首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We studied the effects of cricothyroid muscle (CT) contraction on upper airway flow dynamics in eight prone open-mouth anesthetized dogs. Animals were mechanically ventilated via a tracheostomy while a constant airflow (Vuaw) passed through the isolated upper airway. Nasal airflow (Vn) was monitored using a nasal mask and pneumotachograph. Bilateral CT contraction was induced by electrical stimulation of the external branches of the superior laryngeal nerves. During CT contraction with Vuaw of 100-443 ml/s in the inspiratory direction, total upper airway resistance (Ruaw) fell by 49.1 +/- 5.4% (SE) while supraglottic resistance fell by 63.6 +/- 3.6%; simultaneously Vn fell by 55.3 +/- 3.8% and Vuaw increased by 7.2 +/- 1.7%. Similar results were obtained when Vuaw was in the expiratory direction. In three dogs in which the attachments of the CT to either the thyroid or cricoid cartilage were severed, superior laryngeal nerve stimulation had no systematic effect on Ruaw. Because visual assessment during CT contraction consistently revealed dilation of the piriform recesses, we suggest that CT contraction is associated with pharyngeal dilation, which in open-mouth dogs (with overlapping soft palate and epiglottis) redistributes flow to the oral route with a net reduction in Ruaw. Thus the CT may have a respiratory role as a pharyngeal dilator.  相似文献   

3.
4.
5.
6.
Pulmonary gas exchange in panting dogs   总被引:1,自引:0,他引:1  
Pulmonary gas exchange during panting was studied in seven conscious dogs (32 kg mean body wt) provided with a chronic tracheostomy and an exteriorized carotid artery loop. The animals were acutely exposed to moderately elevated ambient temperature (27.5 degrees C, 65% relative humidity) for 2 h. O2 and CO2 in the tracheostomy tube were continuously monitored by mass spectrometry using a special sample-hold phase-locked sampling technique. PO2 and PCO2 were determined in blood samples obtained from the carotid artery. During the exposure to heat, central body temperature remained unchanged (38.6 +/- 0.6 degrees C) while all animals rapidly switched to steady shallow panting at frequencies close to the resonant frequency of the respiratory system. During panting, the following values were measured (means +/- SD): breathing frequency, 313 +/- 19 breaths/min; tidal volume, 167 +/- 21 ml; total ventilation, 52 +/- 9 l/min; effective alveolar ventilation, 5.5 +/- 1.3 l/min; PaO2, 106.2 +/- 5.9 Torr; PaCO2, 27.2 +/- 3.9 Torr; end-tidal-arterial PO2 difference [(PE' - Pa)O2], 26.0 +/- 5.3 Torr; and arterial-end-tidal PCO2 difference, [(Pa - PE')CO2], 14.9 +/- 2.5 Torr. On the basis of the classical ideal alveolar air approach, parallel dead-space ventilation accounted for 54% of alveolar ventilation and 66% of the (PE' - Pa)O2 difference. But the steepness of the CO2 and O2 expirogram plotted against expired volume suggested a contribution of series in homogeneity due to incomplete gas mixing.  相似文献   

7.
Mechanical aspects of panting in dogs   总被引:3,自引:0,他引:3  
  相似文献   

8.
It has been suggested that radial movement of the central airway walls during oscillatory flow might contribute to the increased frequency dependence of compliance seen in chronic obstructive pulmonary disease (COPD) (J. Appl. Physiol. 26: 670-677, 1969). Radial airway wall motion has also been invoked to explain the frequency-dependent decreases in the efficiency of gas exchange during low-volume high-frequency ventilation (HFV) in histamine-bronchoconstricted dogs and in patients with respiratory insufficiency. To test the possibility that airway wall motion increases with bronchoconstriction, we measured central airway diameters using cinebronchoradiography in anesthetized tracheostomized dogs during oscillatory HFV [50 and 100 ml tidal volume (VT) at frequencies (f) of 2, 6, and 12 Hz], under control conditions, during electrical stimulation of the vagi, and after exposure to histamine aerosol. Cineradiobronchograms from two dogs were evaluated quantitatively for tracheal diameter and for lengths and diameters of a number of major airways. Under control conditions, the diameter of the airways fluctuated 7-9% of the mean with VT of 50 ml and 9-18% with VT of 100 ml in the range of frequencies studied. Bronchoconstriction produced by aerosolized histamine increased radial airway wall movement to 10-47% with VT of 50 ml, and during vagal stimulation diameters changed 7-20% at VT of 50 ml. After histamine, the central airways displayed large diameter changes during HFV, whereas more peripheral airways were markedly constricted and did not change in diameter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Tracheobronchial blood flow in dogs increases with cold or dry air hyperventilation, possibly as a result of airway drying leading to increased osmolarity of airway surface fluid. This study was designed to examine whether administration of aerosols of various tonicity to alter airway surface fluid osmolarity would induce similar blood flow changes. Tracheobronchial blood flow was measured by the radioactive microsphere technique in six anesthetized dogs ventilated with warm humid air (100% relative humidity) for 15 min (period 1), air containing ultrasonically nebulized saline aerosol (1,711 mosmol/kg) for 3 min (period 2) and 12 min (period 3), and the same aerosol at a higher nebulizer output for a further 3 min (period 4). Between periods 3 and 4, the dogs were ventilated with warm humid air for 30 min to reestablish base-line conditions. In another five dogs, measurements were made after 30 min of ventilation with 1) warm humid air, 2) isotonic saline aerosol, 3) warm humid air, 4) distilled water aerosol (3 dogs), and hypertonic saline aerosol (2 dogs). After the last measurement was made, each dog was killed, the trachea and major bronchi were excised, and blood flow was calculated. No change in blood flow was found during any period of aerosol inhalation. The osmolar load imposed on the airways was estimated and was similar to that occurring during cold or dry air hyperventilation. These data suggest that increasing osmolarity of airway surface fluid does not explain the blood flow changes seen during hyperventilation of cold or dry air.  相似文献   

10.
11.
An isolated upper airway preparation in conscious dogs   总被引:1,自引:0,他引:1  
The purpose of this study was to develop an isolated upper airway preparation in conscious dogs. Each of the four dogs was trained to wear an individually fitted respiratory mask and surgically prepared with two side-hole tracheostomies. After full recovery, one endotracheal tube was inserted caudally into the lower tracheostomy hole and another tube cranially into the upper tracheostomy. When the two endotracheal tubes were connected to a breathing circuit including a box-balloon system, the magnitude and pattern of the inspiratory flow through the upper airway were identical to that inhaled spontaneously into the lungs by the dogs, but the gas medium inhaled into the upper airway could be independently controlled. Thus it allowed test gas mixtures to be inhaled spontaneously through an isolated upper airway. One limitation was that the inspired gas remained in the upper airway during expiration, but this can be corrected by a simple modification of the breathing circuit. This preparation was tested in studying the respiratory effects of upper airway exposure to CO2 gas mixtures. Our results showed small but significant reduction in both rate and volume of respiration when the concentration of CO2 gas mixture inhaled through the upper airway exceeded 5%. Irregular breathing patterns were frequently elicited in these dogs by higher concentrations (greater than 12%) of CO2.  相似文献   

12.
Ascaris suum antigen effects on mean airflow resistance (RL) and bronchial arterial blood flow (Qbr) were studied in allergic anesthetized sheep with documented airway responses. Qbr was measured with electromagnetic flow probes, and supplemental O2 prevented antigen-induced hypoxemia. Aerosol challenge with this specific antigen increased RL and Qbr significantly. Cromolyn sodium aerosol pretreatment prevented antigen-induced increases in RL but not in Qbr. Intravenous cromolyn, however, prevented increases in Qbr and RL, suggesting a role for mast cell degranulation in both bronchomotor and bronchovascular responses to antigen. Antigen-induced increases in Qbr were not solely attributable to histamine release. Indomethacin pretreatment attenuated the antigen-induced increase in Qbr, thus suggesting that vasodilator cyclooxygenase products contribute to the vascular response. Antigen challenge significantly decreased Qbr after indomethacin and metiamide pretreatment, which suggests that vasoconstrictor substances released after antigen exposure also modulate Qbr; however, released vasodilators overshadow vasoconstrictor effects. Thus antigen challenge affects Qbr by locally releasing histamine and vasodilator prostaglandins as well as vasoconstrictor substances. These effects were independent of antigen-induced changes in systemic and pulmonary hemodynamics.  相似文献   

13.
14.
15.
This study was performed to determine whether exercise produces vasodilatation in regions of the brain that are associated with motor functions despite the associated vasoconstrictor effect of hypocapnia. Total and regional cerebral blood flow (CBF) were measured with microspheres in dogs during treadmill exercise of moderate intensity. Flow was also measured at rest after stimulation of ventilation with doxapram. During moderate exercise, total CBF was not changed significantly, but regional flow was increased in structures associated with motor-sensory control; blood flow to motor-sensory cortex, neocerebellar and paleocerebellar cortex, and spinal cord increased 30 +/- 7%, 39 +/- 8%, and 29 +/- 4%, respectively (P less than 0.05). After doxapram, which increased arterial blood pressure and decreased arterial PCO2 to levels similar to those during exercise, total CBF decreased and there was no redistribution of CBF. These results indicate that exercise in conscious dogs increases blood flow in regions of the brain associated with movement despite the associated vasoconstrictor stimulus of arterial hypocapnia. Thus, during exercise, local dilator influences that presumably result from increases in metabolism predominate over a potent constrictor stimulus in regulation of cerebral vascular resistance.  相似文献   

16.
In the larger airways, the blood circulation forms a subepithelial (mucosal) and outer (peribronchial) microvascular network. This raises the possibility that blood flow in these two networks is regulated independently. We used hypoxemia as a stimulus to induce changes in tracheal mucosal blood flow normalized for systemic arterial pressure (Qtr n) measured with an inert soluble gas technique and total bronchial blood flow (Qbr) and normalized Qbr (Qbrn) measured with an electromagnetic flow probe in anesthetized sheep. Fifteen minutes of hypoxemia [PO2 40 +/- 7 (SD) Torr] decreased mean Qtr n from 1.1 +/- 0.4 to 0.8 +/- 0.4 ml.min-1.mmHg-1.10(2) (-27%; P less than 0.05; n = 7) and increased mean Qbr n from 12.1 +/- 3.2 to 17.1 +/- 5.4 ml.min-1.mmHg-1.10(2) (+41%; P less than 0.05; n = 6). The rise in Qbr correlated with cardiac output (r = 0.68; P less than 0.05). Phentolamine pretreatment (0.1 mg/kg iv) blunted the hypoxemia-related decrease of mean Qtr n (-8%; P = NS). Tyramine (2.5 mg) applied locally to the trachea decreased mean Qtr n significantly after 30 and 45 min by 31 and 19%, respectively (P less than 0.05). 6-Hydroxydopamine (0.2 mg 4 times for 1 h locally applied) prevented the hypoxemia-induced as well as local tyramine-induced decrease in mean Qtr n (0 and 0%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Wilson, Christine R., Shalini Manchanda, David Crabtree,James B. Skatrud, and Jerome A. Dempsey. An induced blood pressurerise does not alter upper airway resistance in sleeping humans.J. Appl. Physiol. 84(1): 269-276, 1998.Sleep apnea is associated with episodic increases in systemicblood pressure. We investigated whether transient increases in arterialpressure altered upper airway resistance and/or breathingpattern in nine sleeping humans (snorers and nonsnorers). Apressure-tipped catheter was placed below the base of the tongue, andflow was measured from a nose or face mask. Duringnon-rapid-eye-movement sleep, we injected 40- to 200-µg iv boluses ofphenylephrine. Parasympathetic blockade was used if bradycardia wasexcessive. Mean arterial pressure (MAP) rose by 20 ± 5 (mean ± SD) mmHg (range 12-37 mmHg) within 12 s and remained elevated for105 s. There were no significant changes in inspiratory or expiratorypharyngeal resistance (measured at peak flow, peak pressure, 0.2 l/s orby evaluating the dynamic pressure-flow relationship). Atpeak MAP, end-tidal CO2 pressure fell by 1.5 Torr and remained low for 20-25 s. At 26 s after peak MAP, tidal volume fell by 19%, consistent with hypocapnic ventilatory inhibition. We conclude that transient increases in MAP of a magnitude commonly observed during non-rapid-eye-movement sleep-disordered breathing do not increase upper airway resistance and, therefore, willnot perpetuate subsequent obstructive events.

  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号