首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary The organization of the mitochondrial genome in somatic hybrids and cybrids regenerated following fusion of protoplasts from cultivated tomato, Lycopersicon esculentum, and the wild species, L. Pennellii, was compared to assess the role of the nuclear genotype on the inheritance of organellar genomes. No organellar-encoded traits were required for the recorvery of either somatic hybrids or cybrids. The organization of the mitochondrial genome was characterized using Southern hybridization of restriction digestions of total DNA isolated from ten cybrids and ten somatic hybrids. A bank of cosmid clones carrying tomato mitochondrial DNA was used as probes, as well as a putative repeated sequence from L. pennellii mitchondrial DNA. The seven cosmids used to characterize the mitochondrial genomes are predicted to encompass at least 60% of the genome. The frequency of nonparental organizations of the mitochondrial genome was highest with a probe derived from a putative repeat element from the L. pennellii mitochondrial DNA. There was no difference in the average frequency of rearranged mitochondrial sequences in somatic hybrids (12%) versus cybrids (10%), although there were individual cybrids with a very high frequency of novel fragments (30%). The frequency of tomato-specific mtDNA sequences was higher in cybrids (25%) versus somatic hybrids (12%), suggesting a nuclear-cytoplasmic interaction on the inheritance of tomato mitochondrial sequences.  相似文献   

2.
Summary Two somatic hybrid plants generated from a single fusion event between Lycopersicon esculentum and irradiated L. pennellii protoplasts have been analyzed at the molecular level. Over 30 loci have been analyzed using isozymes and RFLPs. All loci tested on chromosomes 2–10 were heterozygous, while those loci on chromosome 12 were homozygous L. pennellii in both somatic hybrids. In one of the somatic hybrids, 2850, loci on chromosome 1 were also homozygous L. pennellii. The other somatic hybrid, 28F5, was heterozygous at all chromosome 1 loci tested, but exhibited altered stoichiometry of parental bands as compared to the sexual hybrid. Loci on chromosome 2 from both somatic hybrids have altered stoichiometry, with L. pennellii alleles being four times more abundant than expected. Both somatic hybrids contain the L. esculentum chloroplast genome, while only L. pennellii polymorphisms have been detected in the mitochondrial genome.  相似文献   

3.
Summary The organization of the mitochondrial genome and the genotype of the chloroplast genome was characterized using restriction fragment length polymorphisms in a population (82 individuals) of symmetric and asymmetric somatic hybrids of tomato. The protoplast fusion products were regenerated following the fusion of leaf mesophyll protoplasts of Lycopersicon esculentum (tomato cv UC82) with suspension cell protoplasts of L. pennellii that had been irradiated with 5, 10, 15, 25, 50, or 100 kRads from a gamma source. The chloroplast genome in the somatic hybrids showed a random pattern of inheritance, i.e., either parental genome was present in equal numbers of regenerants, while in asymmetric somatic hybrids, the chloroplast genotype reflected the predominant nuclear genotype, i.e., tomato. The mitochondrial genome in the symmetric somatic hybrids showed a non-random pattern of inheritance, i.e., predominantly from the L. pennellii parent; asymmetric somatic hybrids had more tomato-specific mitochondrial sequences than symmetric somatic hybrids. The non-random inheritance of the chloroplast and mitochondrial DNA in these tomato protoplast fusion products appears to be influenced by the nuclear background of the regenerant.  相似文献   

4.
Summary A series of fusion experiments were performed between protoplasts of a cytoplasmic albino mutant of tomato, Lycopersicon esculentum (ALRC), and gamma-irradiated protoplasts of L. hirsutum and the Solanum species S. commersonii, S. etuberosum and S. nigrum. These species were chosen for their different phylogenetic relationships to tomato. In all fusion combinations except from those between ALRC and S. nigrum, green calli were selected as putative fusion products and shoots regenerated from them. They were subsequently analyzed for their morphology, nuclear DNA composition and chloroplast DNA origin. The hybrids obtained between ALRC and L. hirsutum contained the chloroplasts of L. hirsutum and had the flower and leaf morphology of L. esculentum. After Southern blot analysis, using 13 restriction fragment length polymorphisms (RFLPs) randomly distributed over all chromosomes, all hybrids showed L. esculentum hybridization patterns. No chromosomes of L. hirsutum were found. These results indicate that these hybrids were true cybrids.The putative asymmetric hybrids, obtained with S. commersonii and S. etuberosum, showed phenotypic traits of both parents. After hybridization with species-specific repetitive nuclear DNA probes it was found that nuclear material of both parents was present in all plants. In the case of S. nigrum, which combination has the greatest phylogenetic distance between the fusion parents, no hybrid plants could be obtained. The chloroplast DNA of all hybrid plants was of the donor type suggesting that chloroplast transfer by asymmetric protoplast fusion can overcome problems associated with large phylogenetic distances between parental plants.  相似文献   

5.
Oviposition and adult feeding of the leafminer Liriomyza trifollii (Burgess) (Diptera, Agromyzidae) on Lycopersicon pennellii (Corr.) D'Arcy and its F1 hybrid with Lycopersicon esculentum (Mill.) was significantly less than that on the cultivated tomato, L. esculentum. The resistance of L. pennellii and the F1 was reduced following rinsing of foliage with ethanol. Resistant attributes of L. pennellii were transferred to L. esculentum through appression of L. pennellii foliage to L. esculentum leaflets. Application of purified 2,3,4-tri-O-acylglucoses (the principal component of type IV glandular trichome exudate of L. pennellii) to L. esculentum significantly decreased feeding and oviposition on L. esculentum leaflets by 61–99%. Therefore the principal mechanism of resistance to this leafminer by L. pennellii is the secretion of these acylglucoses. Dose response analysis of acylglucoses applied to L. esculentum shows that dosages as low as 10% those found on L. pennellii provide large reductions (91%) in leaf punctures and mines.  相似文献   

6.
RAPD markers for constructing intraspecific tomato genetic maps   总被引:8,自引:0,他引:8  
The existing molecular genetic maps of the tomato, Lycopersicon spp, are constructed based on isozyme and RFLP polymorphisms between tomato species. These maps are useful for certain applications but have few markers that exhibit sufficient polymorphisms for intraspecific analysis and manipulations within the cultivated tomato. The purpose of this study was to investigate the relative potential of RAPD technology, as compared to isozymes and RFLPs, to generate polymorphic DNA markers within cultivated tomatoes. Sixteen isozymes and 25 RFLP clones that were known to detect polymorphism between L. esculentum and L. pennellii, and 313 random oligonucleotide primers were examined. None of the isozymes and only four of the RFLP clones (i.e., 16%) revealed polymorphism between the cultivated varieties whereas up to 63% of the RAPD primers detected one or more polymorphic DNA fragments between these varieties. All RAPD primers detected polymorphism between L. esculentum and L. pennellii genotypes. These results clearly indicate that RAPD technology can generate sufficient genetic markers exploiting sequence differences within cultivated tomatoes to facilitate construction of intraspecific genetic maps.Abbreviations RFLP restriction fragments length polymorphism - RAPD random amplified polymorphic DNA - PCR polymerase chain reaction - QTLs quantitative trait loci  相似文献   

7.
The Sw-5 locus confers dominant resistance to tomato spotted wilt virus (TSWV). To map the location and facilitate the identification of markers linked to Sw-5 we developed a pair of near-isogenic lines (NILs) and an F2 Lycopersicon esculentum x L. pennellii population segregating for resistance to TSWV. DNA from the NILs was analyzed using 748 random 10-mer oligonucleotides to discern linked molecular markers using a random amplified polymorphic DNA (RAPD) approach. One random primer (GAGCACGGGA) was found to produce a RAPD band of about 2200 bp that demonstrates linkage to Sw-5. Data from co-segregation of resistance and restriction fragment length polymorphisms (RFLPs) in a F2 interspecific population position Sw-5 between the markers CT71 and CT220 near the telomere of the long arm of chromosome 9.  相似文献   

8.
 The cytoplasmic male-sterile (CMS) line CMS-pennellii (BC10P2 L. peruvianum×L. pennellii) and its complex hybrids with L. esculentum were studied. The established sterility was classified as the sporogenous type. As a result of the interaction of the genome of L. pennellii and the cytoplasm of L. peruvianum clear changes were established in the profiles of malic enzyme and esterase. Restriction fragment length polymorphism (RFLP) was detected between the mitochondrial (mt) genomes of CMS-pennellii and the cytoplasm donor, L. peruvianum, for two mtDNA probes: atpA and nad3. The established differences in the isozyme pattern and mt genomes are considered as useful markers to distinguish fertile and sterile plants. A breakthrough in the unilateral incompatibility of CMS-pennellii and the incorporation of the genome of L. esculentum on a CMS background is reported. The analysis of the complex hybrids assumes the interaction of two dominant genes – a maintainer gene from L. pennellii and a restorer gene from cultivated tomato. The hybrids produced with L. esculentum provide the basis for the development of a CMS system in cultivated tomato. Received: 25 May 1998 / Accepted: 26 August 1998  相似文献   

9.
Mortality of the potato aphid, Macrosiphum euphorbiae (Thomas), on Lycopersicon pennellii (Corr.) D'Arcy and its F1 hybrid with Lycopersicon esculentum Mill. was significantly greater than that on L. esculentum. Physical entrapment was not the sole mechanism of resistance in L. pennellii since few late instar aphids were found trapped in the sticky glandular exudate of the type IV trichomes; entrapment could, however, affect survival of early instars. Aphid settling on L. pennellii was dramatically less than that on L. esculentum, suggesting that starvation may have contributed to high mortality. Compared to L. esculentum, aphid feeding behavior on L. pennellii and the F1 was characterized by a delay in the time to first probe, a reduction in the number of probes, and a decrease in the total proportion of time spent feeding. Removal of the glandular exudate of the type IV trichomes from L. pennellii resulted in a decrease in preprobe time and an increase in both the number of probes and the percent of time spent probing. Transfer of glandular trichome exudate of L. pennellii to leaflets of L. esculentum resulted in an increase in resistance as measured by these three parameters.
Zusammenfassung Die Absterberate der Kartoffellaus, Macrosiphum euphorbiae Thomas, auf Lycopersicon pennellii (Corr.) D'Arcy, sowie auf der Kreuzung L. esculentum Mill. und L. pennellii, war deutlich grösser als auf L. esculentum. Das mechanische Verfangen der Läuse war nicht der Hauptgrund der Resistenz von L. pennellii. Wenige tote Läuse wurden in dem klebrigen Sekret der Typus IV Trichome gefunden. Auf L. pennellii siedelten sich die Läuse in viel geringerer Zahl an als auf L. esculentum. Dies führte zum Schluss, dass Verhungern eine der Ursachen der hohen Mortalität der Läuse war. Im Vergleich zum Saugverhalten auf L. esculentum war das Saugverhalten auf L. pennellii, wie auch auf F1, durch Folgendes gekennzeichnet 1) Verspätung des ersten Stichversuchs, 2) Verminderung der Stichversuche pro Zeiteinheit und 3) Verminderung des Zeitanteils, der zum Saugen verwendet wurde. Die Entfernung des Sekrets der Typus IV Trichomen auf L. pennellii verursachte 1) eine kürzere Zeitspanne vor dem ersten Stichversuch, 2) eine Vergrösserung der Anzahl Stichversuche pro Zeiteinheit, 3) eine Verlängerung der Saugzeit. Die Uebertragung des Sekretes von L. pennellii auf Blätter von L. esculentum verbesserte deren Resistenz gegen Blattläuse gemessen mit den genannten drei Kriterien.
  相似文献   

10.
In this study, a relationship between lipid peroxidation, the antioxidant defense system and salt stress in salt-sensitive cultivated tomato (Lycopersicon esculentum) and its salt-tolerant wild relative (L. pennellii) was established. Superoxide dismutase (SOD) activities were significantly higher in the leaves of L. pennellii than those of L. esculentum after 12 and 84 d. POX activity showed a gradual increase in both cultivars under 70 mM NaCl. POX activity in L. pennellii significantly increased after 6 and 84 d whereas showed no remarkable change in leaves of L. esculentum under 140 mM NaCl. A higher salinity tolerance of L. pennellii was also correlated with a lower lipid peroxidation, which might be due to a higher content of antioxidant enzymes studied.  相似文献   

11.
Construction of tomato genomic DNA libraries in a binary-BAC (BIBAC) vector   总被引:12,自引:0,他引:12  
This is the first report of large insert genomic DNA libraries constructed in a binary-BAC (BIBAC) vector. Genomic DNA libraries containing approximately 4.6 haploid nuclear genomic equivalents were constructed for Lycopersicon esculentum (cv. Mogeor) and Lycopersicon pennellii (LA716) in the BIBAC2 vector. The L. esculentum library has an average insert size of 125 kb and is comprised of 42 272 individual colonies stored as frozen cultures in a 384-well format (108 plates). The L. pennellii library has an average insert size of 90 kb and is comprised of 53 760 individual clones (140 384-well plates). In each of the libraries, it is estimated that 90% of the colonies contain genomic DNA inserts. The composition of the L. esculentum and L. pennellii libraries was determined by analyzing a series of randomly selected clones. The L. esculentum library was surveyed for clones containing chloroplast DNA (1.4%), mitochondrial DNA (0.012%) and repetitive DNA motifs. BIBAC clones that may contain a gene of interest can be identified from these libraries by colony hybridization with homologous or heterologous probes or by PCR pooling techniques. Once identified, BIBAC genomic DNA library clones are immediately suitable for Agrobacterium tumefaciens-mediated plant transformation.  相似文献   

12.
The large- and small-subunit polypeptide composition of fraction 1 protein contained in seven species of Lycopersicon and Solanum pennellii was determined by electrofocusing. The eight species of protein had large subunits composed of three polypeptides separated by about 0.05 pH unit, but there was no difference in the isoelectric points of the clusters of three polypeptides. By this criterion, no surviving mutations have appeared in the extranuclear DNA coding for the cluster of large-subunit polypeptides during a period of evolution which generated the eight species of plants. The genus Lycopersicon appears to be much younger than its sister genus Nicotiana in the family Solanaceae, where four types of polypeptide clusters have evolved. Three different small-subunit polypeptides whose isoelectric points are coded by nuclear DNA have arisen among the seven Lycopersicon species, and L. hirsutum and S. pennellii have proteins containing single polypeptides and are therefore considered older than L. chilense, L. chimielewskii, and L. parviflorum, whose proteins contain two polypeptides. L. cheesemanii, L. pimpinellifolium, and L. esculentum (and probably L. peruvianum) seem to be the most recently evolved species since their fraction 1 proteins have small subunits composed of three polypeptides.This research was supported by NSF Grant 75-07368 and Contract No. EY-76-S-03-0034, P. A. #8, from the Department of Energy.  相似文献   

13.
Some accessions of Lycopersicon pennellii, a wild relative of the tomato Lycopersicon esculentum, are resistant to a number of important pests of cultivated tomato due to the accumulation of acylsugars, which constitute 90% of the exudate of type-IV trichomes in L. pennellii LA716. An interspecific F2 population, created by the cross L. esculentum x L. pennellii LA 716, was surveyed for acylsugar accumulation and subjected to RFLP/QTL analysis to determine the genomic regions associated with the accumulation of acylglucoses, acylsucroses, and total acylsugars, as well as with acylglucoses as a percentage of total acylsugars (mole percent acylglucoses). Data were analyzed using MAPMAKER/QTL with and without a log10 transformation. A threshold value of 2.4 (default value for MAPMAKER/QTL) was used, as well as 95% empirically derived threshold values. Five genomic regions, two on chromosome 2 and one each on chromosomes 3, 4 and 11, were detected as being associated with one or more aspects of acylsugar production. The L. esculentum allele is partially dominant to the L. pennellii allele in the regions on chromosomes 2 and 11, but the L. pennellii allele is dominant in the region on chromosome 3. Throughout this study, we report the comparative effects of analytical methodology on the identification of acylsugar QTLs. Similarities between our results and published results for the genus Solanum are also discussed.R. W. Doerge · S.-C. Liu · J. P. Kuai contributed equally to the paper, and we ordered randomly  相似文献   

14.
Summary We have previously described gene introgression from the wild nightshade Solanum lycopersicoides into tomato (Lycopersicon esculentum) through the use of either diploid or sesquidiploid hybrids (the latter consisting of two genomes of L. esculentum and one genome of S. lycopersicoides). Both types of intergeneric hybrids display pollen sterility, but workable ovule fertility. Unilateral incompatibility prevents their direct hybridization with staminate L. esculentum. Pollen of a self-compattible form of the related wild species L. pennellii is compatible with pistils of L. esculentum x S. lycopersicoides hybrids. This trait was backcrossed from L. pennellii to L. esculentum in order to develop bridging lines that could be used to obtain progeny from the intergeneric hybrids and to study the inheritance of bridging ability. In progeny of L. esculentum x S. lycopersicoides hybrids pollinated with L. pennellii-derived bridging lines, preferential transmission of L. pennellii alleles was observed for certain isozyme and RFLP markers on chromosomes 1, 6 and 10. The skewed segregations suggest linkage to three major pollen-expressed compatibility loci. This was confirmed by observations of pollen tube growth, which indicated that compatibility with pistils of the diploid intergeneric hybrid occurred only in bridging lines at least heterozygous for the L. pennellii markers on chromosomes 1, 6 and 10. Compatibility with the sesquidiploid hybrid required only the chromosome 1 and 6 loci, indicating an apparent effect of gene dosage on expression of incompatibility in the pistil. In an F2 L. esculentum x L. pennellii population, preferential transmission of L. pennellii alleles was observed for the same markers on chromosomes 1 and 10, as well as other markers on chromosomes 3, 11, and 12, but not 6. The chromosome 1 pollen compatibility locus maps to or near the S-locus, which determines S-allele specificity. The results are discussed in relation to existing genetic models for unilateral incompatibility, including the possible involvement of the S-locus.  相似文献   

15.
Morphology, the extent of elimination of donor chromosomes and the organelle composition of highly asymmetric somatic hybrid plants between a interspecific tomato hybrid Lycopersicon esculentum x L. pennellii (EP) as donor and a Solarium melongena, eggplant (E), recipient, were studied. Morphologically, the somatic hybrids most resemble eggplant but, due to polyploidy, growth is slower relative to both fusion parents. The somatic hybrids produce flowers that are characterized by abnormal styles, stigmas and by anthers which do not produce pollen. Limited amounts of donor EP genomic DNA were found in the three somatic hybrid plants (H18-1, H18-2 and H18-3), by dot-blot hybridization with probe pTHG2, equivalent to 6.23,5.41, and 5.95% EP, respectively. These percentages translated to the presence of 3.59, 2.90 and 3.19 average-size EP chromosomes in plants H1 8-1,-2 and-3, respectively. RFLP determination of L. esculentum- and L. pennellii-specific chromosomes revealed that only fragments of eight to ten out of the 24 EP chromosomes (EP has 12 L. esculentum and 12 L. pennellii chromosomes) are present in the asymmetric somatic hybrid plants. Loci of L. esculentum and L. pennellii were evenly represented in plants H18-1, -2, and -3: four to five from L. esculentum and four to five from L. pennellii. All somatic hybrid plants retained locus TG22, chromosome 4, from both EP species. Although the regeneration of plants, H18-1, -2 and-3 was from one callus, loci TG31 and TG79 of L. esculentum chromosome 2 and L. pennellii chromosome 9, respectively, were missing in hybrid plant H18-1. The three somatic hybrid plants all had chloroplast DNA fragments specific for S. melongena. The mitochondrial genome (mtDNA) in the asymmetric somatic hybrids showed predominantly the pattern of eggplant; however, some eggplant-specific polymorphic bands were not present in the three plants.  相似文献   

16.
Summary Defined cybridization was performed by one-to-one electrofusion (microfusion) of preselected protoplast-cytoplast pairs of male-fertile, streptomycin-resistant Nicotiana tabacum and cytoplasmic male-sterile, streptomycin-sensitive N. tabacum cms (N. bigelovii), followed by microculture of the fusion products until plant regeneration. Dominant selectable markers, namely, kanamycin resistance (nptII) and hygromycin B resistance (hpt) genes had been previously integrated in the nuclear genomes of the otherwise almost fully isogenic parental strains using direct gene transfer to protoplasts. In addition to chromosome counts indicating the expected allotetraploid tobacco count of 48, the absence of the nucleus from the cytoplast donor line was confirmed by Southern blot hybridization using nptII and hpt probes, as well as by an in vitro selection test with leaf expiants and the corresponding enzyme assays for 30 cybrids. The cytoplasmic composition of the cybrids obtained was analyzed for chloroplast type using the streptomycin resistance/sensitivity locus. The fate of mitochondria in cybrids was checked by species-specific patterns in Southern analysis of restriction endonuclease digests of total DNA with N. sylvestris mitochondrial DNA probes.  相似文献   

17.
Summary Somatic hybrid plants have been regenerated following polyethylene glycol mediated fusion of leaf mesophyll protoplasts from tomato and protoplasts from Lycopersicon pennellii callus. Three different cultivars of tomato were used as sources of protoplasts: Early Girl, Manapal, and UC82B. Fusions were performed between protoplasts of these tomato cultivars and protoplasts of L. pennellii, and between protoplasts of the cultivars and protoplasts of L. pennellii that had been exposed to 3 or 6 krads of gamma radiation. Somatic hybrid plants were identified on the basis of heterozygous isozyme banding patterns, and leaf and flower morphology. Somatic hybrid plants were regenerated following fusion of tomato protoplasts with either untreated or irradiated L. pennellii protoplasts. All were heterozygous for isozyme loci on five different chromosomes. Regenerated somatic hybrids showed inheritance of either or both parental chloroplast genomes, but predominantly the L. pennellii mitochondrial genome. The regenerated somatic hybrid plants exhibited reduced fertility, less than 20% viable pollen. A total of 34 somatic hybrid calli were identified. Of these, 21 regenerated shoots, and 7 produced seed following manual pollinations.  相似文献   

18.
The growth and ion content of salt sensitive Lycopersicon esculentum Mill. cv. M82 and salt tolerant L. pennellii Correll accession LA716 were examined under both control and stress conditions (150 mM NaCl). L. esculentum grew more vigorously than L. pennellii under optimal conditions, however, L. pennellii was able to maintain its growth better than cultivated tomato when the plants were exposed to salinity. Sodium content of both L. esculentum and L. pennellii increased as a result of NaCl stress. In addition, both species showed reduced potassium and calcium content due to salinity. The physiological traits were also measured in a population of 52 L. pennellii introgression lines grown under both normal and stress conditions. A total of 311 quantitative trait loci (QTL) were identified for the studied traits: plant height, stem diameter, leaf number, leaf and root fresh and dry mass, and sodium, potassium and calcium contents. Some of the loci (124) were identified under both control and stress conditions while 86 QTL were identified only under non-stress conditions and 101 loci were identified only under NaCl stress.  相似文献   

19.
Summary Twenty-nine cybrids possessing an Atropa belladonna nuclear genome and a Nicotiana tabacum plastome were selected from two independent protoplast fusion experiments. In contrast to the previously described reciprocal, green and fertile cybrids with a Nicotiana nuclear genome and an Atropa plastome (Kushnir et al. 1987), the plants obtained were totally chlorophyll-deficient. An Atropa nuclear genome and a Nicotiana plastome from these chlorophyll-deficient cybrids were combined with an Atropa or a Scopolia plastome and a Nicotiana nuclear genome, respectively, in control fusion experiments. All of these nuclear genome/plastome combinations gave rise to normal, green plants. Therefore, we conclude that an N. tabacum plastome is incompatible with an A. belladonna nuclear genome.  相似文献   

20.
Cytoplasmic male-sterile (CMS) chicories have been previously obtained by somatic hybridisation between fertile industrial chicory protoplasts and CMS sunflower protoplasts. In this study, we compared three different CMS chicory cybrids that originated from three different fusion events. The cybrids were backcrossed with different witloof chicories in order to transfer the three male-sterile cytoplasms from an industrial chicory nuclear environment to a witloof chicory nuclear context. Southern hybridisation, using different mitochondrial genes as probes, revealed that the three cybrid mitochondrial genomes were different and that they were stable throughout backcrossing generations regardless of the pollinator. However, pollinators were found to influence floral morphologies – with one being able to restore fertility – showing that nuclear context can affect the sterility of the cybrids. PCR and RFLP analyses revealed that the orf522 sequence, responsiblefor CMS in PET1 sunflower, was present in two out of the three cytoplasms studied, namely 411 and 523, but was absent from the other cytoplasm, 524. We thus concluded that orf522 is not responsible for CMS in the 524 cybrid. Although the orf522 gene is present in the 411 and 523 cytoplasms, it is probably not responsible for the sterile phenotype of these cybrids. Received: 3 June 1998 / Accepted: 30 April 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号