首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The absolute VUV and soft X-ray (hν > 100 eV) yield from a micropinch discharge is measured for a fixed current of 150 kA. The current scaling in the range of 30–250 kA is found for a number of the discharge parameters: the VUV and soft X-ray yield, the electron temperature, the effective temperature of suprathermal electrons, and the energy of bremsstrahlung emission from thermal electrons. The experimental data are in good agreement with the simulations performed by using the model of radiative collapse in fast Z-pinches in plasmas of high-Zelements.  相似文献   

2.
It is proposed to use fractional spatial derivatives to describe the effect of anomalous diffusion of fast electrons in a stochastic magnetic field on the shape of the distribution function. A self-similar kinetic equation is considered. The use of self-similar variables makes it possible to determine the velocity range in which the distribution function is distorted to the greatest extent. Calculations show that the quantities associated with the stochasticity of the magnetic field lines can be estimated from the experimentally measured characteristic energies of suprathermal electrons in the energy range in which the behavior of the distribution function changes substantially.  相似文献   

3.
The formation of an electrohydrodynamic flow in atmospheric air by using a high-frequency barrier discharge distributed over the dielectric surface is investigated. The influence of variations in parameters of a fully solid-state pulse generator (with a peak voltage of 0–12 kV, a tunable repetition rate of 10–25 kHz, and a pulse duration of 7 μs) on the current of plasma ion emitter and velocity characteristics of airflow is considered.  相似文献   

4.
5.
Using linear response theory, the effect of electron-atom scattering on the electrical conductivity of a partially ionized hydrogen plasma is studied in the relevant statistical operator approximation. A relationship is analyzed between the polarization potential, which is routinely used in the problem, and the adiabatic potential, which results from the separation of electrons into bound and unbound ones. An approximation accounting for the effect of unbound electrons on the interaction between neutral and charged plasma particles is constructed. It is found that, in a high-density plasma, the parameters of the interaction of an atom with charged particles can change significantly, so these changes should be taken into account in calculating kinetic plasma properties.  相似文献   

6.
By modeling the dynamics of a large ensemble of particles, it is shown that slow electrons in a two-temperature plasma are in equilibrium with the electron component rather than with cold ions. The result of cooling by a cold ion component is that the number of the low-energy electrons only slightly exceeds that in the equilibrium Maxwellian distribution.  相似文献   

7.
The edge plasma parameters were measured by means of a Mach probe in a lithium experiment on the T-11M tokamak. The angular and radial distributions of the ion saturation current, along with the radial distribution of the electron temperature, were obtained in different modes of tokamak operation. The radial distributions of the electron temperature and ion saturation current in the main operating mode (L-mode) revealed a peak in the scrape-off-layer of the vertical limiter (lithium emitter), which can indicate the formation of a magnetic island in this region. The measured plasma flow velocity along the magnetic field was found to be close to one-half of the ion sound velocity for Li+ ions.  相似文献   

8.
9.
The neutral gas shielding model and neutral-gas-plasma shielding model are analyzed qualitatively. The main physical processes that govern the formation of the shielding gas cloud and, consequently, the ablation rate are considered. For the neutral gas shielding model, simple formulas relating the ablation rate and cloud parameters to the parameters of the pellet and the background plasma are presented. The estimates of the efficiency of neutral gas shielding and plasma shielding are compared. It is shown that the main portion of the energy flux of the background electrons is released in the plasma cloud. Formulas for the ablation rate and plasma parameters are derived in the neutral-gas-plasma shielding model. The question is discussed as to why the neutral gas shielding model describes well the ablation rate of the pellet material, although it does not take into account the ionization effects and the effects associated with the interaction of ionized particles with the magnetic field. The reason is that the ablation rate depends weakly on the energy flux of hot electrons; as a result, the attenuation of this flux by the electrostatic shielding and plasma shielding has little effect on the ablation rate. This justifies the use of the neutral gas shielding model to estimate the ablation rate (to within a factor of about 2) over a wide range of parameters of the pellet and the background plasma.  相似文献   

10.
11.
The spatial distribution of the current density of fast electrons and the ionization rate in a gap filled with atmospheric-pressure air under the conditions of a non-self-sustained discharge controlled by a fast electron beam were investigated. The experiments were carried out in a gas-discharge chamber with a grid electrode arranged in parallel to the exit window of the ionization source. Spatial variations in the current density of fast electrons resulting from the grid were measured. The propagation of the electron beam through the discharge system was simulated numerically by the Monte Carlo method in the so-called “effective collision” approximation. The calculated results agree well with the experimental data.  相似文献   

12.
Accumulation of oscillating electrons in an electron-string ion source is simulated by the particle-in-cell method. The electrons are accumulated in a long trap into which an electron beam is injected. It is shown that a chain of alternating phase holes and squeezed states forms in the trap. The dynamical features of such a longitudinal structure, such as the double-pulse waveform and strong high-frequency oscillations of the accumulation current and the broadening of the electron distribution function, are qualitatively similar to those previously observed in experiments with the Krion-2 ion source operating in the electron-string mode.  相似文献   

13.
A study is made of the structure of an accelerating layer with a closed Hall current and the geometry of an ion beam in an external magnetic field created by an arbitrary axisymmetric system of ring currents under conditions such that the Hall current can be ignored. It is shown that the ion trajectories are perpendicular to the magnetron cutoff surface for electrons and that the cathode plasma boundary coincides with a magnetic field line. A magnetic field configuration is found in which the cutoff surface is a plane surface perpendicular to the axis of the system. It is shown that, for a small ratio of the gyroradius of the electrons (in terms of the maximum energy acquired by them in the layer) to the characteristic size of the structure, such a configuration provides sufficient means to ensure the formation of slightly converging ion beams or those that are essentially parallel to the system axis.  相似文献   

14.
An injector of hydrogen atoms for plasma diagnostics in modern tokamaks has been developed at the Budker Institute of Nuclear Physics (Novosibirsk). The ion source of the injector produces a proton (helium ion) beam with a current of up to 2 A (1 A), an ion energy of up to 55 keV, a beam divergence of ~0.6\deg, and a pulse duration of up to 10 s. An RF discharge-based plasma emitter, which is one of the main parts of the ion source, is described. The emitter diameter is 72 mm, the ion current density is 120 mA/cm2, and the inhomogeneity of the current density is ±6%. The beam is formed by a four-electrode ionoptical system with 163 round apertures. At a current of 2 A, the ion beam consists of 67% protons, 18% H 2 + ions, and 15% H 3 + ions, the total content of heavier ions in the beam being no higher than 2–3%.  相似文献   

15.
The time evolution of an unsteady cathode ion sheath in plasma has been studied numerically. The calculations demonstrate the presence of spikes in the ion current density and electric field strength at the cathode. The amplitudes of these spikes significantly exceeds the steady-state level, which agrees with data from other studies. Approximate formulas are derived that describe the spike amplitudes as functions of the rise time and amplitude of the applied voltage pulse, the mass and charge of ions, and the density and temperature of plasma electrons.  相似文献   

16.
The spatial distributions of the RF power absorbed by plasma electrons in an ion source operating in the helicon mode (ω ci < ω < ω ce < ω pe ) are studied numerically by using a simplified model of an RF plasma source in an external uniform magnetic field. The parameters of the source used in numerical simulations are determined by the necessity of the simultaneous excitation of two types of waves, helicons and Trivelpiece-Gould modes, for which the corresponding transparency diagrams are used. The numerical simulations are carried out for two values of the working gas (helium) pressure and two values of the discharge chamber length under the assumption that symmetric modes are excited. The parameters of the source correspond to those of the injector of the nuclear scanning microprobe operating at the Institute of Applied Physics, National Academy of Sciences of Ukraine. It is assumed that the mechanism of RF power absorption is based on the acceleration of plasma electrons in the field of a Trivelpiece-Gould mode, which is interrupted by pair collisions of plasma electrons with neutral atoms and ions of the working gas. The simulation results show that the total absorbed RF power at a fixed plasma density depends in a resonant manner on the magnetic field. The resonance is found to become smoother with increasing working gas pressure. The distributions of the absorbed RF power in the discharge chamber are presented. The achievable density of the extracted current is estimated using the Bohm criterion.  相似文献   

17.
Orio P  Soudry D 《PloS one》2012,7(5):e36670
BACKGROUND: The phenomena that emerge from the interaction of the stochastic opening and closing of ion channels (channel noise) with the non-linear neural dynamics are essential to our understanding of the operation of the nervous system. The effects that channel noise can have on neural dynamics are generally studied using numerical simulations of stochastic models. Algorithms based on discrete Markov Chains (MC) seem to be the most reliable and trustworthy, but even optimized algorithms come with a non-negligible computational cost. Diffusion Approximation (DA) methods use Stochastic Differential Equations (SDE) to approximate the behavior of a number of MCs, considerably speeding up simulation times. However, model comparisons have suggested that DA methods did not lead to the same results as in MC modeling in terms of channel noise statistics and effects on excitability. Recently, it was shown that the difference arose because MCs were modeled with coupled gating particles, while the DA was modeled using uncoupled gating particles. Implementations of DA with coupled particles, in the context of a specific kinetic scheme, yielded similar results to MC. However, it remained unclear how to generalize these implementations to different kinetic schemes, or whether they were faster than MC algorithms. Additionally, a steady state approximation was used for the stochastic terms, which, as we show here, can introduce significant inaccuracies. MAIN CONTRIBUTIONS: We derived the SDE explicitly for any given ion channel kinetic scheme. The resulting generic equations were surprisingly simple and interpretable--allowing an easy, transparent and efficient DA implementation, avoiding unnecessary approximations. The algorithm was tested in a voltage clamp simulation and in two different current clamp simulations, yielding the same results as MC modeling. Also, the simulation efficiency of this DA method demonstrated considerable superiority over MC methods, except when short time steps or low channel numbers were used.  相似文献   

18.
P Lory  G Varadi    A Schwartz 《Biophysical journal》1992,63(5):1421-1424
The skeletal muscle (SKM) L-type Ca2+ channel is composed of a central subunit designated alpha 1, which contains the pore and the dihydropyridine (DHP) binding domains and three associated subunits, alpha 2/delta, beta, and gamma, which influence the activity of the SKM alpha 1. Coexpression of SKM alpha 1 and SKM beta in stably transfected mouse L cells results in a dramatic increase in DHP binding accompanied by fast gated Ba2+ currents. We report here that this "SKM alpha 1 beta-related phenotype" can be converted upon intracellular trypsin treatment into a slowly inactivating, DHP sensitive "SKM alpha 1 phenotype." These observations indicate that current amplitude, fast inactivation, and DHP sensitivity are modulated by an interaction of SKM alpha 1 and SKM beta on the internal side of the membrane.  相似文献   

19.
In the l = 3 Uragan-3M (U-3M) torsatron with a helical divertor the plasma is produced and heated by RF field in the ω ≤ ω ci range of frequencies. A two-temperature ion perpendicular energy distribution with a suprathermal tail sets in with heating. If the heating power is high enough, a spontaneous transition to an H-like confinement mode is observed. Recently, it has been supposed that the transition is connected with hotter and suprathermal ions (common name “fast ions“, FI) loss. The objective of this work is an experimental elucidation of the real link between the H-transition and FI loss. To do this, a transient regime of the RF discharge with two H-mode states is chosen, and the evolution is followed of electron density, FI content in the confinement volume, FI outflow to the divertor and edge potential. On the basis of juxtaposing of these processes, a conclusion is made that the H-mode transition in U-3M is really driven by FI loss. Possible mechanisms resulting in the transition are discussed, among them the ion orbit loss and the radial drift of helically-trapped ion orbits seem most probable.  相似文献   

20.
Skobelev  I. Yu.  Faenov  A. Ya.  Gasilov  S. V.  Pikuz  T. A.  Pikuz  S. A.  Magunov  A. I.  Boldarev  A. S.  Gasilov  V. A. 《Plasma Physics Reports》2010,36(13):1261-1268
X-ray diagnostics of the interaction of femtosecond laser pulses with intensities of 1016–1018 W/cm2 with CO2 clusters and frozen nanosize water particles is carried out. The stage of cluster expansion and the formation of a plasma channel, which governs the parameters of the formed X-ray radiation source and accelerated ion flows, is studied. The measurements are based on recording spatially resolved X-ray spectra of H- and He-like oxygen ions. Utilization of Rydberg transitions for spectra diagnostics makes it possible to determine plasma parameters on a time scale of t ∼ 10 ps after the beginning of a femtosecond pulse. The role of the rear edge of the laser pulse in sustaining the plasma temperature at a level of ∼100 eV in the stage of a nonadiabatic cluster expansion is shown. The analysis of the profiles and relative intensities of spectral lines allows one to determine the temperature and density of plasma electrons and distinguish the populations of “thermal” ions and ions that are accelerated up to energies of a few tens of kiloelectronvolts. It is shown that the use of solid clusters made of frozen nanoscale water droplets as targets leads to a substantial increase in the number of fast He-like ions. In this case, however, the efficiency of acceleration of H-like ions does not increase, because the time of their ionization in plasma exceeds the time of cluster expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号