首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whereas many plasticity studies demonstrate the importance of inducible defences among prey, far fewer investigate the potential role of inducible offences among predators. Here we ask if natural differences in a snail's shell hardness can induce developmental changes to a predatory crab's claw size. To do this, we fed Littorina obtusata snails from either thick- or thin-shelled populations to captive European green crabs Carcinus maenas. The crabs' shell-breaking behaviour dominated among those fed thin-shelled snails, whereas crabs fed thick-shelled snails mostly winkled flesh through the shell opening without damaging the shell itself (a.k.a. aperture-probing behaviour). Significantly, the size of crab crusher claws grew in proportion to the frequency of shell-crushing behaviour and, for a same shell-crushing frequency, crabs fed thick-shelled snails grew larger crusher claws than those fed thin-shelled snails after two experimental moults. Diet and behaviour had no effect on the growth of the smaller cutter claws of same individuals, providing good evidence that allometric changes to crusher claws were indeed a result of differential use while feeding. Findings indicate that both predation habits and claw sizes are affected by green crabs' diet, supporting the hypothesis that prey-induced phenotypic plasticity contributes to earlier accounts of shell-claw covariance between this predator and its Littorina prey in the wild.  相似文献   

2.
Understanding the genetic and environmental bases of phenotypic variation and how they covary on local and broad geographic scales is an important goal of evolutionary ecology. Such information can shed light on how organisms adapt to different and changing environments and how life-history trade-offs arise. Surveys of phenotypic variation in 25 Littorina obtusata populations across an approximately 400-km latitudinal gradient in the Gulf of Maine revealed pronounced clines. The shells of snails from northern habitats weighed less and were thinner and weaker in compression than those of conspecifics from southern habitats. In contrast, body size (as measured by soft tissue mass) followed an opposite pattern; northern snails weighed more than southern snails. A reciprocal transplant between a northern and southern habitat revealed substantial plasticity in shell form and body mass and their respective measures of growth. Southern snails transplanted to the northern habitat produced lighter, thinner shells and more body mass than controls raised in their native habitat. In contrast, northern snails transplanted to the southern site produced heavier, thicker shells and less body mass than controls raised in their native habitat. Patterns of final phenotypic variation for all traits were consistent with cogradient variation (i.e., a positive covariance between genetic and environmental influences). However, growth in shell traits followed a countergradient pattern (i.e., a negative covariance between genetic and environmental influences). Interestingly, body growth followed a cogradient pattern, which may reflect constraints imposed by cogradient variation in final shell size and thickness. This result suggests the existence of potential life-history trade-offs associated with increased shell production. Differences in L. obtusata shell form, body mass, and their respective measures of growth are likely induced by geographic differences in both water temperature and the abundance of an invading crab predator (Carcinus maenas). Water temperatures averaged 6.8 degrees C warmer during the transplant experiment and C. maenas abundance is greater in the southern Gulf of Maine. Because both increased water temperature and crab effluent affect shell form in the same way, future experiments are needed to determine the relative importance of each. Nevertheless, it is clear that phenotypic plasticity has an important role in producing geographic variation in L. obtusata shell form. Moreover, the evolution of phenotypic plasticity in L. obtusata and other marine gastropods may be driven by architectural constraints imposed by shell form on body mass and growth.  相似文献   

3.
Phenotypic plasticity has been the object of considerable interest over the past several decades, but in few cases are mechanisms underlying plastic responses well understood. For example, it is unclear whether predator-induced changes in gastropod shell morphology represent an active physiological response or a by-product of reduced feeding. We address this question by manipulating feeding and growth of intertidal snails, Littorina obtusata, using two approaches: (i) exposure to predation cues from green crabs Carcinus maenas and (ii) reduced food availability, and quantifying growth in shell length, shell mass, and body mass, as well as production of faecal material and shell micro-structural characteristics (mineralogy and organic fraction) after 96 days. We demonstrate that L. obtusata actively increases calcification rate in response to predation threat, and that this response entails energetic and developmental costs. That this induced response is not strictly tied to the animal's behaviour should enhance its evolutionary potential.  相似文献   

4.
Resistance to shell breaking in two intertidal snails   总被引:1,自引:0,他引:1  
The ability of shells to withstand shell breaking forces has been examined in two intertidal prosobranchs, Nucella lapillus and Littorina littorea , using four methods: measuring shell strength on a compressive testing machine, measuring the shell to body mass ratio, measuring the shell thickness and measuring the ability of crabs to break shells in aquarium experiments. Nucella lapillus consistently showed a relationship between shell vulnerability and environmental variables: the shells were easier to break at sites where rock and boulder movement was the least. Although some between-site differences were found in L. littorea shells, these were less than in N. lapillus and did not relate to environment variables: the shells were easier to break at sites where exposure to wave action was the least. Although some between-site differences were found in L. littorea shells , these were less than in N. lapillus and did not relate to environmental factors. However, both species appear to grow into a size refuge in which they are secure from predation by shore crabs at the sites where these crabs are commonest.  相似文献   

5.
Studies on the implications of food web interactions to community structure have often focused on density-mediated interactions between predators and their prey. This approach emphasizes the importance of predator regulation of prey density via consumption (i.e. lethal effects), which, in turn, leads to cascading effects on the prey's resources. A more recent and contrasting view emphasizes the importance of non-lethal predator effects on prey traits (e.g. behaviour, morphology), or trait-mediated interactions. On rocky intertidal shores in New England, green crab ( Carcinus maenas ) predation is thought to be important to patterns of algal abundance and diversity by regulating the density of herbivorous snails ( Littorina littorea ). We found, however, that risk cues from green crabs can dramatically suppress snail grazing, with large effects on fucoid algal communities. Our results suggest that predator-induced changes in prey behaviour may be an important and under-appreciated component of food web interactions and community dynamics on rocky intertidal shores.  相似文献   

6.
The sibling marine snails Littorina obtusata (L.) and Littorina mariae Sacchi & Rastelli are sympatrically distributed and the shells of both species are subject to similar breaking forces by predatory crabs. Nevertheless, the two species exhibit rather different growth and defence strategies. To determine growth patterns, we measured changes in five morphological variables with increasing shell length: body whorl thickness at the point of crushing force application, shell height (related to globosity), shell mass, body mass, and apertural lip thickness. We also measured ontogenetic changes in the ability to withstand shell crushing. For most morphological variables, L. mariae showed uniformly allometric growth of juveniles into adults. In contrast, L. obtusata usually exhibited a distinct change in growth pattern upon reaching maturity. As adults, L. mariae showed a more sustained increase in overall shell mass and in body whorl thickness (defence against crushing attacks) and also had proportionally thicker apertural lips (defence against peeling attacks). Littorina obtusata , however, grew to a larger size and their shells could accommodate larger bodies at all sizes. Furthermore, the strength of L. obtusata shells increased faster than could be accounted for by either overall shell mass or thickness at the point of force application, suggesting strengthening by other means such as changes in shell microstructure or shape (other than globosity). These results illustrate the viability of two contrasting antipredator strategies, despite a highly similar phylogenetic history and selective regime.  相似文献   

7.
Fenske  Christiane 《Hydrobiologia》1997,355(1-3):29-39
Two field experiments were carried out totest whether effects of intraspecific competition ina Littorina littorea population can be detectedin a short-term investigation. Different size classesof L. littorea showed no significant differencein preferences when offered four kinds of eitherpossible food or substrata (Fucus vesiculosus,Ulva lactuca, Carcinus maenas, brick).Large and medium winkles preferred Fucusvesiculosus, followed by Ulva lactuca. Deadshore crabs (Carcinus maenas) were the leastpreferred objects for all size classes. On the firstday of the experiment bricks were more attractive tosmall littorines than to larger ones. Considering allfour days, the same ranking occurred for all sizeclasses: Fucus vesiculosus > Ulvalactuca > brick > Carcinus maenas. The reactionofjuveniles to increased densities was examined using anin situ caging experiment on a mussel bed. Meshsize of the cages allowed adult densities to beincreased while juveniles could escape by passingthrough the meshes. However, there was no significantemigration of small winkles even from cages with 10 to20 times natural density of large individuals. Ofgreater importance was the original number of winklesat the site. The available resources on the musselbeds appear to be sufficient to maintain a highpopulation density. Intraspecific competition does notseem to play a major role in this L. littorea-population.  相似文献   

8.
Inducible defenses are important in the life strategies of many taxa. In some species of marine gastropods, water-borne chemical cues from potential predators induce defensive changes in shell form and differences in growth rate. We examined such phenotypic plasticity in the direct-developing snail, Littorina subrotundata (Carpenter, 1864). Among experimental field populations of L. subrotundata exposed to differing intensities of predation by the purple shore crab, Hemigrapsus nudus (Dana, 1851), snails collected from predation-intense environments often had more massive shells than closely related snails from adjacent environments where predation was negligible. Snails collected from both environments were raised in tanks containing cages of H. nudus that were feeding on conspecific snails and compared to a control group raised in the absence of this stimulus. Most snails developed significantly more massive shells in the presence of the crabs suggesting that adaptive phenotypic plasticity may account for some of the variation we observed in the field. In one case, snails from a predation-intense environment did not exhibit a statistically significant amount of plasticity, but instead grew a more massive shell irrespective of the laboratory stimulus. We interpret this as evidence for a genetic difference in the plasticity of shell form among experimental populations, caused by intense selection by H. nudus. There was no statistical difference in the growth rates of snails among treatments.  相似文献   

9.
The common shore crab Carcinus maenas exhibits a range of carapace colours from green through orange to red, green forms showing some differences of distribution from red/orange forms. To test the hypothesis that colour differences were moult-related, large numbers of Carcinus were collected intertidally and subtidally in summer when moulting is most prevalent, and their moult stages determined. Red and orange coloration was found only to occur in the larger size classes in crabs in prolonged intermoult, but not solely in the largest crabs in terminal anecdysis. Red crabs were characterized by a heavier load of epibionts and a strong, thicker carapace. In contrast, green crabs were found over the entire size range and appeared to be actively moulting forms; they carried fewer epibionts and had a thinner integument than red forms. The significance of morphological differences between red/orange and green forms of Carcinus maenas is considered in relation to previously reported behavioural, physiological and ecological differences between the colour forms.  相似文献   

10.
Whether a prey population goes extinct or adapts in response to an invading predator may depend on the number of contiguous populations that experience increased predation. We created invaded snail populations by building shelters for predatory shore crabs on a rocky intertidal bench. The crabs preyed selectively on thin-shelled snails tethered next to the shelters but did not prey on those more than 2 m away. This caused strong directional selection for increased shell thickness in populations close to the shelters but did not change selection in those farther away. The field experiment was used to parameterize a new individual-based quantitative genetic model that included demography. In the model a detectable step cline in shell thickness evolved rapidly even though the region of increased predation was shorter than Slatkin's characteristic length. The cline's step size in the model was similar to that measured in the field 10 years after the experiment began.  相似文献   

11.
Predators can affect the vertical distribution of mobile intertidal invertebrates in two ways: they can (1) cause greater mortality of prey at certain intertidal levels, and (2) induce prey to seek safer intertidal areas. In this study, we investigate whether low-intertidal and subtidal predators affect the intertidal distribution of two congeneric species of small herbivorous gastropods of northeastern Pacific shores, Littorina sitkana Philippi 1846, and L. scutulata Gould 1849. In particular, we tested the hypothesis that predators affect the distribution of these snails by inducing them to seek higher and safer intertidal areas. On a wave-sheltered shore in Barkley Sound, British Columbia, L. sitkana and L. scutulata were both killed by predatory crabs (e.g., Cancer productus) more frequently when tethered near the lower limit of their intertidal distribution ( approximately 1 m) than when tethered where they were most common ( approximately 2.5 m), suggesting that high mortality rates are partly responsible for the lower-limit of these snails' intertidal distribution. However, two field mark-recapture experiments indicated that the snails' behavioral response to predation risk also influences their distribution. In the first experiment, snails from the 2.5-m level (low risk) transplanted to the 1.0-m level (high risk) displayed a strong and consistent tendency to move shoreward, especially L. sitkana, some traveling 10-15 m in 2-3 days to regain their original level. These shoreward movements were especially precise in the northern part of the study area, where predation rates on tethered snails were greatest. Furthermore, larger more vulnerable snails were more strongly oriented shoreward than smaller individuals, indicating that antipredator behavior might also contribute to intertidal size gradients in these species. In the second mark-recapture experiment, we manipulated predation risk using small cages and found that snails exposed to the odors of C. productus crabs foraging on conspecific and heterospecific snails displayed more precise (L. sitkana and L. scutulata) and longer (L. sitkana) shoreward movements than snails held in control conditions. These results provide the first experimental evidence that antipredator behavior may contribute to the intertidal distribution patterns of littorinids.  相似文献   

12.
Predator-induced defenses are among the most ecologically important forms of phenotypic plasticity. Although predation and induced defenses are well documented in rocky-intertidal systems, they have received less attention in soft-bottom communities. Shell-crushing predators are common in soft-bottom, vegetated habitats, which often exhibit substantial spatial heterogeneity in predation intensity. We examined variations in shell morphology of the salt-marsh periwinkle, Littoraria irrorata, among marsh microhabitats in the northern Gulf of Mexico that vary in their accessibility to predatory blue crabs, Callinectes sapidus. Littoraria from high-predation sites exhibited more extensively calcified apertural lips and narrower apertural openings relative to snails from low-predation sites. Thick apertural lips generally increased the handling time required by Callinectes to breach Littoraria shells in laboratory experiments, although the method of shell entry used by crabs was dependent on the crab:snail size ratio. Apertural-lip thickness was not related to past predation events in field-collected snails. Snails exposed to water treated with the effluent of Callinectes and crushed conspecifics produced significantly thicker apertural lips than controls, with a response time and morphological extent comparable to that of their rocky-shore counterparts. This study underscores the widespread occurrence of predator-induced plasticity in marine gastropods and emphasizes its role in soft-bottom, vegetated marine habitats, where shell-crushing predation can be as prevalent a selective force as in the rocky intertidal.  相似文献   

13.
Predators can strongly influence prey populations and the structure and function of ecosystems, but these effects can be modified by environmental stress. For example, fluid velocity and turbulence can alter the impact of predators by limiting their environmental range and altering their foraging ability. We investigated how hydrodynamics affected the foraging behavior of the green crab (Carcinus maenas), which is invading marine habitats throughout the world. High flow velocities are known to reduce green crab predation rates and our study sought to identify the mechanisms by which flow affects green crabs. We performed a series of experiments with green crabs to determine: 1) if their ability to find prey was altered by flow in the field, 2) how flow velocity influenced their foraging efficiency, and 3) how flow velocity affected their handling time of prey. In a field study, we caught significantly fewer crabs in baited traps at sites with fast versus slow flows even though crabs were more abundant in high flow areas. This finding suggests that higher velocity flows impair the ability of green crabs to locate prey. In laboratory flume assays, green crabs foraged less efficiently when flow velocity was increased. Moreover, green crabs required significantly more time to consume prey in high velocity flows. Our data indicate that flow can impose significant chemosensory and physical constraints on green crabs. Hence, hydrodynamics may strongly influence the role that green crabs and other predators play in rocky intertidal communities.  相似文献   

14.
Species with restricted gene flow often show trait-shifts from one type of environment to another. In those rock-dwelling marine gastropods that lack larval dispersal, size generally decreases in wave-exposed habitats reducing risk of dislodgement, while increases in less exposed habitats to resist crab-crushing. In Littorina fabalis, however, snails of moderately exposed shores are generally much larger (11–14 mm) than snails of sheltered shores (5–8 mm). Observations from the White Sea (where crabs are not present) indicate that in the absence of crabs snails are small (6–7 mm) in both habitats. We assumed that the optimal size for L. fabalis in the absence of crabs is less than 8 mm, and thus that increased size in moderately exposed habitats in areas with crabs might be a response to crab predation. In a crab-rich area (Sweden) we showed that crab predation is an important mortality factor for this snail species in both sheltered and moderately exposed habitats. In sheltered habitats, snails were relatively more protected from crab-predation when dwelling on their habitual substrate, fucoid algae, than if experimentally tethered to rocks below the algae. This showed that algae function as snail refuges. Snail dislodgement increased, however, with wave exposure but tethering snails in moderately exposed habitats showed that large snails survived equally well on rocks under the algae as in the canopy of the algae. Thus in sheltered habitats a small snail size is favored, probably due to life-history reasons, while increased risk of being dislodged from the algae refuges promotes a large size in moderately exposed habitats. This study shows an example of selection of a trait depends on complex interactions of different factors (life-history optimization, crab predation, wave induced dislodgement and algal refuges).  相似文献   

15.
We investigated the sublethal effects of a predatory crab, Cancer productus (Randall), on the behavior and growth of its snail prey, Littorina sitkana, by setting up controlled rearing and prey-size selection experiments. L. sitkana were collected from three sites on San Juan Island, WA, USA. These sites varied in snail size, abundance, and vertical distribution, and in the abundance of the crab predator C. productus. Snails from all three populations were raised for 34 days under the following treatments: no-crab control, a non-feeding C. productus encased in mesh box, and an encased C. productus feeding on L. sitkana. The non-feeding crab treatment did not affect snail foraging behavior or growth rate in comparison with the no-crab control. In contrast, the presence of a feeding crab elicited escape behavior in the snails, halted grazing, and consequently reduced growth rates. A population difference in escape behavior was observed: upward migration in snails from rocky shores and hiding in crevices in snails from a mud flat. It thus appears that chemicals leaching from crushed conspecific snails, rather than the presence of the crab predator, act as the “alarm substance” to which L. sitkana react. The magnitude of the growth depression in the presence of feeding crabs was 85%, with no difference among the three populations. Once the feeding crab stimulus was removed, snails in all populations resumed normal growth, suggesting that this response to feeding predators is reversible with changing environmental conditions. Laboratory experiments were set up to determine if all size classes of L. sitkana are equally susceptible to C. productus predation. C. productus consistently selected the largest of three size classes of L. sitkana. These results suggest that slow growth rate and small size in L. sitkana may actually be an adaptation for coexisting with high C. productus abundance, rather than simply a cost of escape behavior.  相似文献   

16.
The Guamunian xanthids Carpilius maculatus (L.), C. convexus (Forskal), and Eriphia sebana (Shaw & Nodder), and the parthenopid Daldorfia horrida (L.), possess large master claws with molariform teeth than are used to crush the shells of hermit crabs and snails. These crabs typically sever the spire of their prey, or make a gash in the body whorl. They tend to employ sustained pressure on the prey shell, and, except for Eriphia, rarely attack the outer lip, so that the outer lip of the shell typically remains undamaged, except in shells near the critical size, i.e., the maximum size of vulnerability to predation. Temperate species of Cancer (C. productus Randall and C. oregonensi Rathbun) may also crush shelled prey in the larger of their two claws, but more commonly they use both claws together in breaking open their victims. Sustained pressure is applied for only short periods by these crabs.Gastropod adaptations conferring resistance to crushing by crabs include a thick shell, narrow or otherwise small aperture, thickened outer lip, strong sculpture, and a low spire. Emphasis on these traits lowers the critical size of the prey, i.e., permits escape from cushing at a smaller size. An equatorward increase in the expression of the characteristics of crushing-resistance parallels an increase in crushing power of the crabs.  相似文献   

17.
Enclosure and exclosure experiments were conducted in Canary Creek marsh to examine how predation by a killifish, Fundulus heteroclitus (L.), affects the abundance and size distribution of the salt marsh snail, Melampus bidentatus (Say). Enclosures (7.6 × 19.7 m) were stocked with Fundulus heteroclitus at densities of one-half normal, normal, twice normal, and four times normal density. Fish exclusion pens were also built. In both years of study, the mean density of snails increased significantly in pens where fish were excluded or their density reduced. During the same period in each year, the density of snails in pens containing higher than normal fish density fell by ≈50%.

Fish density also affected the size distribution of snails within pens. In both years, mean shell length of snails in the pen with the highest density of fish was significantly greater, and mean shell length of snails within fish exclusion pens was significantly lower than in all other treatments. Gape size limitation of F. heteroclitus causes selective predation on small snails and apparently is responsible for the difference in mean shell length among treatments.

Density and size distribution measurements of the natural Melampus bidentatus population in Canary Creek marsh were also taken. Larger snails were found to occur in the low marsh zone, whereas smaller snails occurred in the high marsh zone. Since the high marsh area is flooded less often than the low marsh, and the grass types found in the high marsh zone are known to afford protection from fish predation, the distribution of snails in the marsh is consistent with the idea that fish predation is an important factor influencing the distribution of snails in Canary Creek marsh.  相似文献   


18.
We evaluate the potential competitive and predatory impacts of nonindigenous European green crab Carcinus maenas on native Dungeness crab Cancer magister in the northeast Pacific. The coastal estuaries of Washington State, USA, provide appropriate habitat for recently introduced green crab, yet these areas are important nursery grounds for Dungeness crab and contribute greatly to the coastal crab fishery. Juvenile Dungeness crabs are dependent on limited intertidal epibenthic shell for refuge habitat during early benthic life and experience increased mortality on open sand and mud as a result of predation by fish and birds. Early juveniles throughout the subtidal are similarly at risk due to predation by fish and especially adult conspecifics. Laboratory experiments and infrared video observations revealed that juvenile green crab displace Dungeness crab of equal size from shelters during one-on-one competition. Green crab also consistently win nocturnal foraging trials in which the species compete for fresh, damaged clams. Field and laboratory enclosure experiments show that juvenile Dungeness crab emigrate from oyster shell habitat as a result of competition and predation by adult green crab. Depending on the extent to which the two species overlap, interactions with the dominant nonindigenous species could have a negative influence on juvenile Dungeness crab survival and could conceivably impact recruitment to the fishery. However, current evidence indicates that the distribution of green crab in Washington State is far removed from nursery areas of Dungeness crab.  相似文献   

19.
Populations of both species of flat periwinkle were examined at five discrete sites along the Severn Estuary, and at a marine site in Dyfed. The vertical distribution of the two species showed a clear partitioning of the shore – Littorina obtusata occupied the high/mid shore and L. mariae the low shore area. L. obtusata also extended further up the Severn Estuary than L. mariae. Maximum densities of both species were found in Milford Haven. Biometric investigations revealed intra and inter-specific differences in colour morphs, shell damage and size between populations. The possible influence of differential selection pressures at the various sites is discussed.  相似文献   

20.
Empirical estimates of selection gradients caused by predators are common, yet no one has quantified how these estimates vary with predator ontogeny. We used logistic regression to investigate how selection on gastropod shell thickness changed with predator size. Only small and medium purple shore crabs (Hemigrapsus nudus) exerted a linear selection gradient for increased shell‐thickness within a single population of the intertidal snail (Littorina subrotundata). The shape of the fitness function for shell thickness was confirmed to be linear for small and medium crabs but was humped for large male crabs, suggesting no directional selection. A second experiment using two prey species to amplify shell thickness differences established that the selection differential on adult snails decreased linearly as crab size increased. We observed differences in size distribution and sex ratios among three natural shore crab populations that may cause spatial and temporal variation in predator‐mediated selection on local snail populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号