首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abscission: role of cellulase   总被引:5,自引:25,他引:5       下载免费PDF全文
Abeles FB 《Plant physiology》1969,44(3):447-452
Cellulase (β-1,4-glucan-glucanohydrolase EC 3.2.1.4) activity increased during abscission and was localized in the cell separation layer of Phaseolus vulgaris L. cv. Red Kidney (bean), Gossypium hirsutum L. cv. Acala 4-42 (Cotton) and Coleus blumei Benth. Princeton strain (Coleus) abscission zone explants. Cellulase activity was optimum at pH 7, was reduced by one-half after heating to 55° for 10 min, and was associated with the soluble components of the cell. Explants treated with aging retardants (indoleacetic acid, 6N-benzyladenine, and coumarin), CO2, actinomycin D or cycloheximide had less cellulase activity than untreated controls. Ethylene increased cellulase activity of aged explants after a 3-hr lag period but had no effect on cellulase activity of freshly excised explants. It was concluded that 1 of the roles of ethylene in abscission is to regulate the production of cellulase which in turn is required for cell separation.  相似文献   

2.
The role of α-naphthaleneacetic acid (NAA) in the control of abscission in Citrus (Citrus sinensis L. Osbeck) leaf explants and its conjugation were studied in non-aged and 24-hour-aged explants. Dipping non-aged explants in 1.5 micromolar NAA for 15 minutes immediately after excision did not delay abscission whereas 150 micromolar NAA effectively delayed it. As incubation time was prolonged up to 24 hours after excision, the delaying effect of both concentrations gradually increased. In general, both concentrations did not delay abscission when applied to 24-hour-aged explants held for an additional period of up to 24 hours. The uptake and conjugation of 14C-NAA to glucose and aspartic acid were similar in petiole, abscission zone, and leaf blade of non-aged and aged tissues, for all NAA concentrations. No correlation was established between the kinetics of abscission and the rate of conjugation in the abscission zone.  相似文献   

3.
The speed of ethylene-induced leaf abscission in cotton (Gossypium hirsutum L. cv LG-102) seedlings is dependent on leaf position (i.e. physiological age). Fumigation of intact seedlings for 18 hours with 10 microliters per liter of ethylene resulted in 40% abscission of the still-expanding third true (3°) leaves but had no effect on the fully expanded first true (1°) leaves. After 42 hours of fumigation with 50 microliters per liter of ethylene, total abscission of the 3° leaves occurred while <50% abscission of the 1° leaves was observed. On a leaf basis, endogenous levels of free IAA in 1° leaves were approximately twice those of 3° leaves. Free IAA levels were reduced equally (approximately 55%) in both leaf types after 18 hours of ethylene (10 microliters per liter) treatment. Ethylene treatment of intact seedlings inhibited the basipetal movement of [14C]IAA in petiole segments isolated from both leaf types in a dose-dependent manner. The auxin transport inhibitor N-1-naphthylphthalamic acid increased the rate and extent of ethylene-induced leaf abscission at both leaf positions but did not alter the relative pattern of abscission. Abscission-zone explants prepared from 3° leaves abscised faster than 1° leaf explants when exposed to ethylene. Ethyleneinduced abscission of 3° explants was not appreciably inhibited by exogenous IAA while 1° explants exhibited a pronounced and protracted inhibition. The synthetic auxins 2,4-D and 1-naphthaleneacetic acid completely inhibited ethylene-induced abscission of both 1° and 3° explants for 40 hours. It is proposed that the differential abscission response of cotton seedling leaves is primarily a result of the limited abscission-inhibiting effects of IAA in the abscission zone of the younger leaves.  相似文献   

4.
Inhibition of abscission by calcium   总被引:4,自引:3,他引:1  
An inhibition of abscission in bean petiole explants is reported for additions of calcium salts, especially at concentrations between 10−3 and 10−1m. Magnesium is less effective, and other commmon macronutrients are ineffective in inhibiting abscission. Evidence from timing experiments indicates that the calcium inhibition may act on the stage I or the “juvenile” stage of the explant, and that the inhibition of abscission may result from a retardation of senescence development in the pulvinar tissues of treated explants.  相似文献   

5.
The decomposition of 2-chloroethylphosphonic acid in aqueous solution has been studied at pH values from 6 to 9 and at temperatures in the 30 to 55 C range. The rate of decomposition is estimated from the rate of formation of ethylene. The rate is proportional to the concentration of the phosphonate dianion and is independent of the hydroxyl ion concentration. The rate constant at 40 C is 1.9 × 10−4 sec−1 and the activation energy is 29.8 kcal mol−1. The rate of reaction is not affected significantly by the presence of potassium iodide or urea (substances which increase the rate of leaf abscission in trees sprayed by 2-chloroethylphosphonic acid). The rate decreases slightly in the presence of low concentrations of magnesium and calcium ions.  相似文献   

6.
Biological Properties of d-Amino Acid Conjugates of 2,4-D   总被引:1,自引:1,他引:0  
Some d-amino acid (glutamic acid, valine, or leucine) conjugates of 2,4-dichlorophenoxyacetic acid (2,4-D) at 10−5 molar, stimulated elongation of Avena sativa L. var Mariner coleoptile sections and growth of soybean (Glycine max. L. var Amsoy) tissue as much as did the l-amino acid conjugates at 10−6 molar. The d-methionine conjugate did not stimulate growth of soybean root callus tissue but did stimulate Avena elongation. The d-aspartic acid conjugate did not stimulate elongation of Avena coleoptiles but did stimulate growth of root callus tissue.  相似文献   

7.
The acute effects of aqueous solutions of As, Cd, Cu, Pb, F, and Zn ions at concentrations from 0.01 to 100 micrograms per milliliter and solutions adjusted to pH 2 to 6 with nitric or sulfuric acid were studied with respect to acetylene reduction, net photosynthesis, respiration rate, and chlorophyll content in Vernal alfalfa (Medicago sativa L. cv. Vernal). The effects of the various treatments on acetylene reduction varied from no demonstrable effect by any concentration of F and 42% inhibition by 100 micrograms Pb2+ per milliliter, to 100% inhibition by 10 micrograms Cd2+ per milliliter and 100 micrograms per milliliter As, Cu2+, and Zn2+ ions. Zn2+ showed statistically significant inhibition of activity at 0.1 micrograms per milliliter. Acid treatments were not inhibitory above pH 2, at which pH nitric acid inhibited acetylene reduction activity more than did sulfuric acid. The inhibition of acetylene reduction by these ions was Zn2+ > Cd2+ > Cu2+ > AsO3 > Pb2+ > F. The sensitivity of acetylene reduction to the ions was roughly equal to the sensitivity of photosynthesis, respiration, and chlorophyll content when Pb2+ was applied, but was 1,000 times more sensitive to Zn2+. The relationship of the data to field conditions and industrial pollution is discussed.  相似文献   

8.
Abscission: movement and conjugation of auxin   总被引:4,自引:3,他引:1       下载免费PDF全文
A 1-hour application of indole-3-acetic acid to bean (Phaseolus vulgaris L. cv. Red Kidney) explants inhibited abscission for an 8-hour aging period. Use of indole-3-acetic acid-14C showed that the applied indole-3-acetic acid was conjugated within explant tissue and that this conjugation mechanism accounts for loss of effectiveness of indole-3-acetic acid in inhibiting abscission after 8 hours. Reapplication of indole-3-acetic acid to an explant at a later time, before the induced aging requirement was completed reinhibited abscission. 2,4-Dichlorophenoxyacetic acid, which is not destroyed or conjugated by this system, did not lose its ability to inhibit abscission. It was concluded that indole-3-acetic acid destruction is one of the processes involved in the aging stage of abscission in explants.  相似文献   

9.
Micropropagation protocol of Oriental Hybrid Lilium cv. Ravenna was developed using bulb scale segments (Basal and Tip) as explants. Surface sterilization of healthy bulb scales with carbendazim 200 ppm for 30 min, then 0.1 percent mercuric chloride for 10 min, then 70% ethyl alcohol for 30 s was superior to all other treatments in recording highest culture asepsis (77.08%) and higher explant survival (86.12%). Explant survival was higher in basal segments (88.54%) compared to tip segments (85.52%). Highest culture establishment was recorded in basal scale segments (68.26%) followed by tip scale segments (55.21%). MS medium augmented with 0.50 mgl−1 Naphthalene acetic acid and 2.0 mgl−1. 6-Benzylamino Purine recorded maximum culture establishment (76.17%), highest bulblet number/explant (5.52) with maximum length of shoots (2.20 cm) and number of leaves (3.39). This treatment combination of growth regulators resulted in highest shoot proliferation (83.33%) along with maximum shoot number (2.41explant−1), shoot length (2.35 cm) and leaf number (5.44) of micro shoots during proliferation stage. Rooting of explants was superior with Indole-3-butyric acid compared to Naphthalene acetic acid. Highest rooting of 92.71% along with maximum number of primary roots shoot−1 (12.06), maximum primary root length (3.17 cm) was documented in Murashige and Skoog medium added with Indole-3-butyric acid 1.50 mgl−1 with best ex vitro survival rate (98.96%) of rooted plantlets during primary hardening in perlite + vermiculite (1:1) mixture.  相似文献   

10.
Time course changes were observed in petiole and stem anatomy and cellulase enzyme patterns in bean (Phaseolus vulgaris L.) explants when 10−5 or 10−2m indoleacetic acid in lanolin paste was applied to acropetal cut surfaces in the presence or absence of ethylene. Auxin (10−2m) in the presence of ethylene stimulated rapid ordered cell division and dedifferentiation, with ensuing lateral root formation. Auxin (10−5m) caused moderate cortical swelling, pit formation in pith parenchyma, and chloroplast development in certain cortical cells. Exogenous ethylene reduced cell division activity and caused cortical cell swelling and separation. Removal of endogenously generated ethylene by mercuric perchlorate resulted in less ordered cell division patterns and no lateral root formation. Auxin treatments enhanced formation of an active acidic pI cellulase, exogenous ethylene-stimulated formation of an active basic pI cellulase. The absence of basic pI cellulase activity by the removal of endogenously generated ethylene suggests a close dependence of basic pI cellulase activity on ethylene.  相似文献   

11.
Senescent petioles of Coleus rehneltianus Berger. Phaseolus vulgaris L. cv. Saxa. Acer pseudoplatanus L., and senescent fruit stalks of Malus domestica Borkh. cv. Golden Delicious contain at least three abscission accelerating substances, which were isolated by extraction with methanol or with water and by diffusion into agar. They were purified by thin-layer chromatography and bioassayed in a special abscission test using Coleus explants. Two of these abscission accelerators could be conclusively identified by thin-layer chromatography and by gas chromatography as abscisic acid and xanthoxin. The third substance, which has acidic properties and is less polar than abscisic acid, could not be identified. The concentration and the absolute amount of abscisic acid in Coleus petioles were found to decrease during their development, young petioles having the highest concentration. No evidence was found that the three abscission accelerators or synthetic abscisic acid and xanthoxin affect the production of ethylene in Caleus explatns. The results obtained do not support the hypothesis that senescent petioles contain a specific “senescence factor”, which stimulates abscission via ethylene production.  相似文献   

12.
Simmondsia chinensis (Link) Schneider is a perennial, dioecious, drought resistant and multipurpose seed oil crop grown in arid and semi-arid conditions throughout the world. A reproducible and more efficient method for indirect shoot organogenesis from female leaf explants has been standardized. The leaf explants cultured on Murashige and Skoog (MS) medium with 1.0 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) alone produced the highest frequency of callus compared with 1.5 mg l−1 IBA. Maximum proliferation of callus was observed on MS medium containing a combination of 1.0 mg l−1 2,4-D with 0.5 mg l−1 BAP. For shoot differentiation, the proliferated callus was subcultured on MS medium supplemented with 6-benzylaminopurine (BAP) (1.0–4.0 mg l−1) along with 40 mg l−1 adenine sulphate as additive or in combination with α-naphthalene acetic acid (NAA) or Indole-3-butyric acid (IBA). Optimum shoots differentiated from callus was obtained on MS medium supplemented with 2.0 mg l−1 BAP and 0.2 mg l−1 NAA. On this medium, 100 % cultures were responded with an average number of 14.44 shoots per explant with their mean length of 4.78 cm. In vitro rooting (6.22 roots per explant) was achieved on half strength MS medium containing 2 % sucrose with 3.0 mg l−1 IBA and 300 mg l−1 activated charcoal (AC). Rooted plantlets were successfully hardened under control conditions and acclimatized under field conditions with 90 % success rate. The present protocol is highly efficient, reproducible and economically viable for large scale production of female plants.  相似文献   

13.
The steady-state effect of 2,5,2′,5′-tetrachlorobiphenyl (TCBP) on the green alga Selenastrum capricornutum was investigated in a P-limited two-stage chemostat system. The partition coefficient of this polychlorinated biphenyl congener was 5.9 × 104 in steady-state cultures. At a cellular TCBP concentration of 12.2 × 10−8 ng · cell−1, growth rate was not affected. However, photosynthetic capacity (Pmax) was significantly enhanced by TCBP (56 × 10−9 μmol of C · cell−1 · h−1 versus 34 × 10−9 μmol of C · cell−1 · h−1 in the control). Photosynthetic efficiency, or the slope of the photosynthesis-irradiance curve, was also significantly higher. There was little difference in the cell chlorophyll a content, and therefore the difference in these photosynthetic characteristics was the same even when they were expressed on a per-chlorophyll a basis. Cell C content was higher in TCBP-containing cells than in TCBP-free cells, but approximately 36% of the C fixed by cells with TCBP was not incorporated as cell C. The maximum P uptake rate was also enhanced by TCBP, but the half-saturation concentration appeared to be unaffected.  相似文献   

14.

Introduction

Our objective was to investigate whether a lack of frizzled-related protein B (FrzB), an extracellular antagonist of the Wnt signaling pathways, could enhance cartilage degradation by facilitating the expression, release and activation of matrix metalloproteinases (MMPs) by chondrocytes in response to tissue-damaging stimuli.

Methods

Cartilage explants from FrzB−/− and wild-type mice were challenged by excessive dynamic compression (0.5 Hz and 1 MPa for 6 hours). Load-induced glycosaminoglycan (GAG) release and MMP enzymatic activity were assessed. Interleukin-1β (IL-1β) (10, 100 and 1000 pg/mL for 24 hours) was used to stimulate primary cultures of articular chondrocytes from FrzB−/− and wild-type mice. The expression and release of MMP-3 and −13 were determined by RT-PCR, western blot and ELISA. The accumulation of β-catenin was assessed by RT-PCR and western blot.

Results

Cartilage degradation, as revealed by a significant increase in GAG release (2.8-fold, P = 0.014) and MMP activity (4.5-fold, P = 0.014) by explants, was induced by an excessive load. Load-induced MMP activity appeared to be enhanced in FrzB−/− cartilage explants compared to wild-type (P = 0.17). IL-1β dose-dependently induced Mmp-13 and −3 gene expression and protein release by cultured chondrocytes. IL-1β-mediated increase in MMP-13 and −3 was slightly enhanced in FrzB−/− chondrocytes compared to wild-type (P = 0.05 and P = 0.10 at gene level, P = 0.17 and P = 0.10 at protein level, respectively). Analysis of Ctnn1b and Lef1 gene expression and β-catenin accumulation at protein level suggests that the enhanced catabolic response of FrzB−/− chondrocytes to IL-1β and load may be associated with an over-stimulation of the canonical Wnt/β-catenin pathway.

Conclusions

Our results suggest that FrzB may have a protective role on cartilage degradation and MMP induction in mouse chondrocytes by attenuating deleterious effects of the activation of the canonical Wnt/β-catenin pathway.  相似文献   

15.
Hair cell damage is a side effect of cisplatin and aminoglycoside use. The inhibition or attenuation of this process is a target of many investigations. There is growing evidence that STAT1 deficiency decreases cisplatin-mediated ototoxicity; however, the role of STAT function and the molecules that act in gentamicin-mediated toxicity have not been fully elucidated. We used mice lacking STAT1 to investigate the effect of STAT1 ablation in cultured organs treated with cisplatin and gentamicin. Here we show that ablation of STAT1 decreased cisplatin toxicity and attenuated gentamicin-mediated hair cell damage. More TUNEL-positive hair cells were observed in explants of wild-type mice than that of STAT1−/− mice. Although cisplatin increased serine phosphorylation of STAT1 in wild-type mice and diminished STAT3 expression in wild-type and STAT1−/− mice, gentamicin increased tyrosine phosphorylation of STAT3 in STAT1−/− mice. The early inflammatory response was manifested in the upregulation of TNF-α and IL-6 in cisplatin-treated explants of wild-type and STAT1−/− mice. Expression of the anti-inflammatory cytokine IL-10 was altered in cisplatin-treated explants, upregulated in wild-type explants, and downregulated in STAT1−/− explants. Cisplatin and gentamicin triggered the activation of c-Jun. Activation of Akt was observed in gentamicin-treated explants from STAT1−/− mice. Increased levels of the autophagy proteins Beclin-1 and LC3-II were observed in STAT1−/− explants. These data suggest that STAT1 is a central player in mediating ototoxicity. Gentamicin and cisplatin activate different downstream factors to trigger ototoxicity. Although cisplatin and gentamicin triggered inflammation and activated apoptotic factors, the absence of STAT1 allowed the cells to overcome the effects of these drugs.The process of auditory sensorineural damage implicates a variety of intracellular events caused by aging, noise exposure, aminoglycoside antibiotics, or the chemotherapeutic agent cisplatin. The mechanisms underlying the ototoxic effects of cisplatin and gentamicin are not yet completely understood. Their ototoxicity likely involves morphological changes and the modulation of pro- and anti-apoptotic cell responses.1Activation of oxidative stress and the inflammatory response are common effects of cisplatin- and gentamicin-induced ototoxicity.2 Cisplatin increased the early release of pro-inflammatory cytokines in HEI-OC1 cells and in the cochlea of cisplatin-injected rats.3 Similarly, gentamicin induced the production of pro-inflammatory cytokines in the organ of Corti explants in vitro.4 The JAK/STAT pathway is one of the best-characterized cellular signaling pathways in the immune system. STAT1, a regulator of cell death, has been reported to be involved in cisplatin-mediated hair cell damage.5, 6 Knockdown of the STAT1 gene by means of siRNA, administrated by transtympanic injection in rats and transfection of UB/OC1 cells, reduced cisplatin-induced hair cell death in vivo and in vitro. Moreover, STAT1 siRNA preserved hearing in cisplatin-treated rats.5 Furthermore, STAT1 phosphorylation has been observed in utricles exposed to cisplatin in vitro.6The inactivation of STAT1 in other tissues has also demonstrated a protective effect, for example, by enhancing autophagy in STAT1-deficient hearts7 or accelerated skeletal muscle regeneration.8 Recent findings demonstrated that inhibition of the JAK2/STAT3 signaling pathway protects against noise-induced damage to cochlear tissue9 and STAT3/SOCS3 signaling regulate hair cell regeneration.10 Generally, STAT1 and STAT3 are reciprocally regulated, and disruption of their balance directs cells from survival to apoptotic cell death or from inflammatory to anti-inflammatory responses.11 However, there is no information about the role of STAT1 in gentamicin-induced hair cell damage.In the present study, we investigated the impact of the genetic ablation of STAT1 on hair cell damage induced by cisplatin and gentamicin. We also examined a subset of cell signaling mediators involved in apoptosis and survival. Our data indicate that STAT1 has an important role in cisplatin- and gentamicin-mediated hair cell death. We observed differences in the expression of STAT1 and STAT3 in the organ of Corti (OC) from wild-type (WT) and STAT1−/− mice exposed to cisplatin or gentamicin. An early inflammatory response was observed in the cisplatin-treated explants. Finally, we demonstrated regulatory changes of Akt, c-Jun, and autophagy factors in OC explants exposed either to cisplatin or gentamicin.  相似文献   

16.
An efficient micropropagation system for Pinellia ternate (Thunb) Briet, a traditional Chinese medicinal plant, has been developed. Petiole and lamina of P. ternate were used as explants and cultured on Murashige and Skoog (MS) medium containing different concentrations of different plant growth regulators. The results indicated that low concentration of 2,4-dicholorophenoxy acetic acid (2,4-D), indole-3-acetic acid (IAA) and α-naphthalene acetic acid (NAA) were suitable for micro-tuber induction, but callus induction rate increased with increasing concentrations of growth regulators. Tubers induction rates of petiole and leaf were (81.8 %–100 %) and (89.4 %–96.0 %) respectively, when 0.2 mg l−1 2, 4-dicholorophenoxy acetic acid, indole-3-acetic acid or α-naphthalene acetic acid were present in the medium. Tubers induction rates of petiole and leaf cultured on MS medium supplemented with 0.2–0.5 mg l−1 6-benzyl amino purine (6-BAP) were (94.1 %–100 %) and (96.0 %–100 %) respectively. When the concentration of 2,4-dicholorophenoxy acetic acid, α-naphthalene acetic acid and 6-benzyl amino purine was increased to 2.0 mg l−1, callus induction rates of petiole and leaf were 100 % and 98.2 %, 91.0 % and 36.0 %, 62.3 % and 70.0 %, respectively. Different concentration of kinetin (KT) and zeatin (ZT) had no significant effect on micro-tuber induction of petiole. Most petioles showed polarity during the cultivation of explants, when supplemented with different concentrations of auxin or cytokinin in the MS medium.  相似文献   

17.
Role of IAA-Oxidase in Abscission Control in Cotton   总被引:7,自引:7,他引:0       下载免费PDF全文
The potential role of indoleactic acid (IAA)-oxidase as an in vivo abscission regulating system in the cotton (Gossypium hirsutum L.) cotyledonary explant was investigated. Phenols (usually monophenols), which are cofactors of cotton IAA-oxidase in vitro, accelerated abscission. Phenols (usually orthodihydroxyphenols), which inhibit cotton IAA-oxidase in vitro, inhibited abscission. Inhibition or stimulation of abscission was accomplished by phenols both with and without IAA. Results were similar when treatments were applied as lanolin pastes to the cut petiole ends or as solutions in which explants were submerged. An abscission accelerating phenol stimulated the decarboxylation of IAA-1-14C by explants and an abscission inhibiting phenol inhibited the decarboxylation of IAA-1-14C.  相似文献   

18.
The methyl-ester of 2-chloro-9-hydroxyfluorenole-9-carboxylic acid (Chlorflurenol-Methyl =CFM) enhances the elongation of intact plants ofColeus blumei and induces leaf curvatures and an anormalous abscission of the youngest leaves. In long-time-experiments (3–4 month), CFM induces increased outgrowth of the axillary buds including leaf deformations and abscission of organs on the originating shoots. CFM stimulates the adventitious root formation of cuttings fromHelianthus, Phaseolus, andColeus. It is shown inColeus cuttings that an inhibition of root formation precedes the stimulation of root formation. Gibberellic acid does not influence any one of CFM-induced effects. Therefore morphactins are not GA3-antagonists. TIBA qualitatively causes the same effects as CFM. Therefore it is possible that the mechanisms of actions of both substances are similar.  相似文献   

19.
Irrigation with wastewater releases pharmaceuticals, pathogenic bacteria, and resistance genes, but little is known about the accumulation of these contaminants in the environment when wastewater is applied for decades. We sampled a chronosequence of soils that were variously irrigated with wastewater from zero up to 100 years in the Mezquital Valley, Mexico, and investigated the accumulation of ciprofloxacin, enrofloxacin, sulfamethoxazole, trimethoprim, clarithromycin, carbamazepine, bezafibrate, naproxen, diclofenac, as well as the occurrence of Enterococcus spp., and sul and qnr resistance genes. Total concentrations of ciprofloxacin, sulfamethoxazole, and carbamazepine increased with irrigation duration reaching 95% of their upper limit of 1.4 µg/kg (ciprofloxacin), 4.3 µg/kg (sulfamethoxazole), and 5.4 µg/kg (carbamazepine) in soils irrigated for 19–28 years. Accumulation was soil-type-specific, with largest accumulation rates in Leptosols and no time-trend in Vertisols. Acidic pharmaceuticals (diclofenac, naproxen, bezafibrate) were not retained and thus did not accumulate in soils. We did not detect qnrA genes, but qnrS and qnrB genes were found in two of the irrigated soils. Relative concentrations of sul1 genes in irrigated soils were two orders of magnitude larger (3.15×10−3±0.22×10−3 copies/16S rDNA) than in non-irrigated soils (4.35×10−5±1.00×10−5 copies/16S rDNA), while those of sul2 exceeded the ones in non-irrigated soils still by a factor of 22 (6.61×10–4±0.59×10−4 versus 2.99×10−5±0.26×10−5 copies/16S rDNA). Absolute numbers of sul genes continued to increase with prolonging irrigation together with Enterococcus spp. 23S rDNA and total 16S rDNA contents. Increasing total concentrations of antibiotics in soil are not accompanied by increasing relative abundances of resistance genes. Nevertheless, wastewater irrigation enlarges the absolute concentration of resistance genes in soils due to a long-term increase in total microbial biomass.  相似文献   

20.
Mercury vapor induces ethylene formation and abscission in Citrus and Coleus explants. Both responses are markedly greater in the absence of CO2. The stimulation of these metabolically complex processes indicates that the action of mercury vapor is not consistent with the more popular conception of mercury toxicity. This was manifested in its complete failure to disturb respiratory gas exchange, and in the total absence of any necrosis. Accordingly, the effect of mercury appears to be highly specific. The overall significance of these findings is discussed with respect to physiological, environmental, and methodological aspects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号