected to die from invasive urothelial carcinoma (iUC) this year worldwide. Research in relevant animal models is essential to improving iUC management. Naturally-occurring canine iUC closely resembles human iUC in histopathology, metastatic behavior, and treatment response, and could provide a relevant model for human iUC. The molecular characterization of canine iUC, however, has been limited. Work was conducted to compare gene expression array results between tissue samples from iUC and normal bladder in dogs, with comparison to similar expression array data from human iUC and normal bladder in the literature. Considerable similarities between enrichment patterns of genes in canine and human iUC were observed. These included patterns mirroring basal and luminal subtypes initially observed in human breast cancer and more recently noted in human iUC. Canine iUC samples also exhibited enrichment for genes involved in P53 pathways, as has been reported in human iUC. This is particularly relevant as drugs targeting these genes/pathways in other cancers could be repurposed to treat iUC, with dogs providing a model to optimize therapy. As part of the validation of the results and proof of principal for evaluating individualized targeted therapy, the overexpression of EGFR in canine bladder iUC was confirmed. The similarities in gene expression patterns between dogs and humans add considerably to the value of naturally-occurring canine iUC as a relevant and much needed animal model for human iUC. Furthermore, the finding of expression patterns that cross different pathologically-defined cancers could allow studies of dogs with iUC to help optimize cancer management across multiple cancer types. The work is also expected to lead to a better understanding of the biological importance of the gene expression patterns, and the potential application of the cross-species comparisons approach to other cancer types as well.  相似文献   

7.
Persistent expression of the gamma-globin genes in adults with deletion types of hereditary persistence of fetal hemoglobin (HPFH) is thought to be mediated by enhancer-like effects of DNA sequences at the 3' breakpoints of the deletions. A transgenic mouse model of deletion-type HPFH was generated by using a DNA fragment containing both human gamma-globin genes and HPFH-2 breakpoint DNA sequences linked to the core sequences of the locus control region (LCR) of the human beta-globin gene cluster. Analysis of gamma-globin expression in six HPFH transgenic lines demonstrated persistence of gamma-globin mRNA and peptides in erythrocytes of adult HPFH transgenic mice. Analysis of the hemoglobin phenotype of adult HPFH transgenic animals by isoelectric focusing showed the presence of hybrid mouse alpha2-human gamma2 tetramers as well as human gamma4 homotetramers (hemoglobin Bart's). In contrast, correct developmental regulation of the gamma-globin genes with essentially absent gamma-globin gene expression in adult erythroid cells was observed in two control non-HPFH transgenic lines, consistent with autonomous silencing of normal human gamma-globin expression in adult transgenic mice. Interestingly, marked preferential overexpression of the LCR-distal (A)gamma-globin gene but not of the LCR-proximal (G)gamma-globin gene was observed at all developmental stages in erythroid cells of HPFH-2 transgenic mice. These findings were also associated with the formation of a DNase I-hypersensitive site in the HPFH-2 breakpoint DNA of transgenic murine erythroid cells, as occurs in normal human erythroid cells in vivo. These results indicate that breakpoint DNA sequences in deletion-type HPFH-2 can modify the developmentally regulated expression of the gamma-globin genes.  相似文献   

8.
MicroRNA regulation and the variability of human cortical gene expression   总被引:1,自引:1,他引:1  
Zhang R  Su B 《Nucleic acids research》2008,36(14):4621-4628
Understanding the driving forces of gene expression variation within human populations will provide important insights into the molecular basis of human phenotypic variation. In the genome, the gene expression variability differs among genes, and at present, most research has focused on identifying the genetic variants responsible for the within population gene expression variation. However, little is known about whether microRNAs (miRNAs), which are small noncoding RNAs modulating expression of their target genes, could have impact on the variability of gene expression. Here we demonstrate that miRNAs likely lead to the difference of expression variability among genes. With the use of the genome-wide expression data in 193 human brain samples, we show that the increased variability of gene expression is concomitant with the increased number of the miRNA seeds interacting with the target genes, suggesting a direct influence of miRNA on gene expression variability. Compared with the non-miRNA-target genes, genes targeted by more than two miRNA seeds have increased expression variability, independent of the miRNA types. In addition, single-nucleotide polymorphisms (SNPs) located in the miRNA binding sites could further increase the gene expression variability of the target genes. We propose that miRNAs are one of the driving forces causing expression variability in the human genome.  相似文献   

9.
As for other mRNA measurement methods, quantitative RT-PCR results need to be normalized relative to stably expressed genes. Widely used normalizing genes include beta-actin and glyceraldehyde-3-phosphate dehydrogenase. It has, however, become clear that these and other normalizing genes can display modulated patterns of expression across tissue types and during complex cellular processes such as cell differentiation and cancer progression. Our objective was to set the basis for identifying normalizing genes that displayed stable expression during enterocytic differentiation and between healthy tissue and adenocarcinomas of the human colon. We thus identified novel potential normalizing genes using previously generated cDNA microarray data and examined the alterations of expression of two of these genes as well as seven commonly used normalizing genes during the enterocytic differentiation process and between matched pairs of resection margins and primary carcinomas of the human colon using real-time RT-PCR. We found that ribosomal phosphoprotein P0 was particularly stable in all intestinal epithelial cell extracts, thereby representing a particularly robust housekeeping reference gene for the assessment of gene expression during the human enterocytic differentiation process. On the other hand, beta-2-microglobulin generated the best score as a normalizing gene for comparing human colon primary carcinomas with their corresponding normal mucosa of the resection margin, although others were found to represent acceptable alternatives. In conclusion, we identified and characterized specific normalizing genes that should significantly improve quantitative mRNA studies related to both the differentiation process of the human intestinal epithelium and adenocarcinomas of the human colon. This approach should also be useful to validate normalizing genes in other intestinal contexts.  相似文献   

10.
The family of NADPH oxidase (NOX) genes produces reactive oxygen species (ROS) pivotal for both cell signalling and host defense. To investigate whether NOX and NOX accessory gene expression might be a factor common to specific human tumour types, this study measured the expression levels of NOX genes 1–5, dual oxidase 1 and 2, as well as those of NOX accessory genes NoxO1, NoxA1, p47phox, p67phox and p22phox in human cancer cell lines and in tumour and adjacent normal tissue pairs by quantitative, real-time RT-PCR. The results demonstrate tumour-specific patterns of NOX gene expression that will inform further studies of the role of NOX activity in tumour cell invasion, growth factor response and proliferative potential.  相似文献   

11.
12.
The stemness hypothesis states that all stem cells use common mechanisms to regulate self-renewal and multi-lineage potential. However, gene expression meta-analyses at the single gene level have failed to identify a significant number of genes selectively expressed by a broad range of stem cell types. We hypothesized that stemness may be regulated by modules of homologs. While the expression of any single gene within a module may vary from one stem cell type to the next, it is possible that the expression of the module as a whole is required so that the expression of different, yet functionally-synonymous, homologs is needed in different stem cells. Thus, we developed a computational method to test for stem cell-specific gene expression patterns from a comprehensive collection of 49 murine datasets covering 12 different stem cell types. We identified 40 individual genes and 224 stemness modules with reproducible and specific up-regulation across multiple stem cell types. The stemness modules included families regulating chromatin remodeling, DNA repair, and Wnt signaling. Strikingly, the majority of modules represent evolutionarily related homologs. Moreover, a score based on the discovered modules could accurately distinguish stem cell-like populations from other cell types in both normal and cancer tissues. This scoring system revealed that both mouse and human metastatic populations exhibit higher stemness indices than non-metastatic populations, providing further evidence for a stem cell-driven component underlying the transformation to metastatic disease.  相似文献   

13.
14.
Identifying genes associated with cancer development is typically accomplished by comparing mean expression values in normal and tumor tissues, which identifies differentially expressed (DE) genes. Interindividual variation (IV) in gene expression is indirectly included in DE gene identification because given the same absolute differences in means, genes with lower variance tend to have lower p-values. We explored the direct use of IV in gene expression to identify candidate genes associated with cancer development. We focused on prostate (PCa) and lung (LC) cancers and compared IV in the expression level of genes shown to be cancer related with that in all other genes in the human genome. Compared with all those other genes, cancer-related genes tended to have greater IV in normal tissues and a greater increase in IV during the transition from normal to tumorous tissue. Genes without significantly different mean expression values between tumor and normal tissues but with greater IV in tumor than in normal tissue (note: the DE-based approach completely ignores those genes) had stronger associations with clinically important features like Gleason score in PCa or tumor histology in LC than all other genes were. Our results suggest that analyzing IV in gene expression level is useful in identifying novel candidate genes associated with cancer development.  相似文献   

15.
16.
Ectopic expression of telomerase results in an immortal phenotype in various types of normal cells, including primary human fibroblasts. In addition to its role in telomere lengthening, telomerase has now been found to have various functions, including the control of DNA repair, chromatin modification, and the control of expression of genes involved in cell cycle regulation. The investigations on the long-term effects of telomerase expression in normal human fibroblast highlighted that these cells show low frequencies of chromosomal aberrations. In this paper, we describe the karyotypic stability of human fibroblasts immortalized by expression of hTERT. The ectopic overexpression of telomerase is associated with unusual spontaneous as well as radiation-induced chromosome stability. In addition, we found that irradiation did not enhance plasmid integration in cells expressing hTERT, as has been reported for other cell types. Long-term studies illustrated that human fibroblasts immortalized by telomerase show an unusual stability for chromosomes and for plasmid integration sites, both with and without exposure to ionizing radiation. These results confirm a role for telomerase in genome stabilisation by a telomere-independent mechanism and point to the possibility for utilizing hTERT-immortalized normal human cells for the study of gene targeting.  相似文献   

17.
DNA microarray technology is used to determine gene expression profiles of various cell types, especially abnormal cells, such as cancer. By contrast, relatively little attention has been given to expression profiling of normal tissues. Here we describe studies of gene expression in peripheral blood leukocytes (PBL) from normal individuals sampled multiple times over periods ranging from several weeks up to 6 months. We demonstrate stable patterns of gene expression that differ between individuals. Among the genes whose expression varies by individual is a group of genes responsive to interferon stimulation. Certain individuals ( approximately 10-20% of those tested) showed higher baseline levels and lower inducibility of these genes in response to in vitro interferon stimulation. These studies demonstrate the feasibility of using DNA microarrays to measure the variations in gene expression of PBL from different individuals in response to environmental and genetic factors.  相似文献   

18.
19.
The recently identified NB-1 mRNA is transcribed from a single intronless gene, previously thought to be an unexpressed calmodulin pseudogene. Although expression levels of the three known human calmodulin genes fluctuate only slightly in all cell types and tissues examined, NB-1 expression is limited to certain cells of pseudostratified and stratified epithelial tissues. Like calmodulin, the protein encoded by NB-1 is heat stable and binds to phenyl-Sepharose in a calcium-dependent manner. Despite the shared identity of 85% of their 148 amino acids, however, calmodulin and NB-1 protein are easily distinguished electrophoretically and immunologically. Polyclonal antibodies prepared against recombinant NB-1 protein recognize a protein with an apparent molecular weight of 16,000 which is abundant in cultured normal human mammary epithelial cells, but which is absent or barely detectable in fibroblasts or tumor cell lines. The immunohistochemical distribution of NB-1 protein in histologically normal tissues suggests that expression of the gene is regulated during epithelial differentiation. The majority of a small number of malignant tissues examined had lowered or undetectable NB-1 protein expression relative to normal tissues. Given its restricted distribution, the NB-1 protein may be involved in the initiation or maintenance of certain differentiated functions. Its absence may be due to or necessary for the manifestation of the transformed phenotype in certain cell types.  相似文献   

20.
The E6 and E7 genes of the cancer-associated human papillomavirus (HPV) types 16 (HPV16) and 18 (HPV18) can induce cell immortalization in vitro in normal human keratinocytes. This, however, is not associated with tumorigenicity in vivo. On the other hand, tumorigenicity of HPV18-positive HeLa cervical carcinoma cells can be suppressed by fusion of HeLa cells with normal human keratinocytes or fibroblasts. We have addressed the question of whether suppression of tumorigenicity in HeLa x fibroblast hybrid cells might be due to a reduced ability of these cells to express the HPV18 E6-E7 genes in vivo. Nontumorigenic hybrid cells and tumorigenic hybrid segregants were transplanted as organotypical cultures or injected subcutaneously into immunocompromised mice and were analyzed for HPV18 E6-E7 gene expression by RNA-RNA in situ hybridization. The tumorigenic hybrid cells showed a continuous and invasive growth that was associated with high levels of HPV18 E6-E7 mRNAs at all time points examined. In contrast, the nontumorigenic hybrid cells stopped cell proliferation approximately 3 days after transplantation. At this time they expressed the E6-E7 genes at low levels, whereas at day 2 high expression levels were observed. However, the mRNA levels of the cytoskeletal genes beta-actin and vimentin remained high for at least 14 days, demonstrating that inhibition of growth and of HPV18 E6-E7 gene expression was not due to cell death. These results suggest that growth inhibition of the nontumorigenic HeLa x fibroblast hybrid cells in vivo might be caused by suppression of HPV18 E6-E7 gene expression and are compatible with the idea of an intracellular surveillance mechanism for HPV gene expression existing in nontumorigenic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号