首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effects of mechanical damage of plasma and pronuclear membranes on the development of in vitro-produced bovine zygotes. The effects of the type of injection fluid and the presence of DNA in the zygotes were also studied. In the first experiment, either the plasma membrane or both the plasma and pronuclear membranes of zygotes were pierced with a capillary filled with DNA-buffer. Additionally, pronuclear microinjections with either MilliQ-water or buffer were performed. In the second experiment, pronuclear microinjections with buffer containing either none or 2 microg/ml of DNA were performed. Development of cleaved embryos to compact morulae and blastocysts at Day 7 was monitored. Results of Experiment 1 indicate that membrane piercing does not decrease development of cleaved embryos as compared with that of the controls (30.8, 28.8 and 29.9% compact morulae and blastocysts for controls, plasma membrane and pronuclear membrane pierced groups, respectively). Pronuclear microinjections decreased development significantly as compared with that of the controls, but no differences were observed between the effects of water and buffer (29.9, 18.4 and 15.5% compact morulae and blastocyst, respectively). Results of Experiment 2 showed that inclusion of DNA into the injection buffer decreased development even more drastically (36.7, 27.5 and 14.5% compact morulae and blastocyst in the control, buffer-injected and DNA-injected groups, respectively).  相似文献   

2.
Frozen-thawed spermatozoa collected from a beef bull (Japanese Black) were used for in vitro fertilization (IVF) of matured oocytes obtained from dairy (Holstein) and beef (Japanese Black) females. Embryos were examined for fertilization, cleavage rate, interval between insemination and blastocyst production (experiment I), total cell number per embryo and sex ratio during blastocyst formation (experiment II), and blastocyst production rate of zygotes that developed to 2-, 4-, and 8-cell stages at 48h post-fertilization (experiment III). Fertilized oocytes were cultured in vitro on a cumulus cell co-culture system. The fertilization and cleavage rate of oocytes groups were similar, however, the blastocyst production rate was greater (P<0.05) in hybrid than from purebred embryos (27% versus 20%). Development of blastocysts produced from hybrid embryos developed at a faster rate than blastocysts produced from the straightbred embryos. In hybrid embryos, blastocyst production was significantly greater on day 7 (56%) and gradually decreased from 20% on day 8 to 17% on day 9. In contrast, blastocyst production rate from the purebred embryos was lower on day 7 (17%), increasing on day 8 to 59% and then decreased on day 9 to 24%. The total number of cells per embryo and sex ratio of in vitro-produced blastocysts were not different between hybrid and purebred embryos. The number of blastocysts obtained from embryos at the 8-cell stage of development by 48h post-fertilization (94%) was greater (P<0.01) than the number of zygotes producing blastocysts that had developed to the 4-cell stage (4%) and the 2-cell stage (2%) during the same interval. These results show that the blastocyst production rate and developmental rate to the blastocyst stage were different between hybrid and purebred embryos, and that almost all of the in vitro-produced blastocysts were obtained from zygotes that had developed to the 8-cell stage 48h post-fertilization.  相似文献   

3.
Bovine embryos, derived from in vitro matured (IVM)/in vitro fertilized (IVF) ova, were used to investigate the effects of timing of serum inclusion in the culture medium and different types of blood sera and heat inactivation of the serum on embryo development. In Experiment 1, oocytes at 18 h post insemination were allocated to 1 of the following 4 treatments: 1) TCM-199 + 0.1 mg/ml polyvinylalcohol (PVA), 2) TCM-199 supplemented with 10% bovine calf serum (BCS), 3) PVA medium followed by BCS medium at 47 h, or 4) PVA medium followed by BCS medium at 82 h. Supplementation with BCS at 18 h post insemination suppressed (P<0.05) development of morulae/blastocysts (17.6%) when compared with PVA (30.5%) or with serum supplementation at 47 or 82 h post insemination (32.4 and 27.6%, respectively). However, inclusion of BCS at 18, 47 or 82 h post insemination produced more blastocysts (16.8, 29.3 and 22.1%, respectively; P<0.05) than medium +PVA (8.8%). In Experiment 2, ova were cultured from 18 h to 42 h post insemination in PVA-medium, then >/=2-cell embryos were transferred into serum-supplemented medium for another 168 h. Fetal bovine serum (FBS) +/- heat-inactivation (56 degrees C for 30 min, = heated FBS) suppressed morula/blastocyst development compared with medium + PVA, medium + BCS or medium + heated BCS (P<0.05). Bovine calf serum was superior to FBS in supporting blastocyst development (35.1 and 15.2%, respectively), but there was no difference between BCS and heated BCS. However, heated FBS increased the proportion of blastocysts/>/=8-cell embryos compared with that of FBS (51.0 and 31.4%, respectively; P<0.05). These results indicate that the type of serum supplementation and the timing of its inclusion in the culture medium markedly affect bovine embryo development in vitro, and that heat inactivation of serum with high embryotrophic properties is not necessary.  相似文献   

4.
The present experiments were conducted to determine if supplementation of the culture medium with a serum extender containing growth factors would increase development of bovine embryos into morulae or blastocysts, following in vitro maturation (IVM) and in vitro fertilization (IVF). In Experiment 1, bovine zygotes were cultured in CR1 medium supplemented with 0, 0.01, 0.1, 1 or 10% serum extender. In Experiment 2, bovine zygotes were cultured in the presence of cumulus cells in CR1 medium supplemented with 0, 0.01, 0.1, 1 or 10% serum extender. In Experiment 3, bovine oocytes were matured in Medium 199 supplemented with 0, 0.01, 0.1, 1 or 10% serum extender. In Experiment 4, oocytes were matured in Medium 199 with 10% fetal bovine serum (FBS) or 5% FBS with serum extender. Following maturation, zygotes were cultured in CR1 medium with 10% FBS or 5 % FBS and serum extender. In all 4 experiments, the embryos were cultured in vitro until Day 7 after IVF, and development to the morula or blastocyst stage was assessed. The findings of the first 2 experiments showed that the serum extender did not directly influence embryo development but did stimulate development when cumulus cells were included in the culture system. The remaining 2 experiments showed that the serum extender did influence development through its interactions with cumulus cells during maturation and/or culture. These findings suggest that although growth factors or other products do not directly stimulate bovine embryo development their effects may be mediated through secondary cell systems.  相似文献   

5.
To verify the importance of somatic cells upon in vitro embryo development, in vitro-matured (IVM) and -fertilized (IVF) bovine oocytes were cultured in TCM 199 supplemented with estrous cow serum (10% v/v) and 0.25 mM sodium pyruvate (ECSTCM) under the following treatments: 1) ECSTCM alone; 2) together with bovine oviduct epithelial cells (BOEC); 3) with cumulus cells (CC); 4) in fresh BOEC conditioned ECSTCM; or 5) in frozen-thawed BOEC conditioned ECSTCM. Culturing zygotes encased in cumulus cells significantly reduced the cleavage rate (P<0.05). There was no difference between culture systems in the proportions of embryo development through the 8-cell stage (P=0.42) up to the morula/blastocyst stages (P=0.50) at Day 7 post insemination. However, co-culture with BOEC yielded the highest percentage (21.2% of zygotes; P<0.05) of quality Grade-1 and Grade-2 embryos with the number of blastomeres per embryo (114.4) comparable to that of 7-day-old in vivo-developed embryos of similar grades (102.5), and higher (P<0.05) than those of the other treatments. The ratio of blastocysts to total morulae/blastocysts obtained from frozen-thawed conditioned medium was lower (P<0.05) than that from ECSTCM or after co-culture with BOEC at Day 7 post insemination. On average, 7.5 to 17.5% of the zygotes developed to blastocyst, expanded blastocyst and hatched blastocyst stages by Day 10 post insemination, depending upon the culture system. The difference between treatments, however, was not significant (P=0.68). The results indicate that chronological development up to hatching of bovine IVM-IVF embryos is not favored by somatic cells; however, the presence of viable oviduct epithelial cells in culture significantly improves the quality of 7-day-old embryos.  相似文献   

6.
Two experiments were designed to determine the effects of stage of development on Day 7 of in vitro-produced bovine embryos on survival after deep freezing and on sex ratio. Bovine IVF embryos and bovine oviductal epithelial cells (BOEC) were co-cultured in TCM-199 and, on Day 7 after insemination (Day 0), were morphologically evaluated and divided into groups by developmental stage. In Experiment 1, embryos classified as early blastocysts, blastocysts and full-expanding blastocysts were randomly subdivided into 2 groups by replicate: 50% of the embryos were placed immediately in a new BOEC co-culture (fresh group), while the other 50% were frozen, thawed and placed in a new BOEC co-culture (frozen/thawed group). Embryos were frozen in 1.5 M glycerol using a standard slow cooling technique. Fresh and frozen/thawed embryos were compared for survival rate (embryos hatching/hatched) in BOEC co-culture over the following 3 d (i.e., Days 7 to 10). The overall survival of the 425 embryos (early to full-expanding blastocysts) was 33% and was not different between fresh (35%) and frozen/thawed (30%) embryos. Survival of embryos cultured fresh or after freezing/thawing was higher for full-expanding blastocysts than for early blastocysts or for blastocysts, both of which were not different. In Experiment 2, all frozen/thawed embryos used in Experiment 1 plus all morulae and hatched blastocysts collected and frozen on Day 7 without regard to survival were sexed utilizing the polymerase chain reaction (PCR) technique. Sex of the embryos, by stage of development on Day 7, was determined in order to compare the rate of development in BOEC co-culture with the sex ratio (percentage of males). A total of 235 embryos was sex-determined with an overall percentage of males of 51%, which was not different from the expected 1:1 sex ratio. Both full-expanding blastocysts and hatched blastocysts had a significantly higher (P < 0.05) proportion of males (68 and 100%, respectively), while morulae had a significantly lower proportion of males (24%). Early blastocysts and blastocysts did not differ from a 1:1 sex ratio. The results indicate that male embryos develop faster in vitro than female embryos. The higher survival rate of full-expanding blastocysts after freezing/thawing, and the production of a higher number of males than females among embryos of this developmental stage suggest that a greater number of male fetuses may result from the successful freezing and transfer of in vitro-produced bovine embryos.  相似文献   

7.
The in vitro viability of polyspermic pig eggs was investigated. Immature oocytes were matured and fertilized in vitro. Approximately 10 h after insemination, the eggs were centrifuged at 12 000 x g for 10 min and individually classified into two (2PN)- and poly-pronuclear (PPN, 3 or 4 pronuclei) eggs. The classified eggs were cultured in vitro or in vivo. Nuclei numbers of inner cell mass (ICM) and trophectoderm (TE) were compared between 2PN- and PPN-derived blastocysts. The frequency of development in vitro of 2PN and PPN eggs to the blastocyst stage was 53.6% and 40.7%, respectively. The mean number (8.2 +/- 0.7, n = 48) of ICM nuclei of 2PN-derived blastocysts was higher than that (4.2 +/- 0.8, n = 37) of PPN-derived blastocysts (p < 0.001), whereas there was no difference (p > 0.05) in mean numbers of total (46.7 +/- 3.4 vs. 39. 9 +/- 3.9) and TE nuclei (38.5 +/- 2.9 vs. 35.7 +/- 3.3) between the two groups. Development of 2PN and PPN eggs cultured in vivo to the blastocyst stage was 33.3% and 27.4%, respectively. The numbers of ICM and TE nuclei of these embryos cultured in vivo showed a pattern similar to that for the in vitro-produced blastocysts. Additionally, fetuses were obtained on Day 21 from both the 2PN and the PPN groups. This suggests that polyspermic pig embryos develop to the blastocyst stage and beyond, although showing a smaller ICM cell number as compared to normal embryos.  相似文献   

8.
The nuclear lamina is a complex meshwork of nuclear lamin filaments that lies on the interface of the nuclear envelope and chromatin and is important for cell maintenance, nucleoskeleton support, chromatin remodeling, and protein recruitment to the inner nucleolus. Protein and mRNA patterns for the major nuclear lamins were investigated in bovine in vitro fertilized (IVF) and nuclear transfer embryos. Expression of lamins A/C and B were examined in IVF bovine germinal vesicle (GV) oocytes, metaphase II oocytes, zygotes, 2-cell, 8-cell, 16-32-cell embryos, morulae, and blastocysts (n = 10). Lamin A/C was detected in 9/10 immature oocytes, 10/10 zygotes, 8/10 2-cell embryos, 4/10 morulae, 10/10 blastocysts but absent during the maternal embryonic transition. Lamin B was ubiquitously expressed during IVF preimplantation development but was only detected in 4/10 GV oocytes. Messenger RNA expression confirms that the major lamins, A/C and B1 are expressed throughout preimplantation development and transcribed by the embryo proper. Lamin A/C and B expression were observed (15 min, 30 min, 60 min, 120 min) following somatic cell nuclear transfer using adult fibroblasts and at the 2-cell, 8-cell, 16-32-cell, morula and blastocyst stage (n = 5). Altered expression levels and localization of nuclear lamins A/C and B was determined in nuclear transfer embryos during the first 2 hr post fusion, coincidental with only partial nuclear envelope breakdown as well as during the initial cleavage divisions, but was restored by the morula stage. This mechanical and molecular disruption of the nuclear lamina provides key evidence for incomplete nuclear remodeling and reprogramming following somatic cell nuclear transfer.  相似文献   

9.
Structural aspects of the bovine zona pellucida (ZP) of in vitro-matured (IVM) oocytes and in vitro-produced (IVP) embryos were studied in two experiments to find a tentative explanation for the zona's barrier function against viral infection. In Experiment 1, the ultrastructure of the outer ZP surface was studied. The diameter (nm) and the number of the outer pores within an area of 5000 microm(2) of 10 IVM oocytes, 10 zygotes, 10 8-cell-stage embryos, and 10 morulae were evaluated by scanning electron microscopy. In oocytes and morulae, the ZP surface showed a rough and spongy appearance with numerous pores. In zygotes, the ZP surface was found to have a smooth, melted appearance with only a few pores. In 8-cell-stage embryos, both surface patterns were found. The mean number (per 5000 microm(2)) and the mean diameter of the outer pores were different between the four stages of development (P < 0.001): 1511 pores in oocytes, 1187 in zygotes, 1658 in 8-cell-stage embryos, and 3259 in morulae, with mean diameters of 182, 223, 203, and 155 nm, respectively. In Experiment 2, the continuity of the meshes (network of pores) towards the embryonic cells was examined by confocal laser scanning microscopy. Therefore, the passage through and the location in the ZP of fluorescent microspheres, with similar dimensions as bovine viral diarrhea virus (BVDV, 40-50 nm) and bovine herpesvirus-1 (BHV-1; 180-200 nm), were evaluated. For all stages, the smallest beads were detected halfway through the thickness of the ZP, whereas the beads with a size of 200 nm were found only within the outer-fourth part of the ZP. It can be concluded that the intact ZP of bovine IVM oocytes and IVP embryos are constructed in such a way that BVDV and BHV-1 should not be able to traverse the ZP and reach the embryonic cells. However, the risk exists that viral particles can be trapped in the outer layers of the ZP.  相似文献   

10.
In this study, presumptive bovine zygotes were subjected to two consecutive 24-h cycles of heat treatment during the first 48 h (Experiment I) of in vitro culture (IVC) or 24h of heat treatment during the fourth day of IVC (Experiment II). In Experiment I, the percentage of heat treatment zygotes that developed to > or =8-cell stage embryos after 72 h IVC was 2.0% (n = 459) compared with 28.4% (n = 458) for the control zygotes (P<0.001). The subsequent yield of morulae or blastocysts after 144 h IVC for the heat treatment and control groups was 0.9% (n = 457) and 12.3% (n = 456) (P<0.001), respectively. These results demonstrate that heat treatment during the first 48 h of IVC significantly impaired embryo development. In Experiment II, the percentage of zygotes that developed into morulae and blastocysts following heat treatment during the fourth day of IVC was 4.5% (n = 468) compared to 10.5% (n = 456) for the control group (P<0.001). This study has demonstrated that in vitro heat stress during the critical stage of early embryo development significantly increases the incidence of early embryonic mortality.  相似文献   

11.
To determine the best developmental stage of donor embryos for yielding the highest number of clones per embryo, we compared the efficiencies of nuclear transfer when using blastomeres from morulae or morulae at cavitation, or when using inner-cell-mass cells of blastocysts as nuclear donors. This comparison was done both on in vivo-derived and in vitro-produced donor embryos. In experiment 1, with in vivo-derived donor embryos, nuclei from morulae at cavitation supported the development of nuclear transfer embryos to the blastocyst stage (36%) at a rate similar to that of nuclei from morulae (27%), blastomeres from morulae at cavitation being superior (P < 0.05) to inner-cell-mass cells from blastocysts (21%). The number of blastocysts per donor embryo was significantly (P < 0.05) higher when using nuclei from morulae at cavitation (15.7 ± 4.1) rather than nuclei from morulae (9.8 ± 5.5) or blastocysts (6.3 ± 3.3). With in vitro-produced donor embryos (experiment 2), nuclei from morulae yielded slightly more blastocysts (32%) than nuclei from morulae at cavitation (29%), both stages being superior to nuclei from blastocysts (15% development to the blastocyst stage). Morulae at cavitation yielded a higher number of cloned blastocysts per donor embryo (11.5 ± 5.9) than did morulae (9.3 ± 3.2) and blastocysts (3.3 ± 1.4). Transfer of cloned embryos originating from in vivo-derived morulae, morulae at cavitation, and blastocysts resulted in four pregnancies (10%), three pregnancies (7%), and one (17%) pregnancy on day 45. The corresponding numbers of calves born were 3 (4%), 3 (7%), and 0, respectively. After transfer of blastocysts derived from in vitro nuclear donor morulae (n = 16) and morulae at cavitation (n = 7), two (20%) and two (50%) recipients, respectively, were pregnant on day 45. However, transfer of seven cloned embryos from in vitro donor blastocysts to three recipients did not result in a pregnancy. Using in vitro-produced donor embryos, calves were only obtained from morula-stage donors (13%). Our results indicate that the developmental stage of donor embryos affects the efficiency of nuclear transfer, with morulae at cavitation yielding a high number of cloned blastocysts. © 1996 Wiley-Liss, Inc.  相似文献   

12.
The cleavage rate of in vitro-matured bovine oocytes was compared after fertilization in 1) TALP medium alone (control); 2) in TALP + BOEC; 3) in TALP + PHE; or 4) in TALP + BOEC and PHE. The overall cleavage rate at 45 h post insemination was greater for embryos in Treatments 2 (52%), 3 (55%) and 4 (66%) than for Treatment 1 (32%). The oocyte cleavage rates for Treatments 2 and 3 were similar, but were lower than that of Treatment 4. Addition of PHE or BOEC, alone or in combination, to the fertilization medium resulted in more embryos at the 3- or 4-cell stage than the 2-cell stage by 45 h post insemination. After 5 d of co-culture with BOEC in M-199 medium, 21, 28, 25 and 35% of the cleaved embryos in Treatments 1, 2, 3 and 4, respectively, developed to the morula or blastocyst stage. The rate of development to morulae and blastocysts was similar among Treatments 1, 2 and 3, and between Treatments 2 and 4. Across treatments, a correlation of 0.98 was noted between the portion of embryos that had reached the 3- or 4-cell stage by 45 h post insemination and the percentage of embryos in each treatment that continued to develop to the morula or blastocyst stage in vitro.  相似文献   

13.
In vitro produced bovine zygotes show substantial variation in the time required to complete the first cell cycle and in their in vitro development potential. A number of reports have highlighted the fact that the fastest developing embryos in vitro are most likely to be comparable with their in vivo counterparts. At 24 h after IVF, presumptive zygotes were cultured in droplets of synthetic oviduct fluid medium. Droplets were examined at regular intervals and all cleaved embryos at each time point were transferred into new droplets and cultured separately for the duration of the experiment. All uncleaved zygotes were returned to the incubator and re-examined at the successive time points until 48 h after insemination, at which time the remaining uncleaved oocytes were retained as a group. A representative number of day 7 blastocysts from zygotes that had cleaved by 30 or 36 h were transferred to synchronized recipients and pregnancy was diagnosed by ultrasonography at day 35. Glucose and glutamine metabolism was examined in zygotes and blastocysts and compared retrospectively with time of first cleavage. A representative number of blastocysts from each of the cleavage groups was sexed using PCR. Data were analysed by chi-squared and regression analysis. Development to the blastocyst stage decreased as the time from insemination to first cleavage increased (r = 0.97, P < 0.03). There was no difference in blastocyst hatching, number of blastocyst cells or pregnancy rate between the 30 and 36 h groups. The overall sex ratio was 62% males (n = 258, P < 0.0001) and was not different in the 30 and 36 h groups (61%, n = 155 versus 63%, n = 95, respectively). These results indicate that although time of first cleavage has a major influence on the probability of an embryo developing to the blastocyst stage, once that stage is attained, subsequent developmental characteristics are unrelated to the time of first cleavage.  相似文献   

14.
Yang BK  Yang X  Foote RH 《Theriogenology》1993,40(3):521-530
Growth factors were studied as a means of increasing the development of in vitro matured (IVM) and in vitro fertilized (IVF) oocytes into morulae or blastocysts. Cell numbers of blastocysts were also counted. In Experiment 1, 2- to 8-cell embryos derived from bovine IVM/IVF oocytes were randomly allotted to one of 3 culture groups: a) synthetic oviduct fluid (SOF); b) SOF + 10 ng/ml epidermal growth factor (EGF); or c) SOF + 100 ng/ml EGF; all 3 culture media contained 10% fetal bovine serum. Culture resulted in 12%, 23% and 14% (P>0.05), respectively, developing into morulae and blastocysts. In Experiment 2, 5 ng/ml of transforming growth factor B (1) (TGFB (1)) added to CR(1aa) medium containing BSA increased the percentage of blastocysts to 56% vs 40% for the control (P<0.05). In Experiment 3, EGF and TGFB(1), added singly and in combination to CR(1aa) did not produce a synergistic effect. More embryos developed into morulae and blastocysts (45%) in a bovine oviduct epithelial co-culture than in any other treatment except in CR(1aa) + EGF (34%; P>0.05). In Experiment 4, 0, 1 and 5 ng/ml of platelet derived growth factor (PDGF) added to CR(1aa) yielded 39%, 70% and 52% morulae and blastocysts, respectively (P<0.05). Cell number was not increased, indicating that growth factors can increase the proportion of embryos that develop into morulae and blastocysts without an increase in the cell number.  相似文献   

15.
Lim JM  Hansel W 《Theriogenology》2000,53(5):1081-1091
Three experiments were conducted to evaluate how exogenous substances [fetal bovine serum (FBS), arachidonic acid (AA), glutathione (GSH), platelet-derived growth factor (PDGF), transforming growth factor-beta (TGF), fibroblast growth factor (FGF), insulin, transferrin and selenium (ITS)] affect preimplantation bovine embryo development. Cumulus-oocyte complexes (COC) were matured and fertilized in vitro, and their development was monitored up to 192 h post insemination in a two-step culture system. In Experiment 1, inseminated oocytes were cultured in modified bovine embryo culture medium (mBECM) supplemented with FBS or BSA for up to 60 h post insemination, and the resultant 8-cell embryos were then cultured singly in mBECM supplemented with AA+GSH+PDGF+TGF. More (P<0.005) blastocysts were derived from 8-cell embryos produced in media containing FBS than BSA. In Experiment 2, the 8-cell embryos produced in mBECM supplemented with FBS were cultured singly in mBECM as follows: 1) no supplementation; 2) AA and GSH or 3) AA, GSH, PDGF and TGF. Compared with no supplementation, a significant (P<0.05) increase in the proportion of 16-cell embryos and morulae was obtained after the addition of either AA+GSH or AA+GSH+PDGF+TGF. In Experiment 3, oocytes were cultured singly in mBECM as follows: 1) no supplementation; 2) AA+GSH+PDGF+TGF; 3) AA+GSH+PDGF+TGF and FGF; 4) AA+GSH+PDGF+TGF and ITS; 5) AA+GSH+PDGF+TGF, FGF and ITS or 6) FBS. Eight-cell embryos grown in each system were subsequently cultured singly in mBECM with AA+GSH+PDGF+TGF. More (P<0.05) 16-cell embryos were obtained in medium supplemented with either AA+GSH+PDGF+TGF and ITS or FBS than in unsupplemented medium. Fewer (P<0.05) oocytes developed to the 8-cell stage with the addition of AA+GSH+PDGF+TGF and FGF than without. In conclusion, embryo development to the blastocyst stage is regulated by exogenous AA, GSH, PDGF, FGF and ITS in a stage-specific manner.  相似文献   

16.
In vitro fertilization and development of frozen-thawed bovine oocytes.   总被引:7,自引:0,他引:7  
Bovine oocytes were vitrified (V-oocytes) or frozen slowly (S-oocytes) at the germinal vesicle (GV) stage or after maturation in vitro (IVM) and their survival assessed morphologically and also by in vitro fertilization (IVF) and culture. The morphological survival of S-oocytes was 30.7% after freezing at the GV stage and 53.3% after IVM. The corresponding survival rates of V-oocytes were significantly lower, viz. 14.6 and 14.0%, respectively. The fertilization rate of S-oocytes frozen after IVM (51.0%) was lower than that of unfrozen controls (75.8%), but higher than after other treatments. Development continued in 16.0% of the fertilized S-oocytes, compared to 39.4% of control IVF zygotes and 1.6% developed into morulae or blastocysts (4.5% in controls). Only 0.8% of frozen-thawed GV stage oocytes and 4.6% of post-IVM V-oocytes cleaved after IVF and none formed morulae or blastocysts. Transfer of four embryos (two morulae and two blastocysts) derived from post-IVM S-oocytes into a recipient heifer resulted in pregnancy and the birth of twin calves.  相似文献   

17.
18.
Experiments were conducted to investigate the beneficial effects of adding retinol (RT) and retinoic acid (RA) to bovine oocyte maturation media and insulin-like growth factor-I (IGF-I) to embryo culture under chemically-defined conditions. In Experiment 1.1, in vitro maturation (IVM) was performed in basic maturation media (bMM) and supplemented with 0.3microM RT or 0.5microM RA. For embryo development presumptive zygotes and embryos were placed in droplets of potassium simplex optimized medium (KSOM). Addition of RT and RA to bMM improved (p<0.05) blastocyst formation as compared with control treatments. In Experiment 1.2, using embryos originating from oocytes previously treated with RT and RA, the presumptive zygotes were placed in droplets of KSOM and embryos (2-4 cells) in droplets of fresh KSOM supplemented or not with IGF-I. The number of 2-4-cell stage embryos developing to the blastocyst and expanded blastocyst stages were greater (p<0.05) when embryo culture media was supplemented with IGF-I. In Experiment 2.1, IVM was conducted with bMM+FSH containing 0.3microM RT or 0.5microM RA. For embryo development, presumptive zygotes were placed in droplets of KSOM. Addition of RT or RA to IVM medium also enhanced (p<0.05) blastocyst formation. The supplementation of embryo culture media with IGF-I resulted in a greater number (p<0.05) of 2-4-cell stage embryos developing into blastocysts, expanded blastocysts and hatched blastocysts. In Experiment 2.2, using embryos originating from oocytes previously treated with RT and RA, presumptive zygotes were also placed in droplets of KSOM and embryos (2-4 cells) in droplets of fresh KSOM supplemented or not with IGF-I. The supplementation of embryo culture media with IGF-I resulted in a greater (p<0.05) number of 2-4-cell stage embryos developing to the blastocyst, expanded blastocyst and hatched blastocyst stages.  相似文献   

19.
We developed a simple vitrification technique for bovine embryos that could permit direct transfer. Embryos were produced in-vitro by standard procedures. The base medium for cryopreservation was a chemically defined medium similar to SOF + 25 mM Hepes and 0.25% fatty acid free bovine serum albumin (FAF-BSA) (HCDM2). In experiment 1, embryos were first exposed to 3.5M ethylene glycol (V1) for 1, 2 or 3 min at room temperature (20-24 degrees C), and then moved to 7 M ethylene glycol (V2) at 4 or 20-24 degrees C and loaded in 0.25-mL straws. After 45 s in 7 M ethylene glycol, straws were placed in liquid nitrogen. Embryos that were loaded at 20-24 degrees C had higher survival rates than those loaded at 4 degrees C (P<0.05). Exposure for 1 min was best for morulae, while 3 min was best for blastocysts. In experiment 2, blastocysts were handled at 24 degrees C and exposed to two concentrations of ethylene glycol in V1 (3.5 or 5 M) followed by V2 as in experiment 1, two warming temperatures (20 or 37 degrees C) and two post-warming holding times until culture (5 or 15 min). Exposure to 5 M ethylene glycol and warming at 37 degrees C was the optimal combination of procedures, and embryos survived well after 15 min in straws if warmed at 37 degrees C. In experiment 3, ethylene glycol concentration (3, 4 or 5 M) and exposure time (0.5 or 1 min) during two-step addition of cryoprotectant were studied for bovine morulae. In experiment 4, morulae were exposed to V2 for 30 or 45 s in HCDM2 or Vigro holding medium and then held in 22-24 degrees C air or 37 degrees C water post-warming. Experiment 5 was like experiment 4 except blastocysts were used. Overall survival rates of blastocysts in experiment 5 averaged 80% of non-vitrified controls after 48 h culture. The survival rates with in vitro-produced morulae in experiments 1, 3 and 4 were unacceptable. Vitrification solutions based on Vigro tended to result in higher survival than HCDM2 for blastocysts, but not morulae. In experiment 6, the survival rate in vitro of in vivo-produced morulae and blastocysts after two-step vitrification was nearly 100%. Our vitrification technique was very effective for in vitro produced blastocysts, but not for in vitro-produced morulae.  相似文献   

20.
A total of 1550 zygotes was used to assess the timing of pronuclear visibility, embryo development following DNA microinjection, and transgene expression in IVM/IVF-generated porcine embryos. After centrifugation, pronuclei could be seen in 61.6% of zygotes. In 55.3% of these only 1 pronucleus was visible. Pronuclear visibility was highest at 20 h post-insemination. Zygotes were microinjected with 1 of 2 LacZ gene constructs driven by either the SV40 early promoter (pSVON) or the human cytoplasmic beta actin promoter (pbActinLacZ). Development and transgene expression were assessed after either 48 h or 7 d in culture. After 48 h, significantly more zygotes with a single visible pronucleus developed to the 8-cell stage than zygotes in which no pronucleus had been seen (43.0 vs 24.8%), while those with 2 pronuclei were intermediate (31.4%). After 7 d, no difference in development to the morula stage was observed between noninjected control embryos (25.5%) and embryos with 1 (21.0%) or 2 pronuclei (22.5%); however, the proportion of embryos reaching the morula stage in the nonpronuclear group was significantly reduced (9.1%). After 48 h in culture, transgene expression was significantly higher in embryos with 2 pronuclei at the time of injection than in those with 1 (36.4 vs 17.9%). After 7 d in culture, 41.5% of morulae derived from zygotes with 2 pronuclei and 29.97% of thsoe derived from zygotes with 1 pronucleus showed signs of transgene expression. At this stage, significantly more morulae expressed the pbActinLacZ than the pSVON transgene (43.8 vs 25.8%). More than 80% of putative transgenic morulae or blastocysts showed evidence of mosaicism. These results demonstrate that IVM/IVF porcine embryos are able to develop in culture and express a microinjected transgene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号