首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular chaperone Hsp90 plays an essential role in the folding and function of important cellular proteins including steroid hormone receptors, protein kinases and proteins controlling the cell cycle and apoptosis. A 15 Å deep pocket region in the N-terminal domain of Hsp90 serves as an ATP/ADP-binding site and has also been shown to bind geldanamycin, the only specific inhibitor of Hsp90 function described to date. We now show that radicicol, a macrocyclic antifungal structurally unrelated to geldanamycin, also specifically binds to Hsp90. Moreover, radicicol competes with geldanamycin for binding to the N-terminal domain of the chaperone, expressed either by in vitro translation or as a purified protein, suggesting that radicicol shares the geldanamycin binding site. Radicicol, as does geldanamycin, also inhibits the binding of the accessory protein p23 to Hsp90, and interferes with assembly of the mature progesterone receptor complex. Radicicol does not deplete cells of Hsp90, but rather increases synthesis as well as the steady-state level of this protein, similar to a stress response. Finally, radicicol depletes SKBR3 cells of p 185erbB2, Raf-1 and mutant p53, similar to geldanamycin. Radicicol thus represents a structurally unique antibiotic, and the first non-benzoquinone ansamycin, capable of binding to Hsp90 and interfering with its function.  相似文献   

2.
The Hsp90 molecular chaperone catalyses the final activation step of many of the most important regulatory proteins of eukaryotic cells. The antibiotics geldanamycin and radicicol act as highly selective inhibitors of in vivo Hsp90 function through their ability to bind within the ADP/ATP binding pocket of the chaperone. Drugs based on these compounds are now being developed as anticancer agents, their administration having the potential to inactivate simultaneously several of the targets critical for counteracting multistep carcinogenesis. This investigation used yeast to show that cells can be rendered hypersensitive to Hsp90 inhibitors by mutation to Hsp90 itself (within the Hsp82 isoform of yeast Hsp90, the point mutations T101I and A587T); with certain cochaperone defects and through the loss of specific plasma membrane ATP binding cassette transporters (Pdr5p, and to a lesser extent, Snq2p). The T101I hsp82 and A587T hsp82 mutations do not cause higher drug affinity for purified Hsp90 but may render the in vivo chaperone cycle more sensitive to drug inhibition. It is shown that these mutations render at least one Hsp90-dependent process (deactivation of heat-induced heat shock factor activity) more sensitive to drug inhibition in vivo.  相似文献   

3.
4.
Hsp90: chaperoning signal transduction   总被引:20,自引:0,他引:20  
  相似文献   

5.
Heat shock protein 90 (Hsp90), an abundant molecular chaperone in the eukaryotic cytosol, is involved in the folding of a set of cell regulatory proteins and in the re-folding of stress-denatured polypeptides. The basic mechanism of action of Hsp90 is not yet understood. In particular, it has been debated whether Hsp90 function is ATP dependent. A recent crystal structure of the NH2-terminal domain of yeast Hsp90 established the presence of a conserved nucleotide binding site that is identical with the binding site of geldanamycin, a specific inhibitor of Hsp90. The functional significance of nucleotide binding by Hsp90 has remained unclear. Here we present evidence for a slow but clearly detectable ATPase activity in purified Hsp90. Based on a new crystal structure of the NH2-terminal domain of human Hsp90 with bound ADP-Mg and on the structural homology of this domain with the ATPase domain of Escherichia coli DNA gyrase, the residues of Hsp90 critical in ATP binding (D93) and ATP hydrolysis (E47) were identified. The corresponding mutations were made in the yeast Hsp90 homologue, Hsp82, and tested for their ability to functionally replace wild-type Hsp82. Our results show that both ATP binding and hydrolysis are required for Hsp82 function in vivo. The mutant Hsp90 proteins tested are defective in the binding and ATP hydrolysis–dependent cycling of the co-chaperone p23, which is thought to regulate the binding and release of substrate polypeptide from Hsp90. Remarkably, the complete Hsp90 protein is required for ATPase activity and for the interaction with p23, suggesting an intricate allosteric communication between the domains of the Hsp90 dimer. Our results establish Hsp90 as an ATP-dependent chaperone.  相似文献   

6.
The molecular chaperone heat shock protein 90 (Hsp90) is required for the stabilization and conformational maturation of various oncogenic proteins in cancer. The loading of protein kinases to Hsp90 is actively mediated by the cochaperone Cdc37. The crucial role of the Hsp90-Cdc37 complex has made it an exciting target for cancer treatment. In this study, we characterize Hsp90 and Cdc37 interaction and drug disruption using a reconstituted protein system. The GST pull-down assay and ELISA assay show that Cdc37 binds to ADP-bound/nucleotide-free Hsp90 but not ATP-bound Hsp90. Celastrol disrupts Hsp90-Cdc37 complex formation, whereas the classical Hsp90 inhibitors (e.g. geldanamycin) have no effect. Celastrol inhibits Hsp90 ATPase activity without blocking ATP binding. Proteolytic fingerprinting indicates celastrol binds to Hsp90 C-terminal domain to protect it from trypsin digestion. These data suggest that celastrol may represent a new class of Hsp90 inhibitor by modifying Hsp90 C terminus to allosterically regulate its chaperone activity and disrupt Hsp90-Cdc37 complex.  相似文献   

7.
The 90 kDa heat shock protein, Hsp90, is an abundant molecular chaperone participating in the cytoprotection of eukaryotic cells. Here we analyzed the involvement of Hsp90 in the maintenance of cellular integrity using partial cell lysis as a measure. Inhibition of Hsp90 by geldanamycin, radicicol, cisplatin, and novobiocin induced a significant acceleration of detergent- and hypotonic shock-induced cell lysis. The concentration and time dependence of cell lysis acceleration was in agreement with the Hsp90 inhibition characteristics of the N-terminal inhibitors, geldanamycin and radicicol. Glutathione and other reducing agents partially blocked geldanamycin-induced acceleration of cell lysis but were largely ineffective with other inhibitors. Indeed, geldanamycin treatment led to superoxide production and a change in membrane fluidity. When Hsp90 content was diminished using anti-Hsp90 hammerhead ribozymes, an accelerated cell lysis was also observed. Hsp90 inhibition-induced cell lysis was more pronounced in eukaryotic (yeast, mouse red blood, and human T-lymphoma) cells than in bacteria. Our results indicate that besides the geldanamycin-induced superoxide production, and a consequent increase in cell lysis, inhibition or lack of Hsp90 alone can also compromise cellular integrity. Moreover, cell lysis after hypoxia and complement attack was also enhanced by any type of Hsp90 inhibition used, which shows that the maintenance of cellular integrity by Hsp90 is important in physiologically relevant lytic conditions of tumor cells.  相似文献   

8.
The N-terminal domain of eukaryotic Hsp90 proteins contains a conserved adenosine nucleotide binding pocket that also serves as the binding site for the Hsp90 inhibitors geldanamycin and radicicol. Although this domain is essential for Hsp90 function, the molecular basis for adenosine nucleotide-dependent regulation of GRP94, the endoplasmic reticulum paralog of Hsp90, remains to be established. We report that bis-ANS (1,1'-bis(4-anilino-5-napthalenesulfonic acid), an environment sensitive fluorophore known to interact with nucleotide-binding domains, binds to the adenosine nucleotide-binding domain of GRP94 and thereby activates its molecular chaperone and peptide binding activities. bis-ANS was observed to elicit a tertiary conformational change in GRP94 similar to that occurring upon heat shock, which also activates GRP94 function. bis-ANS activation of GRP94 function was efficiently blocked by radicicol, an established inhibitory ligand for the adenosine nucleotide binding pocket. Confirmation of the N-terminal nucleotide binding pocket as the bis-ANS-binding site was obtained following covalent incorporation of bis-ANS into GRP94, trypsinolysis, and sequencing of bis-ANS-labeled limit digestion products. These data identify a ligand dependent regulation of GRP94 function and suggest a model whereby GRP94 function is regulated through a ligand-dependent conversion of GRP94 from an inactive to an active conformation.  相似文献   

9.
The assembly of viral RNA replication complexes on intracellular membranes represents a critical step in the life cycle of positive-strand RNA viruses. We investigated the role of the cellular chaperone heat shock protein 90 (Hsp90) in viral RNA replication complex assembly and function using Flock House virus (FHV), an alphanodavirus whose RNA-dependent RNA polymerase, protein A, is essential for viral RNA replication complex assembly on mitochondrial outer membranes. The Hsp90 chaperone complex transports cellular mitochondrial proteins to the outer mitochondrial membrane import receptors, and thus we hypothesized that Hsp90 may also facilitate FHV RNA replication complex assembly or function. Treatment of FHV-infected Drosophila S2 cells with the Hsp90-specific inhibitor geldanamycin or radicicol potently suppressed the production of infectious virions and the accumulation of protein A and genomic, subgenomic, and template viral RNA. In contrast, geldanamycin did not inhibit the activity of preformed FHV RNA replication complexes. Hsp90 inhibitors also suppressed viral RNA and protein A accumulation in S2 cells expressing an FHV RNA replicon. Furthermore, Hsp90 inhibition with either geldanamycin or RNAi-mediated chaperone downregulation suppressed protein A accumulation in the absence of viral RNA replication. These results identify Hsp90 as a host factor involved in FHV RNA replication and suggest that FHV uses established cellular chaperone pathways to assemble its RNA replication complexes on intracellular membranes.  相似文献   

10.
PKR, a member of the eukaryotic initiation-factor 2alpha (eIF-2alpha) kinase family, mediates the host antiviral response and is implicated in tumor suppression and apoptosis. Here we show that PKR is regulated by the heat shock protein 90 (Hsp90) molecular chaperone complex. Mammalian PKR expressed in budding yeast depends on several components of the Hsp90 complex for accumulation and activity. In mammalian cells, inhibition of Hsp90 function with geldanamycin (GA) during de novo synthesis of PKR also interferes with its accumulation and activity. Hsp90 and its co-chaperone p23 bind to PKR through its N-terminal double-stranded (ds) RNA binding region as well as through its kinase domain. Both dsRNA and GA induce the rapid dissociation of Hsp90 and p23 from mature PKR, activate PKR both in vivo and in vitro and within minutes trigger the phosphorylation of the PKR substrate eIF-2alpha. A short-term exposure of cells to the Hsp90 inhibitors GA or radicicol not only derepresses PKR, but also activates the Raf-MAPK pathway. This suggests that the Hsp90 complex may more generally assist the regulatory domains of kinases and other Hsp90 substrates.  相似文献   

11.
Recruitment of protein kinase clients to the Hsp90 chaperone involves the cochaperone p50(cdc37) acting as a scaffold, binding protein kinases via its N-terminal domain and Hsp90 via its C-terminal region. p50(cdc37) also has a regulatory activity, arresting Hsp90's ATPase cycle during client-protein loading. We have localized the binding site for p50(cdc37) to the N-terminal nucleotide binding domain of Hsp90 and determined the crystal structure of the Hsp90-p50(cdc37) core complex. Dimeric p50(cdc37) binds to surfaces of the Hsp90 N-domain implicated in ATP-dependent N-terminal dimerization and association with the middle segment of the chaperone. This interaction fixes the lid segment in an open conformation, inserts an arginine side chain into the ATP binding pocket to disable catalysis, and prevents trans-activating interaction of the N domains.  相似文献   

12.
Yun BG  Huang W  Leach N  Hartson SD  Matts RL 《Biochemistry》2004,43(25):8217-8229
Hsp90 functions to facilitate the folding of newly synthesized and denatured proteins. Hsp90 function is modulated through its interactions with cochaperones and the binding and hydrolysis of ATP. Recently, novobiocin has been shown to bind to a second nucleotide binding site located within the C-terminal domain of Hsp90. In this report, we have examined the effect of novobiocin on Hsp90 function in reticulocyte lysate. Novobiocin specifically inhibited the maturation of the heme-regulated eIF2alpha kinase (HRI) in a concentration-dependent manner. Novobiocin induced the dissociation of Hsp90 and Cdc37 from immature HRI, while the Hsp90 cochaperones p23, FKBP52, and protein phosphatase 5 remained associated with immature HRI. Proteolytic fingerprinting of Hsp90 indicated that novobiocin had a distinct effect on the conformation of Hsp90, and molybdate lowered the concentration of novobiocin required to alter Hsp90's conformation by 10-fold. The recombinant C-terminal domain of Hsp90 adopted a proteolytic resistant conformation in the presence of novobiocin, indicating that alteration of Hsp90/cochaperone interactions was not the cause of the novobiocin-induced protease resistance within Hsp90's C-terminal domain. The concentration dependence of this novobiocin-induced conformation change correlated with the dissociation of Hsp90 and Cdc37 from immature HRI and novobiocin-induced inhibition of Hsp90/Cdc37-dependent activation of HRI's autokinase activity. The data suggest that binding of novobiocin to the C-terminal nucleotide binding site of Hsp90 induces a change in Hsp90's conformation leading to the dissociation of bound kinase. The unique structure and properties of novobocin-bound Hsp90 suggest that it may represent the "client-release" conformation of the Hsp90 machine.  相似文献   

13.
14.
The Tom70 import receptor on the mitochondrial outer membrane specifically recognizes Hsp90 and Hsc70, a critical step for the import of mitochondrial preproteins, the targeting of which depends on these cytosolic chaperones. To analyze the role of Hsp90 in mitochondrial import, the effects of the Hsp90 inhibitors geldanamycin and novobiocin were compared. Geldanamycin occludes the N-terminal ATP-binding site of Hsp90, whereas novobiocin targets the C-terminal region of the chaperone. Here, novobiocin was found to inhibit preprotein import and, in particular, targeting to the purified cytosolic fragment of Tom70. Hsp90 cross-linking to preprotein and coprecipitation of Hsp90 with Tom70 were both impaired by novobiocin. Overall, novobiocin treatment increased preprotein aggregation, contributing to reduced import competence. In contrast, geldanamycin had no apparent effect on preprotein interactions with Hsp90, formation of preprotein-chaperone complexes, Hsp90 docking onto Tom70, or preprotein association with the outer membrane. Instead, geldanamycin impaired formation of preprotein import intermediates at the outer membrane. This suggests a novel active role for Hsp90 in import steps subsequent to Tom70 targeting. Our results outline the mechanisms of Hsp90 function in preprotein targeting and transport.  相似文献   

15.
The 90kDa heat shock protein (Hsp90) is one of the most abundant protein and essential for all eukaryotic cells. Many proteins require the interaction with Hsp90 for proper function. Upon heat stress the expression level of Hsp90 is even enhanced. It is assumed, that under these conditions Hsp90 is required to protect other proteins from aggregation. One property of Hsp90 is its ability to undergo autophosphorylation. The N-terminal domain of Hsp90 has been shown to contain an unusual ATP-binding site. A well-known inhibitor of Hsp90 function is geldanamycin binding to the N-terminal ATP-binding site with high affinity. Recently it was shown that Hsp90 possesses a second ATP-binding site in the C-terminal region, which can be competed with novobiocin. Autophosphorylation of Hsp90 was analysed by incubation with gamma(32)P-ATP. Addition of geldanamycin did not interfere with the capability for autophosphorylation, while novobiocin indeed did. These results suggest that the C-terminal ATP-binding site is required for autophosphorylation of Hsp90.  相似文献   

16.
Yun BG  Matts RL 《Cellular signalling》2005,17(12):1477-1485
The function of the 90-kDa heat shock protein (Hsp90) is essential for the regulation of a myriad of signal transduction cascades that control all facets of a cell's physiology. Akt (PKB) is an Hsp90-dependent serine-threonine kinase that plays critical roles in the regulation of muscle cell physiology, including roles in the regulation of muscle differentiation and anti-apoptotic responses that modulate cell survival. In this report, we have examined the role of Hsp90 in regulating the activity of Akt in differentiating C2C12 myoblasts. While long-term treatment of differentiating C2C12 cells with the Hsp90 inhibitor geldanamycin led to the depletion of cellular Akt levels, pulse-chase analysis indicated that geldanamycin primarily enhanced the turnover rate of newly synthesized Akt. Hsp90 maintained an interaction with mature Akt, while Cdc37, Hsp90's kinase-specific co-chaperone, was lost from the chaperone complex upon Akt maturation. Geldanamycin partially disrupted the interaction of Cdc37 with Akt, but had a much less significant effect on the interaction of Hsp90 with Akt. Surprisingly, short-term treatment of differentiating C2C12 with geldanamycin increased the phosphorylation of Akt on Ser473, an effect mimicked by treatment of C2C12 cells with okadaic acid or the Hsp90 inhibitor novobiocin. Furthermore, Akt was found to interact directly with catalytic subunit of protein phosphatase 2A (PP2Ac) in C2C12 cells, and this interaction was not disrupted by geldanamycin. Thus, our findings indicate that Hsp90 functions to balance the phosphorylation state of Akt by modulating the ability of Akt to be dephosphorylated by PP2Ac during C2C12 myoblast differentiation.  相似文献   

17.
The C-terminal domain of Hsp90 displays independent chaperone activity, mediates dimerization, and contains the MEEVD motif essential for interaction with tetratricopeptide repeat-containing immunophilin cochaperones assembled in mature steroid receptor complexes. An alpha-helical region, upstream of the MEEVD peptide, helps form the dimerization interface and includes a hydrophobic microdomain that contributes to the Hsp90 interaction with the immunophilin cochaperones and corresponds to the binding site for novobiocin, a coumarin-related Hsp90 inhibitor. Mutation of selected residues within the hydrophobic microdomain significantly impacted the chaperone function of a recombinant C-terminal Hsp90 fragment and novobiocin inhibited wild-type chaperone activity. Prior incubation of the Hsp90 fragment with novobiocin led to a direct blockade of immunophilin cochaperone binding. However, the drug had little influence on the pre-formed Hsp90-immunophilin complex, suggesting that bound cochaperones mask the novobiocin-binding site. We observed a differential effect of the drug on Hsp90-immunophilin interaction, suggesting that the immunophilins make distinct contacts within the C-terminal domain to specifically modulate Hsp90 function. Novobiocin also precluded the interaction of full-length Hsp90 with the p50(cdc37) cochaperone, which targets the N-terminal nucleotide-binding domain, and is prevalent in Hsp90 complexes with protein kinase substrates. Novobiocin therefore acts locally and allosterically to induce conformational changes within multiple regions of the Hsp90 protein. We provide evidence that coumermycin A1, a coumarin structurally related to novobiocin, interferes with dimerization of the Hsp90 C-terminal domain. Coumarin-based inhibitors then may antagonize Hsp90 function by inducing a conformation favoring separation of the C-terminal domains and release of substrate.  相似文献   

18.
Hsp90 is an abundant molecular chaperone essential to the establishment of many cellular regulation and signal transduction systems, but remains one of the least well described chaperones. The biochemical mechanism of protein folding by Hsp90 is poorly understood, and the direct involvement of ATP has been particularly contentious. Here we demonstrate in vitro an inherent ATPase activity in both yeast Hsp90 and the Escherichia coli homologue HtpG, which is sensitive to inhibition by the Hsp90-specific antibiotic geldanamycin. Mutations of residues implicated in ATP binding and hydrolysis by structural studies abolish this ATPase activity in vitro and disrupt Hsp90 function in vivo. These results show that Hsp90 is directly ATP dependent in vivo, and suggest an ATP-coupled chaperone cycle for Hsp90-mediated protein folding.  相似文献   

19.
Heat shock protein (Hsp) 90 is a ubiquitously expressed chaperone that stabilizes expression of multiple signaling kinases involved in growth regulation, including ErbB2, Raf-1, and Akt. The chaperone activity of Hsp90 requires ATP, which binds with approximately 10-fold lower affinity than ADP. This suggests that Hsp90 may be a physiological ATP sensor, regulating the stability of growth signaling cascades in relation to cellular energy charge. Here we show that lowering ATP concentration by inhibiting glycolysis or mitochondrial respiration in isolated myocytes triggers rapid dissociation of Hsp90 from ErbB2 and degradation of ErbB2 along with other client proteins. The effect of disrupting Hsp90 chaperone activity by ATP depletion was similar to the effect of the pharmacological Hsp90 inhibitor geldanamycin. ATP depletion-induced disruption of Hsp90 chaperone activity was associated with cellular resistance to growth factor activation of intracellular signaling. ErbB2 degradation was also induced by the physiological stress of beta-adrenergic receptor stimulation in electrically stimulated cells. These results support a role for Hsp90 as an ATP sensor that modulates tissue growth factor responsiveness under metabolically stressed conditions and provide a novel mechanism by which cellular responsiveness to growth factor stimulation is modulated by cellular energy charge.  相似文献   

20.
The structural basis for the coupling of ATP binding and hydrolysis to chaperone activity remains a central question in Hsp90 biology. By analogy to MutL, ATP binding to Hsp90 is thought to promote intramolecular N-terminal dimerization, yielding a molecular clamp functioning in substrate protein activation. Though observed in studies with recombinant domains, whether such quaternary states are present in native Hsp90s is unknown. In this study, native subunit interactions in GRP94, the endoplasmic reticulum Hsp90, were analyzed using chemical cross-linking in conjunction with tandem mass spectrometry. We report the identification of two distinct intermolecular interaction sites. Consistent with previous studies, one site comprises the C-terminal dimerization domain. The remaining site represents a novel intermolecular contact between the N-terminal and middle (M) domains of opposing subunits. This N+M domain interaction was present in the nucleotide-empty, ADP-, ATP-, or geldanamycin-bound states and could be selectively disrupted upon addition of synthetic geldanamycin dimers. These results identify a compact, intertwined quaternary conformation of native GRP94 and suggest that intersubunit N+M interactions are integral to the structural biology of Hsp90.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号