首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The yeast [PSI(+)], [URE3], and [PIN(+)] genetic elements are prion forms of Sup35p, Ure2p, and Rnq1p, respectively. Overexpression of Sup35p, Ure2p, or Rnq1p leads to increased de novo appearance of [PSI(+)], [URE3], and [PIN(+)], respectively. This inducible appearance of [PSI(+)] was shown to be dependent on the presence of [PIN(+)] or [URE3] or overexpression of other yeast proteins that have stretches of polar residues similar to the prion-determining domains of the known prion proteins. In a similar manner, [PSI(+)] and [URE3] facilitate the appearance of [PIN(+)]. In contrast to these positive interactions, here we find that in the presence of [PIN(+)], [PSI(+)] and [URE3] repressed each other's propagation and de novo appearance. Elevated expression of Hsp104 and Hsp70 (Ssa2p) had little effect on these interactions, ruling out competition between the two prions for limiting amounts of these protein chaperones. In contrast, we find that constitutive overexpression of SSA1 but not SSA2 cured cells of [URE3], uncovering a specific interaction between Ssa1p and [URE3] and a functional distinction between these nearly identical Hsp70 isoforms. We also find that Hsp104 abundance, which critically affects [PSI(+)] propagation, is elevated when [URE3] is present. Our results are consistent with the notion that proteins that have a propensity to form prions may interact with heterologous prions but, as we now show, in a negative manner. Our data also suggest that differences in how [PSI(+)] and [URE3] interact with Hsp104 and Hsp70 may contribute to their antagonistic interactions.  相似文献   

2.
Kirkland PA  Reidy M  Masison DC 《Genetics》2011,188(3):565-577
Replication of amyloid-based yeast prions [PSI(+)], [URE3], and [PIN(+)] depends on the protein disaggregation machinery that includes Hsp104, Hsp70, and Hsp40 molecular chaperones. Yet, overexpressing Hsp104 cures cells of [PSI(+)] prions. An Hsp70 mutant (Ssa1-21p) antagonizes propagation of [PSI(+)] in a manner resembling elevated Hsp104. The major cytosolic Hsp40 Sis1p is the only Hsp40 required for replication of these prions, but its role in [PSI(+)] curing is unknown. Here we find that all nonessential functional regions of Sis1p are dispensable for [PSI(+)] propagation, suggesting that other Hsp40's might provide Hsp40 functions required for [PSI(+)] replication. Conversely, several Sis1p functions were important for promoting antiprion effects of both Ssa1-21p and Hsp104, which implies a link between the antiprion effects of these chaperones and suggests that Sis1p is a specific Hsp40 important for [PSI(+)] curing. These contrasting findings suggest that the functions of Hsp104 that are important for propagation and elimination of [PSI(+)] are either distinct or specified by different Hsp40's. This work also uncovered a growth inhibition caused by [PSI(+)] when certain functions of Sis1p were absent, suggesting that Sis1p protects cells from cytotoxicity caused by [PSI(+)] prions.  相似文献   

3.
The [URE3] and [PSI(+)] prions are infectious amyloid forms of Ure2p and Sup35p. Several chaperones influence prion propagation: Hsp104p overproduction destabilizes [PSI(+)], whereas [URE3] is sensitive to excess of Ssa1p or Ydj1p. Here, we show that overproduction of the chaperone, Sse1p, can efficiently cure [URE3]. Sse1p and Fes1p are nucleotide exchange factors for Ssa1p. Interestingly, deletion of either SSE1 or FES1 completely blocked [URE3] propagation. In addition, deletion of SSE1 also interfered with [PSI(+)] propagation.  相似文献   

4.
Jones GW  Masison DC 《Genetics》2003,163(2):495-506
We previously described an Hsp70 mutant (Ssa1-21p), altered in a conserved residue (L483W), that dominantly impairs yeast [PSI(+)] prion propagation without affecting growth. We generated new SSA1 mutations that impaired [PSI(+)] propagation and second-site mutations in SSA1-21 that restored normal propagation. Effects of mutations on growth did not correlate with [PSI(+)] phenotype, revealing differences in Hsp70 function required for growth and [PSI(+)] propagation and suggesting that Hsp70 interacts differently with [PSI(+)] prion aggregates than with other cellular substrates. Complementary suppression of altered activity between forward and suppressing mutations suggests that mutations that impair [PSI(+)] affect a similar Hsp70 function and that suppressing mutations similarly overcome this effect. All new mutations that impaired [PSI(+)] propagation were located in the ATPase domain. Locations and homology of several suppressing substitutions suggest that they weaken Hsp70's substrate-trapping conformation, implying that impairment of [PSI(+)] by forward mutations is due to altered ability of the ATPase domain to regulate substrate binding. Other suppressing mutations are in residues important for interactions with Hsp40 or TPR-containing cochaperones, suggesting that such interactions are necessary for the impairment of [PSI(+)] propagation caused by mutant Ssa1p.  相似文献   

5.
The Saccharomyces cerevisiae [PSI(+)] prion is believed to be a self-propagating cytoplasmic amyloid. Earlier characterization of HSP70 (SSA1) mutations suggested that [PSI(+)] propagation is impaired by alterations that enhance Ssa1p's substrate binding. This impairment is overcome by second-site mutations in Ssa1p's conserved C-terminal motif (GPTVEEVD), which mediates interactions with tetratricopeptide repeat (TPR) cochaperones. Sti1p, a TPR cochaperone homolog of mammalian Hop1 (Hsp70/90 organizing protein), activates Ssa1p ATPase, which promotes substrate binding by Ssa1p. Here we find that in SSA1-21 cells depletion of Sti1p improved [PSI(+)] propagation, while excess Sti1p weakened it. In contrast, depletion of Fes1p, a nucleotide exchange factor for Ssa1p that facilitates substrate release, weakened [PSI(+)] propagation, while overproducing Fes1p improved it. Therefore, alterations of Hsp70 cochaperones that promote or prolong Hsp70 substrate binding impair [PSI(+)] propagation. We also find that the GPTVEEVD motif is important for physical interaction with Hsp40 (Ydj1p), another Hsp70 cochaperone that promotes substrate binding but is dispensable for viability. We further find that depleting Cpr7p, an Hsp90 TPR cochaperone and CyP-40 cyclophilin homolog, improved [PSI(+)] propagation in SSA1 mutants. Although Cpr7p and Sti1p are Hsp90 cochaperones, we provide evidence that Hsp90 is not involved in [PSI(+)] propagation, suggesting that Sti1p and Cpr7p functionally interact with Hsp70 independently of Hsp90.  相似文献   

6.
The [URE3] nonchromosomal genetic element is an infectious form (prion) of the Ure2 protein, apparently a self-propagating amyloidosis. We find that an insertion mutation or deletion of HSP104 results in inability to propagate the [URE3] prion. Our results indicate that Hsp104 is a common factor in the maintenance of two independent yeast prions. However, overproduction of Hsp104 does not affect the stability of [URE3], in contrast to what is found for the [PSI(+)] prion, which is known to be cured by either overproduction or deficiency of Hsp104. Like Hsp104, the Hsp40 class chaperone Ydj1p, with the Hsp70 class Ssa1p, can renature proteins. We find that overproduction of Ydj1p results in a gradual complete loss of [URE3]. The involvement of protein chaperones in the propagation of [URE3] indicates a role for protein conformation in inheritance.  相似文献   

7.
Jung G  Jones G  Wegrzyn RD  Masison DC 《Genetics》2000,156(2):559-570
[PSI(+)] is a prion (infectious protein) of Sup35p, a subunit of the Saccharomyces cerevisiae translation termination factor. We isolated a dominant allele, SSA1-21, of a gene encoding an Hsp70 chaperone that impairs [PSI(+)] mitotic stability and weakens allosuppression caused by [PSI(+)]. While [PSI(+)] stability is normal in strains lacking SSA1, SSA2, or both, SSA1-21 strains with a deletion of SSA2 cannot propagate [PSI(+)]. SSA1-21 [PSI(+)] strains are hypersensitive to curing of [PSI(+)] by guanidine-hydrochloride and partially cured of [PSI(+)] by rapid induction of the heat-shock response but not by growth at 37 degrees. The number of inheritable [PSI(+)] particles is significantly reduced in SSA1-21 cells. SSA1-21 effects on [PSI(+)] appear to be independent of Hsp104, another stress-inducible protein chaperone known to be involved in [PSI(+)] propagation. We propose that cytosolic Hsp70 is important for the formation of Sup35p polymers characteristic of [PSI(+)] from preexisting material and that Ssa1-21p both lacks and interferes with this activity. We further demonstrate that the negative effect of heat stress on [PSI(+)] phenotype directly correlates with solubility of Sup35p and find that in wild-type strains the presence of [PSI(+)] causes a stress that elevates basal expression of Hsp104 and SSA1.  相似文献   

8.
Shorter J  Lindquist S 《The EMBO journal》2008,27(20):2712-2724
Self-templating amyloid forms of Sup35 constitute the yeast prion [PSI(+)]. How the protein-remodelling factor, Hsp104, collaborates with other chaperones to regulate [PSI(+)] inheritance remains poorly delineated. Here, we report how the Ssa and Ssb components of the Hsp70 chaperone system directly affect Sup35 prionogenesis and cooperate with Hsp104. We identify the ribosome-associated Ssb1:Zuo1:Ssz1 complex as a potent antagonist of Sup35 prionogenesis. The Hsp40 chaperones, Sis1 and Ydj1, preferentially interact with Sup35 oligomers and fibres compared with monomers, and facilitate Ssa1 and Ssb1 binding. Various Hsp70:Hsp40 pairs block prion nucleation by disassembling molten oligomers and binding mature oligomers. By binding fibres, Hsp70:Hsp40 pairs occlude prion recognition elements and inhibit seeded assembly. These inhibitory activities are partially relieved by the nucleotide exchange factor, Fes1. Low levels of Hsp104 stimulate prionogenesis and alleviate inhibition by some Hsp70:Hsp40 pairs. At high concentrations, Hsp104 eliminates Sup35 prions. This activity is reduced when Ssa1, or enhanced when Ssb1, is incorporated into nascent prions. These findings illuminate several facets of the chaperone interplay that underpins [PSI(+)] inheritance.  相似文献   

9.
Prions are infectious, self-propagating protein conformations. Rnq1 is required for the yeast Saccharomyces cerevisiae prion [PIN(+)], which is necessary for the de novo induction of a second prion, [PSI(+)]. Here we isolated a [PSI(+)]-eliminating mutant, Rnq1Delta100, that deletes the nonprion domain of Rnq1. Rnq1Delta100 inhibits not only [PSI(+)] prion propagation but also [URE3] prion and huntingtin's polyglutamine aggregate propagation in a [PIN(+)] background but not in a [pin(-)] background. Rnq1Delta100, however, does not eliminate [PIN(+)]. These findings are interpreted as showing a possible involvement of the Rnq1 prion in the maintenance of heterologous prions and polyQ aggregates. Rnq1 and Rnq1Delta100 form a sodium dodecyl sulfate-stable and Sis1 (an Hsp40 chaperone protein)-containing coaggregate in [PIN(+)] cells. Importantly, Rnq1Delta100 is highly QN-rich and prone to self-aggregate or coaggregate with Rnq1 when coexpressed in [pin(-)] cells. However, the [pin(-)] Rnq1-Rnq1Delta100 coaggregate does not represent a prion-like aggregate. These findings suggest that [PIN(+)] Rnq1-Rnq1Delta100 aggregates interact with other transmissible and nontransmissible amyloids to destabilize them and that the nonprion domain of Rnq1 plays a crucial role in self-regulation of the highly reactive QN-rich prion domain of Rnq1.  相似文献   

10.
Hung GC  Masison DC 《Genetics》2006,173(2):611-620
Hsp104 is a hexameric protein chaperone that resolubilizes stress-damaged proteins from aggregates. Hsp104 promotes [PSI(+)] prion propagation by breaking prion aggregates, which propagate as amyloid fibers, into more numerous prion "seeds." Inactivating Hsp104 cures cells of [PSI(+)] and other amyloid-like yeast prions. Overexpressing Hsp104 also eliminates [PSI(+)], presumably by completely resolubilizing prion aggregates. Inexplicably, however, excess Hsp104 does not cure the other prions. Here we identify missense mutations in Hsp104's amino-terminal domain (NTD), which is conserved among Hsp100 proteins but whose function is unknown, that improve [PSI(+)] propagation. Hsp104Delta147, engineered to lack the NTD, supported [PSI(+)] and functioned normally in thermotolerance and protein disaggregation. Hsp104Delta147 failed to cure [PSI(+)] when overexpressed, however, implying that excess Hsp104 does not eliminate [PSI(+)] by direct dissolution of prion aggregates. Curing of [PSI(+)] by overexpressing catalytically inactive Hsp104 (Hsp104KT), which interferes with endogenous Hsp104, did not require the NTD. We further found that Hsp104 mutants defective in threading peptides through the hexamer pore had reduced ability to support [PSI(+)] in proportion to protein resolubilization defects, suggesting that [PSI(+)] propagation depends on this threading and that Hsp104 "breaks" prion aggregates by extracting protein monomers from the amyloid fibers.  相似文献   

11.
Importance of the Hsp70 ATPase domain in yeast prion propagation   总被引:1,自引:0,他引:1       下载免费PDF全文
Loovers HM  Guinan E  Jones GW 《Genetics》2007,175(2):621-630
The Saccharomyces cerevisiae non-Mendelian genetic element [PSI+] is the prion form of the translation termination factor Sup35p. The ability of [PSI+] to propagate efficiently has been shown previously to depend upon the action of protein chaperones. In this article we describe a genetic screen that identifies an array of mutants within the two major cytosolic Hsp70 chaperones of yeast, Ssa1p and Ssa2p, which impair the propagation of [PSI+]. All but one of the mutants was located within the ATPase domain of Hsp70, which highlights the important role of regulation of Hsp70-Ssa ATP hydrolysis in prion propagation. A subset of mutants is shown to alter Hsp70 function in a way that is distinct from that of previously characterized Hsp70 mutants that alter [PSI+] propagation and supports the importance of interdomain communication and Hsp70 interaction with nucleotide exchange factors in prion propagation. Analysis of the effects of Hsp70 mutants upon propagation of a second yeast prion [URE3] further classifies these mutants as having general or prion-specific inhibitory properties.  相似文献   

12.
The cellular chaperone machinery plays key role in the de novo formation and propagation of yeast prions (infectious protein). Though the role of Hsp70s in the prion maintenance is well studied, how Hsp90 chaperone machinery affects yeast prions remains unclear. In the current study, we examined the role of Hsp90 and its co-chaperones on yeast prions [PSI+] and [URE3]. We show that the overproduction of Hsp90 co-chaperone Tah1, cures [URE3] which is a prion form of native protein Ure2 in yeast. The Hsp90 co-chaperone Tah1 is involved in the assembly of small nucleolar ribonucleoproteins (snoRNP) and chromatin remodelling complexes. We found that Tah1 deletion improves the frequency of de novo appearance of [URE3]. The Tah1 was found to interact with Hsp70. The lack of Tah1 not only represses antagonizing effect of Ssa1 Hsp70 on [URE3] but also improves the prion strength suggesting role of Tah1 in both fibril growth and replication. We show that the N-terminal tetratricopeptide repeat domain of Tah1 is indispensable for [URE3] curing. Tah1 interacts with Ure2, improves its solubility in [URE3] strains, and affects the kinetics of Ure2 fibrillation in vitro. Its inhibitory role on Ure2 fibrillation is proposed to influence [URE3] propagation. The present study shows a novel role of Tah1 in yeast prion propagation, and that Hsp90 not only promotes its role in ribosomal RNA processing but also in the prion maintenance.SummaryPrions are self-perpetuating infectious proteins. What initiates the misfolding of a protein into its prion form is still not clear. The understanding of cellular factors that facilitate or antagonize prions is crucial to gain insight into the mechanism of prion formation and propagation. In the current study, we reveal that Tah1 is a novel modulator of yeast prion [URE3]. The Hsp90 co-chaperone Tah1, is required for the formation of small nucleolar ribonucleoprotein complex. We show that the absence of Tah1 improves the induction of [URE3] prion. The overexpressed Tah1 cures [URE3], and this function is promoted by Hsp90 chaperones. The current study thus provides a novel cellular factor and the underlying mechanism, involved in the prion formation and propagation  相似文献   

13.
《朊病毒》2013,7(4):258-262
The yeast prions [URE3] and [PSI] are not found in wild strains, suggesting they are not an advantage. Prion-forming ability is not conserved, even within Saccharomyces, suggesting it is a disease. Prion domains have non-prion functions, explaining some conservation of sequence. However, in spite of the sequence being constrained in evolution by these non-prion functions, the prion domains vary more rapidly than the remainder of the molecule, and these changes produce a transmission barrier, suggesting that these changes were selected to block prion infection. Yeast prions [PSI] and [URE3] induce a cellular stress response (Hsp104 and Hsp70 induction), suggesting the cells are not happy about being infected. Recently, we showed that the array of [PSI] and [URE3] prions includes a majority of lethal or very toxic variants, a result not expected if either prion were an adaptive cellular response to stress.  相似文献   

14.
Molecular chaperones and the assembly of the prion Ure2p in vitro   总被引:2,自引:0,他引:2  
The protein Ure2 from Saccharomyces cerevisiae possesses prion properties at the origin of the [URE3] trait. In vivo, a high molecular weight form of inactive Ure2p is associated to [URE3]. The faithful and continued propagation of [URE3]is dependent on the expression levels of molecular chaperones from the Hsp100, -70, and -40 families; however, so far, their role is not fully documented. Here we investigate the effects of molecular chaperones from the Hsp40, Hsp70, Hsp90, and Hsp100 families and the chaperonin CCT/Tric on the assembly of full-length Ure2p. We show that Hsp104p greatly stimulates Ure2p aggregation, whereas Ssa1p, Ydj1p, Sis1p, and Hsp82p inhibit aggregation to different extents. The nature of the high molecular weight Ure2p species that forms in the presence of the different molecular chaperones and their nucleotide dependence is described. We show that Hsp104p favors the aggregation of Ure2p into non-fibrillar high molecular weight particles, whereas Ssa1p, Ydj1p, Sis1p, and Hsp82p sequester Ure2p in spherical oligomers. Using fluorescently labeled full-length Ure2p and Ure2p-(94-354) and fluorescence polarization, we show that Ssa1p binding to Ure2p is ATP-dependent, whereas that of Hsp104p is not. We also show that Ssa1p preferentially interacts with the N-terminal domain of Ure2p that is critical for prion propagation, whereas Ydj1p preferentially interacts with the C-terminal domain of the protein, and we discuss the significance of this observation. Finally, the affinities of Ssa1p, Ydj1p, and Hsp104p for Ure2p are determined. Our in vitro observations bring new insight into the mechanism by which molecular chaperones influence the propagation of [URE3].  相似文献   

15.
The yeast prion [PSI(+)] represents an aggregated state of the translation termination factor Sup35 resulting in the tendency of ribosomes to readthrough stop codons. In this study, we constructed an auxotrophic chromosomal marker, ura3-197 (nonsense allele), applicable to selection for loss of [PSI(+)] to [psi(-)]. Unlike [psi(-)] yeast strains, [PSI(+)] yeast strains exhibit nonsense suppression of the ura3-197 allele and are not viable in the presence of 5-fluoroorotic acid (5-FOA) that is converted to a toxic material by the readthrough product of Ura3. We selected 20 5-FOA-resistant, loss-of-[PSI(+)], mutants spontaneously or by transposon-mediated mutagenesis from ura3-197[PSI(+)] cells. All of the 20 [psi(-)] isolates were affected in Hsp104, a protein-remodelling factor. Although most of them were disabled in a normal Hsp104 function for thermotolerance, three single mutants, L462R, P557L and D704N, remained thermotolerant. Importantly, L462R and D704N also eliminate other yeast prions [URE3] and [PIN(+)], while P557L does not, suggesting that Hsp104 harbours a unique activity to prion propagation independent of its function in thermotolerance. The mutations that are specific to prion propagation are clustered around the lateral channel of the Hsp104 hexamer, suggesting a crucial and specific role of this channel for prion propagation.  相似文献   

16.
The Saccharomyces cerevisiae [PSI+] prion is a misfolded form of Sup35p that propagates as self-replicating cytoplasmic aggregates. Replication is believed to occur through breakage of transmissible [PSI+] prion particles, or seeds, into more numerous pieces. In [PSI+] cells, large Sup35p aggregates are formed by coalescence of smaller sodium dodecyl sulfate-insoluble polymers. It is uncertain if polymers or higher-order aggregates or both act as prion seeds. A mutant Hsp70 chaperone, Ssa1-21p, reduces the number of transmissible [PSI+] seeds per cell by 10-fold but the overall amount of aggregated Sup35p by only two- to threefold. This discrepancy could be explained if, in SSA1-21 cells, [PSI+] seeds are larger or more of the aggregated Sup35p does not function as a seed. To visualize differences in aggregate size, we constructed a Sup35-green fluorescent protein (GFP) fusion (NGMC) that has normal Sup35p function and can propagate like [PSI+]. Unlike GFP fusions lacking Sup35p's essential C-terminal domain, NGMC did not form fluorescent foci in log-phase [PSI+] cells. However, using fluorescence recovery after photobleaching and size fractionation techniques, we find evidence that NGMC is aggregated in these cells. Furthermore, the aggregates were larger in SSA1-21 cells, but the size of NGMC polymers was unchanged. Possibly, NGMC aggregates are bigger in SSA1-21 cells because they contain more polymers. Our data suggest that Ssa1-21p interferes with disruption of large Sup35p aggregates, which lack or have limited capacity to function as seed, into polymers that function more efficiently as [PSI+] seeds.  相似文献   

17.
[URE3] is an amyloid-based prion of Ure2p, a regulator of nitrogen catabolism in Saccharomyces cerevisiae. The Ure2p of the human pathogen Candida albicans can also be a prion in S. cerevisiae. We find that overproduction of the disaggregating chaperone, Hsp104, increases the frequency of de novo [URE3] prion formation by the Ure2p of S. cerevisiae and that of C. albicans. This stimulation is strongly dependent on the presence of the [PIN(+)] prion, known from previous work to enhance [URE3] prion generation. Our data suggest that transient Hsp104 overproduction enhances prion generation through persistent effects on Rnq1 amyloid, as well as during overproduction by disassembly of amorphous Ure2 aggregates (generated during Ure2p overproduction), driving the aggregation toward the amyloid pathway. Overproduction of other major cytosolic chaperones of the Hsp70 and Hsp40 families (Ssa1p, Sse1p, and Ydj1p) inhibit prion formation, whereas another yeast Hsp40, Sis1p, modulates the effects of Hsp104p on both prion induction and prion curing in a prion-specific manner. The same factor may both enhance de novo prion generation and destabilize existing prion variants, suggesting that prion variants may be selected by changes in the chaperone network.  相似文献   

18.
[PSI(+)] is a prion isoform of the yeast release factor Sup35. In some assays, the cytosolic chaperones Ssa1 and Ssb1/2 of the Hsp70 family were previously shown to exhibit "pro-[PSI(+)]" and "anti-[PSI(+)]" effects, respectively. Here, it is demonstrated for the first time that excess Ssa1 increases de novo formation of [PSI(+)] and that pro-[PSI(+)] effects of Ssa1 are shared by all other Ssa proteins. Experiments with chimeric constructs show that the peptide-binding domain is a major determinant of differences in the effects of Ssa and Ssb proteins on [PSI(+)]. Surprisingly, overproduction of either chaperone increases loss of [PSI(+)] when Sup35 is simultaneously overproduced. Excess Ssa increases both the average size of prion polymers and the proportion of monomeric Sup35 protein. Both in vivo and in vitro experiments uncover direct physical interactions between Sup35 and Hsp70 proteins. The proposed model postulates that Ssa stimulates prion formation and polymer growth by stabilizing misfolded proteins, which serve as substrates for prion conversion. In the case of very large prion aggregates, further increase in size may lead to the loss of prion activity. In contrast, Ssb either stimulates refolding into nonprion conformation or targets misfolded proteins for degradation, in this way counteracting prion formation and propagation.  相似文献   

19.

Background

The cytosol of most eukaryotic cells contains multiple highly conserved Hsp70 orthologs that differ mainly by their spatio-temporal expression patterns. Hsp70s play essential roles in protein folding, transport or degradation, and are major players of cellular quality control processes. However, while several reports suggest that specialized functions of Hsp70 orthologs were selected through evolution, few studies addressed systematically this issue.

Methodology/Principal Findings

We compared the ability of Ssa1p-Ssa4p from Saccharomyces cerevisiae and Ssa5p-Ssa8p from the evolutionary distant yeast Yarrowia lipolytica to perform Hsp70-dependent tasks when expressed as the sole Hsp70 for S. cerevisiae in vivo. We show that Hsp70 isoforms (i) supported yeast viability yet with markedly different growth rates, (ii) influenced the propagation and stability of the [PSI+] and [URE3] prions, but iii) did not significantly affect the proteasomal degradation rate of CFTR. Additionally, we show that individual Hsp70 orthologs did not induce the formation of different prion strains, but rather influenced the aggregation properties of Sup35 in vivo. Finally, we show that [URE3] curing by the overexpression of Ydj1p is Hsp70-isoform dependent.

Conclusion/Significance

Despite very high homology and overlapping functions, the different Hsp70 orthologs have evolved to possess distinct activities that are required to cope with different types of substrates or stress situations. Yeast prions provide a very sensitive model to uncover this functional specialization and to explore the intricate network of chaperone/co-chaperone/substrates interactions.  相似文献   

20.
The [PSI(+)] nonsense-suppressor determinant of Saccharomyces cerevisiae results from the ability of Sup35 (eRF3) translation termination factor to undergo prion-like aggregation [1]. Although this process is autocatalytic, in vivo it depends on the chaperone Hsp104, whose lack or overexpression can cure [PSI(+)] [2]. Overproduction of the chaperone protein Ssb1 increased the [PSI(+)] curing by excess Hsp104, although it had no effect on its own, and excess chaperone protein Ssa1 protected [PSI(+)] against Hsp104 [3,4]. We used an artificial [PSI(+)(PS)] based on the Sup35 prion-forming domain from yeast Pichia methanolica [5] to find other prion-curing factors. Both [PSI(+)(PS)] and [PSI(+)] have prion 'strains', differing in their suppressor efficiency and mitotic stability. We show that [PSI(+)(PS)] and a 'weak' strain of [PSI(+)] can be cured by overexpression of chaperones Ssa1, Ssb1 and Ydj1. The ability of different chaperones to cure [PSI(+)(PS)] showed significant prion strain specificity, which could be related to variation in Sup35 prion structure. Our results imply that homologs of these chaperones may be active against mammalian prion and amyloid diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号