首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 322 毫秒
1.
The purpose of this study was to compare substrate utilization during fasting and submaximal exercise in morbidly obese women after weight loss (WL) with that in weight-matched controls (C). WL were studied in the weight-stable condition approximately 24 mo after gastric bypass surgery. Energy intake (self-reported) and expenditure ((2)H(2)(18)O) were also compared. The respiratory exchange ratio during exercise at the same absolute (15 W) workload was significantly (P < or = 0.05) elevated in WL vs. C (0.90 +/- 0.02 vs. 0.83 +/- 0.03); this was reflected as lower fat utilization in WL (29.7 +/- 4.8 vs. 53.2 +/- 9.7% of energy from fat). Respiratory exchange ratio during exercise at the same relative (65% of maximal O(2) uptake) intensity was also significantly (P < 0.05) elevated in WL (0.96 +/- 0.01 vs. 0.89 +/- 0.02), and fat use was concomitantly depressed (12.4 +/- 3.0 vs. 34.3 +/- 9.9% of energy from fat). Resting substrate utilization, daily energy expenditure, and self-reported relative macronutrient intake did not differ between groups. These data suggest that lipid oxidation is depressed during physical activity in WL. This defect may, at least in part, contribute to a propensity for the development of morbid obesity.  相似文献   

2.
To evaluate the effect of endurance training on ventilatory function in older individuals, 1) 14 master athletes (MA) [age 63 +/- 2 yr (mean +/- SD); maximum O2 uptake (VO2max) 52.1 +/- 7.9 ml . kg-1 . min-1] were compared with 14 healthy male sedentary controls (CON) (age 63 +/- 3 yr; VO2max of 27.6 +/- 3.4 ml . kg-1 . min-1), and 2) 11 sedentary healthy men and women, age 63 +/- 2 yr, were reevaluated after 12 mo of endurance training that increased their VO2max 25%. MA had a significantly lower ventilatory response to submaximal exercise at the same O2 uptake (VE/VO2) and greater maximal voluntary ventilation (MVV), maximal exercise ventilation (VEmax), and ratio of VEmax to MVV than CON. Except for MVV, all of these parameters improved significantly in the previously sedentary subjects in response to training. Hypercapnic ventilatory response (HCVR) at rest and the ventilatory equivalent for CO2 (VE/VCO2) during submaximal exercise were similar for MA and CON and unaffected by training. We conclude that the increase in VE/VO2 during submaximal exercise observed with aging can be reversed by endurance training, and that after training, previously sedentary older individuals breathe at the same percentage of MVV during maximal exercise as highly trained athletes of similar age.  相似文献   

3.
Objective: To determine the effects of weight loss (WL) alone and combined with aerobic exercise on visceral adipose tissue (VAT), intramuscular fat, insulin‐stimulated glucose uptake, and the rate of decline in free fatty acid (FFA) concentrations during hyperinsulinemia. Research Methods and Procedures: We studied 33 sedentary, obese (BMI = 32 ± 1 kg/m2) postmenopausal women who completed a 6‐month (three times per week) program of either WL alone (n = 16) or WL + aerobic exercise (AEX) (n = 17). Glucose utilization (M) was measured during a 3‐hour hyperinsulinemic‐euglycemic clamp (40 mU/m2 per minute). M/I, the amount of glucose metabolized per unit of plasma insulin (I), was used as an index of insulin sensitivity. Results: Body weight, total fat mass, and percentage fat decreased similarly in both groups (p < 0.01). VAT, subcutaneous abdominal adipose tissue, mid‐thigh subcutaneous fat, and intramuscular fat decreased to a similar extent in both groups and between 14% and 27% after WL and WL+AEX (p < 0.05). WL alone did not change M or M/I; however, M and M/I increased 15% and 21% after WL+AEX (p < 0.05). Fasting concentrations and rate of decline of FFA did not change in either group. In stepwise regression models to determine the independent predictors of changes in M and M/I, the change in VAT was the single independent predictor of M (r2 = 0.30) and M/I (r2 = 0.33). Discussion: Intramuscular fat decreases similarly with 6 months of moderate WL alone or with aerobic exercise in postmenopausal women. In contrast, only WL combined with exercise results in increased glucose utilization and insulin sensitivity. These findings should be validated in a larger population.  相似文献   

4.
The purpose of the present study was to examine aerobic and muscle anaerobic energy production during supramaximal repeated exercise. Eight subjects performed three 2-min bouts of cycling (EX1-EX3) at an intensity corresponding to about 125 % of VO2 max separated by 15 min of rest. Ventilatory variables were measured breath by breath during the exercise and a muscle biopsy was taken before and after each exercise bout. Blood samples were collected before and after each cycling period and during the recovery periods. Total work in the first 2 min bout of cycling, EX1, [46.3 +/- 2.1 KJ] was greater than in the second, EX2, (p < 0.01) and in the third, EX3, (p < 0.05). The ATP utilization [4.0 +/- 1.4 mmol x (kg dry weight)(-1), EX1] during the three exercise bouts was the same. The decrement in muscle phosphocreatine (PCr) [46.8 +/- 8.5 mmol x (kg dry weight)(-1), EX1] was also similar for the three exercise bouts. Muscle lactate accumulation was greater (p < 0.05) during EX1 compared to EX2 and EX3. The total oxygen consumption was the same for the three exercise bouts, but when it is corrected for the total work performed, oxygen uptake during EX2 (153 +/- 9 ml x KJ(-1)) and EX3 (150 +/- 9 ml x KJ(-1)) was higher (p < 0.01 and p < 0.05, respectively) than during EX1 (139 +/- 8 ml x KJ(-1)). The present data suggest that oxidative metabolism does not compensate for the reduction of anaerobic glycolysis during repeated fatiguing exercise.  相似文献   

5.
The aim of the present study was to examine whether ATP production increases and mechanical efficiency decreases during intense exercise and to evaluate how previous exercise affects ATP turnover during intense exercise. Six subjects performed two (EX1 and EX2) 3-min one-legged knee-extensor exercise bouts [66.2 +/- 3.9 and 66.1 +/- 3.9 (+/-SE) W] separated by a 6-min rest period. Anaerobic ATP production, estimated from net changes in and release of metabolites from the active muscle, was 3.5 +/- 1.2, 2.4 +/- 0.6, and 1.4 +/- 0.2 mmol ATP x kg dry wt(-1) x s(-1) during the first 5, next 10, and remaining 165 s of EX1, respectively. The corresponding aerobic ATP production, determined from muscle oxygen uptake, was 0.7 +/- 0.1, 1.4 +/- 0.2, and 4.7 +/- 0.4 mmol ATP x kg dry wt(-1) x s(-1), respectively. The mean rate of ATP production during the first 5 s and next 10 s was lower (P < 0.05) than during the rest of the exercise (4.2 +/- 1.2 and 3.8 +/- 0.7 vs. 6.1 +/- 0.3 mmol ATP x kg dry wt(-1) x s(-1)). Thus mechanical efficiency, expressed as work per ATP produced, was lowered (P < 0.05) in the last phase of exercise (39.6 +/- 6.1 and 40.7 +/- 5.8 vs. 25.0 +/- 1.3 J/mmol ATP). The anaerobic ATP production was lower (P < 0.05) in EX2 than in EX1, but the aerobic ATP turnover was higher (P < 0.05) in EX2 than in EX1, resulting in the same muscle ATP production in EX1 and EX2. The present data suggest that the rate of ATP turnover increases during intense exercise at a constant work rate. Thus mechanical efficiency declines as intense exercise is continued. Furthermore, when intense exercise is repeated, there is a shift toward greater aerobic energy contribution, but the total ATP turnover is not significantly altered.  相似文献   

6.
This study compared the relative effectiveness of two means of energy deficit, food restriction (FR) and increased physical activity (EX), on body weight, body composition and concentrations of serum leptin, insulin, glucose, and lipids in female subjects. Thirteen adult female volunteers participated in a two-phase crossover-treatment study. Each phase involved a 9-day energy deficit period and a 5-day follow up energy repletion period. A 25% energy deficit was achieved by either FR or EX. Baseline values were established prior to phase one. Results showed that FR had greater body weight loss, but less body fat loss compared to EX. FR and EX both reduced serum leptin, insulin, total triacylglycerol, LDL-C and VLDL-C concentrations. However, only EX elevated HDL-C. These effects were reversed during follow up energy repletion. Results suggest that under iso-caloric energy deficit conditions FR is more effective in reducing body weight but EX is more effective in reducing body fat and maintaining lean body mass. EX can lead to a more desirable blood lipid profile than can FR. Thus, it is desirable to include exercise in a weight reduction program.  相似文献   

7.
8.
Caloric restriction (CR) results in fat loss; however, it may also result in loss of muscle and thereby reduce strength and aerobic capacity (VO2 max). These effects may not occur with exercise-induced weight loss (EX) because of the anabolic effects of exercise on heart and skeletal muscle. We tested the hypothesis that CR reduces muscle size and strength and VO2 max, whereas EX preserves or improves these parameters. Healthy 50- to 60-yr-old men and women (body mass index of 23.5-29.9 kg/m2) were studied before and after 12 mo of weight loss by CR (n = 18) or EX (n = 16). Lean mass was assessed by dual-energy X-ray absorptiometry, thigh muscle volume by MRI, isometric and isokinetic knee flexor strength by dynamometry, and treadmill VO2 max by indirect calorimetry. Both interventions caused significant decreases in body weight (CR: -10.7 +/- 1.4%, EX: -9.5 +/- 1.5%) and lean mass (CR: -3.5 +/- 0.7%, EX: -2.2 +/- 0.8%), with no significant differences between groups. Significant decreases in thigh muscle volume (-6.9 +/- 0.8%) and composite knee flexion strength (-7.2 +/- 3%) occurred in the CR group only. Absolute VO2 max decreased significantly in the CR group (-6.8 +/- 2.3%), whereas the EX group had significant increases in both absolute (+15.5 +/- 2.4%) and relative (+28.3 +/- 3.0%) VO2 max. These data provide evidence that muscle mass and absolute physical work capacity decrease in response to 12 mo of CR but not in response to a similar weight loss induced by exercise. These findings suggest that, during EX, the body adapts to maintain or even enhance physical performance capacity.  相似文献   

9.
Powercranks use a specially designed clutch to promote independent pedal work by each leg during cycling. We examined the effects of 6 wk of training on cyclists using Powercranks (n=6) or normal cranks (n=6) on maximal oxygen consumption (VO2max) and anaerobic threshold (AT) during a graded exercise test (GXT), and heart rate (HR), oxygen consumption (VO2), respiratory exchange ration (RER), and gross efficiency (GE) during a 1-hour submaximal ride at a constant load. Subjects trained at 70% of VO2max for 1 h.d(-1), 3 d.wk(-1), for 6 weeks. The GXT and 1-hour submaximal ride were performed using normal cranks pretraining and posttraining. The 1-hour submaximal ride was performed at an intensity equal to approximately 69% of pretraining VO2max with VO2, RER, GE, and HR determined at 15-minute intervals during the ride. No differences were observed between or within groups for VO2max or AT during the GXT. The Powercranks group had significantly higher GE values than the normal cranks group (23.6 +/- 1.3% versus 21.3 +/- 1.7%, and 23.9 +/- 1.4% versus 21.0 +/- 1.9% at 45 and 60 min, respectively), and significantly lower HR at 30, 45, and 60 minutes and VO2 at 45 and 60 minutes during the 1-hour submaximal ride posttraining. It appears that 6 weeks of training with Powercranks induced physiological adaptations that reduced energy expenditure during a 1-hour submaximal ride.  相似文献   

10.
Effects of resistance and aerobic training on the ease of physical activity during and after weight loss are unknown. The purpose of the study was to determine what effect weight loss combined with either aerobic or resistance training has on the ease of locomotion (net V[Combining Dot Above]O2 and heart rate). It is hypothesized that exercise training will result in an increased ease, lowers heart rate during locomotion. Seventy-three overweight premenopausal women were assigned to diet and aerobic training, diet and resistance training, or diet only. Subjects were evaluated while overweight, after diet-induced weight loss (average, 12.5 kg loss), and 1 year after weight loss (5.5 kg regain). Submaximal walking, grade walking, stair climbing, and bike oxygen uptake and heart rate were measured at all time points. Weight loss diet was 800 kcal per day. Exercisers trained 3 times per week during weight loss and 2 times per week during 1-year follow-up. Resistance training increased strength, and aerobic training increased maximum oxygen uptake. Net submaximal oxygen uptake was not affected by weight loss or exercise training. However, heart rate during walking, stair climbing, and bicycling was reduced after weight loss. No significant differences in reduction in heart rate were observed among the 3 treatment groups for locomotion after weight loss. However, during 1-year follow-up, exercise training resulted in maintenance of lower submaximal heart rate, whereas nonexercisers increased heart rate during locomotion. Results suggest that moderately intense exercise is helpful in improving the ease of movement after weight loss. Exercise training may be helpful in increasing the participation in free-living physical activity.  相似文献   

11.
Federal law prohibits pre-employment physical examination of firefighter recruits, but these workers must perform intense exercise in arduous environments. Components of physical fitness of rookie firefighters (n = 115; 104 men, mean +/- SD: age = 28.3 +/- 4.3 years; height = 1.76 +/- 0.07 m; weight = 83.2 +/- 13.9 kg; percent body fat = 17 +/- 8%) were measured upon being hired and following a 16-week exercise training program (1 h.d(-1), 3 d.wk(-1)) designed to improve physical fitness. Maximum aerobic capacity (VO2max) was estimated from submaximal cycle ergometry, body composition from skinfold tests, flexibility from a sit and reach test, strength by hand grip dynamometry, and muscle endurance by a push-up test. The results are as follows (*, p 相似文献   

12.
Both a large heart rate (HR) increase at exercise onset and a slow heart rate (HR) recovery following the termination of exercise have been linked to an increased risk for ventricular fibrillation (VF) in patients with coronary artery disease. Endurance exercise training can alter cardiac autonomic regulation. Therefore, it is possible that this intervention could restore a more normal HR regulation in high-risk individuals. To test this hypothesis, HR and HR variability (HRV, 0.24- to 1.04-Hz frequency component; an index of cardiac vagal activity) responses to submaximal exercise were measured 30, 60, and 120 s after exercise onset and 30, 60, and 120 s following the termination of exercise in dogs with healed myocardial infarctions known to be susceptible (n = 19) to VF (induced by a 2-min coronary occlusion during the last minute of a submaximal exercise test). These studies were then repeated after either a 10-wk exercise program (treadmill running, n = 10) or an equivalent sedentary period (n = 9). After 10 wk, the response to exercise was not altered in the sedentary animals. In contrast, endurance exercise increased indexes of cardiac vagal activity such that HR at exercise onset was reduced (30 s after exercise onset: HR pretraining 179 +/- 8.4 vs. posttraining 151.4 +/- 6.6 beats/min; HRV pretraining 4.0 +/- 0.4 vs. posttraining 5.8 +/- 0.4 ln ms(2)), whereas HR recovery 30 s after the termination of exercise increased (HR pretraining 186 +/- 7.8 vs. posttraining 159.4 +/- 7.7 beats/min; HRV pretraining 2.4 +/- 0.3 vs. posttraining 4.0 +/- 0.6 ln ms(2)). Thus endurance exercise training restored a more normal HR regulation in dogs susceptible to VF.  相似文献   

13.
Seven males performed two exhaustive cycling bouts (EX1 and EX2) at a work-rate of 90% of maximal oxygen uptake, separated by 60 min. During EX1 there was a significant accumulation of urate (from 0.16 +/- 0.02 to 0.27 +/- 0.03 micromol/kg d.w.) and allantoin (from 0.39 +/- 0.05 to 0.69 +/- 0.14 micromol/kg d.w.) in the muscle. An uptake of urate was observed in early recovery from EX1 (0-9 min: 486 +/- 136 micromol; p <.05). There was no exchange of total glutathione or cysteine over the muscle either during or after exercise, and muscle and plasma total glutathione remained unaltered (p <.05). The glycogen levels were lowered by 40% at the onset of EX2, yet the level of oxidative stress in EX1 and EX2 was similar as evidenced by a similar increase in muscle allantoin in both exercise bouts. The data suggest that urate is utilized as antioxidant in human skeletal muscle and that reactive oxygen species are formed in muscle during intense submaximal exercise. No net exchange of glutathione appears to occur over the muscle either at rest, during exercise or in recovery. Moreover, when an exhaustive exercise bout is repeated with lowered glycogen levels, the level of oxidative stress is not different than that of the first bout.  相似文献   

14.
The present study investigated the role of heredity in determining changes in the energy cost of submaximal exercise in response to short-term overfeeding. Six pairs of monozygotic twins were subjected to a 1,000 kcal/day surplus for 22 days with careful experimental controls over food intake and physical activities. O2 consumption (VO2) was measured during a submaximal treadmill exercise test 165 min postprandially before and the morning after the overfeeding protocol. As expected, overfeeding induced significant increases in body weight and fat mass. No significant increase in mean exercise VO2 was observed after overfeeding. However, the interindividual variation in overfeeding-induced changes in exercise VO2 was large and not randomly distributed. When comparing intrapair variance for changes in exercise VO2 to interpair variance, a moderate to high within-pair resemblance in response, i.e., a genotype-overfeeding interaction, was observed. Changes in exercise VO2 were positively correlated with those in postexercise levels of blood catecholamines, particularly epinephrine. A negative correlation was found between changes in exercise VO2 and body fat gain. These results are consistent with the concept of a role for the sympathoadrenal system in the regulation of adaptive thermogenesis and the predisposition to store fat. Moreover, these data suggest that the sensitivity to adapt in exercise energy expenditure after overfeeding is inherited to a significant extent.  相似文献   

15.
Although the increase in fatty acid oxidation after endurance exercise training has been linked with improvements in insulin sensitivity and overall metabolic health, the mechanisms responsible for increasing fatty acid oxidation after exercise training are not completely understood. The primary aim of this study was to determine the effect of adding endurance exercise training to a weight loss program on fat oxidation and the colocalization of the fatty acid translocase FAT/CD36 with carnitine palmitoyltransferase I (CPT I) in human skeletal muscle. We measured postabsorptive fat oxidation and acquired a muscle sample from abdominally obese women before and after 12% body weight loss through either dietary intervention with endurance exercise training (EX + DIET) or dietary intervention without endurance exercise training (DIET). Immunoprecipitation techniques were used on these muscle samples to determine whether the association between FAT/CD36 and CPT I is altered after DIET and/or EX + DIET. FAT/CD36 was found to coimmunoprecipitate with CPT I, and the amount of FAT/CD36 that coimmunoprecipitated with CPT I increased by approximately 25% after EX + DIET (P < 0.005) but was unchanged after DIET. In addition, the increase in the amount of FAT/CD36 that coimmunoprecipitated with CPT I in EX + DIET was strongly correlated with the increase in whole body fat oxidation (R2 = 0.857, P < 0.003). In conclusion, the findings from this study indicate that exercise training alters the localization of FAT/CD36 and increases its association with CPT I, which may help augment fat oxidation.  相似文献   

16.
Studies of physical performance and energy metabolism during and following exercise have shown significant sex-specific musculoskeletal adaptations; less is known of vascular adaptations, particularly with respect to exchange capacity. In response to adenosine (ADO), a metabolite produced during exercise, permeability (P(s)) of coronary arterioles from female pigs changed acutely; the magnitude and direction of the change (Delta P(s)) were determined by training status. In the present study P(s) to albumin was assessed in arterioles (n = 138) and venules (n = 24) isolated from hearts of male (N = 27) and female (N = 59) pigs in the exercise training group (EX). We evaluated the hypothesis that coronary microvessel exchange adapts to endurance exercise training not by altering basal P(s), per se, but by elevating P(s) on exposure to ADO. In contrast, training resulted in a reduction of basal P(s) in all arterioles, and in venules from males, with no change in venules from EX females. Exposure to ADO resulted in the predicted increase in P(s) except for venules from EX males where P(s) was reduced. Delta P(s) responses of arterioles to mediators of adenylyl cyclase (isoproterenol)- and guanylyl cyclase (atrial natriuretic peptide)-signaling pathways were attenuated in EX pigs relative to pigs in the sedentary group. The adaptation of EX arterioles involves an upregulation of a nitric oxide-dependent pathway since nitric oxide synthase inhibition blocks Delta P(s) by ADO. Thus adaptation of microvascular exchange capacity to endurance exercise training not only occurs but also involves multiple mechanisms that differ in arterioles and venules with their relative contribution to net flux being a function of sex.  相似文献   

17.
Coronary heart disease (CHD) risk factors and the risk of CHD increase with increased adiposity. Fat loss induced by negative energy balance improves all metabolic CHD risk factors. To determine whether fat loss induced by long-term calorie restriction (CR) or increased energy expenditure induced by exercise (EX) has different effects on CHD risk factors in nonobese subjects, we conducted a 1-yr controlled trial involving 48 nonobese subjects who were randomly assigned to one of three groups: CR, 20% CR diet (n = 18); EX, 20% increase in energy expenditure through daily exercise with no increase in energy intake (n = 18); or HL, healthy lifestyle guidelines (n = 10). Subjects were 29 women and 17 men aged 57 +/- 3 yr, with BMI 27.3 +/- 2.0 kg/m(2). Assessments included total body fat by DEXA, lipoproteins, blood pressure, HOMA-IR, C-reactive protein (CRP), and estimated 10-yr CHD risk score. Body fat decreased by 6.3 +/- 3.8 kg in CR, 5.6 +/- 4.4 kg in EX, and 0.4 +/- 1.7 kg in HL, which corresponded to reductions of 24.9, 22.3, and 1.2% of baseline body fat mass, respectively. These CR- and EX-induced energy deficits were accompanied by reductions in most of the major CHD risk factors, including plasma LDL-cholesterol, total cholesterol/HDL ratio, HOMA-IR index, and CRP concentrations that were similar in the two intervention groups. Data from the present study provide evidence that CR- and EX-induced negative energy balance result in substantial and similar improvements in the major risk factors for CHD in normal-weight and overweight middle-aged adults.  相似文献   

18.
Low heart rate variability (HRV) is associated with an increased susceptibility to ventricular fibrillation (VF). Exercise training can increase HRV (an index of cardiac vagal regulation) and could, thereby, decrease the risk for VF. To test this hypothesis, a 2-min coronary occlusion was made during the last min of a 18-min submaximal exercise test in dogs with healed myocardial infarctions; 20 had VF (susceptible), and 13 did not (resistant). The dogs then received either a 10-wk exercise program (susceptible, n=9; resistant, n=8) or an equivalent sedentary period (susceptible, n=11; resistant, n=5). HRV was evaluated at rest, during exercise, and during a 2-min occlusion at rest and before and after the 10-wk period. Pretraining, the occlusion provoked significantly (P<0.01) greater increases in HR (susceptible, 54.9+/-8.3 vs. resistant, 25.0+/-6.1 beats/min) and greater reductions in HRV (susceptible, -6.3+/-0.3 vs. resistant, -2.8+/-0.8 ln ms2) in the susceptible dogs compared with the resistant animals. Similar response differences between susceptible and resistant dogs were noted during submaximal exercise. Training significantly reduced the HR and HRV responses to the occlusion (HR, 17.9+/-11.5 beats/min; HRV, -1.2+/-0.8, ln ms2) in the susceptible dogs; similar response reductions were noted during exercise. In contrast, these variables were not altered in the sedentary susceptible dogs. Posttraining, VF could no longer be induced in the susceptible dogs, whereas four sedentary susceptible dogs died during the 10-wk control period, and the remaining seven animals still had VF when tested. Atropine decreased HRV but only induced VF in one of eight trained susceptible dogs. Thus exercise training increased cardiac vagal activity, which was not solely responsible for the training-induced VF protection.  相似文献   

19.
Effect of training/detraining on submaximal exercise responses in humans   总被引:2,自引:0,他引:2  
Human subjects participated in a training/detraining paradigm which consisted of 7 wk of intense endurance training followed by 3 wk of inactivity. In previously sedentary subjects, training produced a 23.9 +/- 7.2% increase in maximal aerobic power (V02max) (group S). Detraining did not affect group S V02max. In previously trained subjects (group T), the training/detraining paradigm did not affect V02max. In group S, training produced an increase in vastus lateralis muscle citrate synthase (CS) activities (nmol.mg protein-1. min-1) from 67.1 +/- 14.5 to 106.9 +/- 22.0. Detraining produced a decrease in CS activity to 80 +/- 14.6. In group T, pretraining CS activity (139.5 +/- 14.9) did not change in response to training. Detraining, however, produced a decrease in CS activity (121.5 +/- 7.8 to 66.8 +/- 5.9). Group S respiratory exchange ratios obtained during submaximal exercise at 60% V02max (R60) decreased in response to training (1.00 +/- 0.02 to 0.87 +/- 0.02) and increased (0.96 +/- 0.02) after detraining. Group T R60 (0.91 +/- 0.01) was not affected by training but increased (0.89 +/- 0.02 to 0.95 +/- 0.02) after detraining. R60 was correlated to changes in CS activity but was unrelated to changes in V02max. These data support the hypothesis that the mitochondrial content of working skeletal muscle is an important determinant of substrate utilization during submaximal exercise.  相似文献   

20.
This study evaluated the effects of aging and endurance training on the metabolic responses of trained and sedentary young (age 20-32 yr) and older (age 60-70 yr) men to exercise at the same relative exercise stress (70% of maximal O2 consumption). Plasma growth hormone concentrations at rest were similar in all four groups, but both older groups had an attenuated response to exercise. The older trained men appeared to have avoided the age-associated changes that were evident in their sedentary peers with respect to resting plasma insulin, C-peptide, and norepinephrine concentrations. Plasma glucagon concentrations were lower in both older subject groups at rest. Both sedentary groups decreased their plasma glucose concentrations and increased their plasma glucagon concentrations during exercise, whereas the trained groups had increases in their plasma glucose concentrations but had no change in their glucagon concentrations. Thus, although the concentrations of some hormones at rest and during submaximal exercise are unaffected by aging or by training, others are markedly altered by aging, training, or the interaction of the two. However, it appears that older healthy sedentary men undergo less physiological stress than young untrained men during submaximal exercise at the same relative exercise intensity, and they have no responses that would contraindicate their participation in exercise of the duration and intensity usually prescribed in exercise-training programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号