首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Single-residue d(Pu1NPu2) (Pu1.Pu2=G.A, G.G or A.A) hairpin loops can be stably closed by sheared purine.purine pairs. These special motifs have been found in several important biological systems. We now extend these loop-closing base-pairs to a sheared purine. pyrimidine (A.C) pair at a neutral pH condition. High-resolution NMR spectroscopy, distance geometry, and molecular dynamics methods were used to study d(GTACANCGTAC) oligomers. Numerous idiosyncratic nuclear Overhauser enhancements, especially those across the A.C base-pair between C4NH2left and right arrow AH1', C4NH2left and right arrow AH2, and CH5left and right arrow AH2 proton pairs, clearly define the novel sheared nature of the closing A.C base-pair. This novel base-pair is possibly present in several biological systems and in two single-stranded DNA aptamers selected from oligonucleotide libraries.  相似文献   

2.
B Pan  C Ban  M C Wahl    M Sundaralingam 《Biophysical journal》1997,73(3):1553-1561
The crystal structure of the DNA heptamer d(GCGCGCG) has been solved at 1.65 A resolution by the molecular replacement method and refined to an R-value of 0.184 for 3598 reflections. The heptamer forms a Z-DNA d(CGCGCG)2 with 5'-overhang G residues instead of an A-DNA d(GCGCGC)2 with 3'-overhang G residues. The overhang G residues from parallel strands of two adjacent duplexes form a trans reverse Hoogsteen G x G basepair that stacks on the six Z-DNA basepairs to produce a pseudocontinuous helix. The reverse Hoogsteen G x G basepair is unusual in that the displacement of one G base relative to the other allows them to participate in a bifurcated (G1)N2 . . . N7(G8) and an enhanced (G8)C8-H . . . O6(G1) hydrogen bond, in addition to the two usual hydrogen bonds. The 5'-overhang G residues are anti and C2'-endo while the 3'-terminal G residues are syn and C2'-endo. The conformations of both G residues are different from the syn/C3'-endo for the guanosine in a standard Z-DNA. The two cobalt hexammine ions bind to the phosphate groups in both GpC and CpG steps in Z(I) and Z(II) conformations. The water structure motif is similar to the other Z-DNA structures.  相似文献   

3.
Raman spectra were obtained from single crystals of [d(CGCATGCG)]2 and [d(m5CGTAm5CG)]2, both of which incorporate A-T pairs into Z-DNA structures and contain C2'-endo/syn conformers of deoxyguanosine at the oligonucleotide ends. Correlation with x-ray results permits the following Raman assignments for nucleoside conformers: C3'-endo/syn G, 623 +/- 1; C2'-endo/syn G, 671 +/- 2; C2'-endo/anti C, 782 +/- 1; C2'endo/anti T, 650 +/- 5 and ca. 750; C3'-endo/syn A, 729 +/- 1 cm-1. These results show that (i) the 670 cm-1 line of syn G is highly sensitive to the change from C3'-endo to C2'-endo pucker, (ii) the 729 cm-1 line of A is affected neither by furanose pucker nor glycosidic bond orientation and (iii) the 1200-1500 cm-1 region of the Raman spectrum of the A-T double helix is greatly altered by the B-to-Z transition. Conformation sensitive Raman frequencies in the 850-1700 cm-1 region are identified for both octamer and hexamer, and the Z-to-B transition of each is monitored by spectral changes which occur upon dissolving the crystal in H2O solution.  相似文献   

4.
In addition to the canonical base-pairs comprising the standard Watson-Crick (C:G and U:A) and wobble U:G conformations, an analysis of the base-pair types and conformations in the rRNAs in the high-resolution crystal structures of the Thermus thermophilus 30S and Haloarcula marismortui 50S ribosomal subunits has identified a wide variety of non-canonical base-pair types and conformations. However, the existing nomenclatures do not describe all of the observed non-canonical conformations or describe them with some ambiguity. Thus, a standardized system is required to classify all of these non-canonical conformations appropriately. Here, we propose a new, simple and systematic nomenclature that unambiguously classifies base-pair conformations occurring in base-pairs, base-triples and base-quadruples that are associated with secondary and tertiary interactions. This system is based on the topological arrangement of the two bases and glycosidic bonds in a given base-pair. Base-pairs in the internal positions of regular secondary structure helices usually form with canonical base-pair groups (C:G, U:A, and U:G) and canonical conformations (C:G WC, U:A WC, and U:G Wb). In contrast, non-helical base-pairs outside of regular structure helices usually have non-canonical base-pair groups and conformations. In addition, many non-helical base-pairs are involved in RNA motifs that form a defined set of non-canonical conformations. Thus, each rare non-canonical conformation may be functionally and structurally important. Finally, the topology-based isostericity of base-pair conformations can rationalize base-pair exchanges in the evolution of RNA molecules.  相似文献   

5.
Our previous NMR and modeling studies have shown that the single-stranded 19mer oligonucleotides d(AGCTTATC-ATC-GATAA GCT) -ATC- and d(AGCTTATC-GAT-GATAAGCT) -GAT- encompassing the strongest topoisomerase II cleavage site in pBR322 DNA could form stable hairpin structures. A new sheared base-pair, the pyrimidine-purine C x A, was found to close the single base -ATC- loop, while -GAT- displayed a flexible loop of three/five residues with no stabilizing interactions. Now we report a structural study on -GAC-, an analog of -GAT-, derived through the substitution of the loop residue T by C. The results obtained from NMR, non-denaturing PAGE, UV-melting, circular dichroism experiments and restrained molecular dynamics indicate that -GAC- adopts a hairpin structure folded through a single residue loop. In the -GAC- hairpin the direction of the G9 sugar is reversed relative to the C8 sugar, thus pushing the backbone of the loop into the major groove. The G9 x C11 base-pair closing the loop is thus neither a sheared base-pair nor a regular Watson-Crick one. Although G9 and C11 are paired through hydrogen bonds of Watson-Crick type, the base-pair is not planar but rather adopts a wedge-shaped geometry with the two bases stacked on top of each other in the minor groove. The distortion decreases the sugar C1'-C1' distance between the paired G9 and C11, to 8 A versus 11 A in the standard B-DNA. The A10 residue at the center of the loop interacts with the G9 x C11 base-pair, and seems to contribute to the extra thermal stability displayed by -GAC- compared to -GAT-. Test calculations allowed us to identify the experimental NOEs critical for inducing the distorted G.C Watson-Crick base-pair. The preference of -GAC- for a hairpin structure rather than a duplex is confirmed by the diffusion constant values obtained from pulse-field gradient NMR experiments. All together, the results illustrate the high degree of plasticity of single-stranded DNAs which can accommodate a variety of turn-loops to fold up on themselves.  相似文献   

6.
X-ray, phylogenetic and quantum chemical analysis of molecular interactions and conservation patterns of cis Watson-Crick (W.C.) A/G base-pairs in 16S rRNA, 23S rRNA and other molecules was carried out. In these base-pairs, the A and G nucleotides interact with their W.C. edges with glycosidic bonds oriented cis relative to each other. The base-pair is stabilised by two hydrogen bonds, the C1'-C1' distance is enlarged and the G(N2) amino group is left unpaired. Quantum chemical calculations show that, in the absence of other interactions, the unpaired amino group is substantially non-planar due to its partial sp(3) pyramidalization, while the whole base-pair is internally propeller twisted and very flexible. The unique molecular properties of the cis W.C. A/G base-pairs make them distinct from other base-pairs. They occur mostly at the ends of canonical helices, where they serve as interfaces between the helix and other motifs. The cis W.C. A/G base-pairs play crucial roles in natural RNA structures with salient sequence conservation patterns. The key contribution to conservation is provided by the unpaired G(N2) amino group that is involved in a wide range of tertiary and neighbor contacts in the crystal structures. Many of them are oriented out of the plane of the guanine base and utilize the partial sp(3) pyramidalization of the G(N2). There is a lack of A/G to G/A covariation, which, except for the G(N2) position, would be entirely isosteric. On the contrary, there is a rather frequent occurrence of G/A to G/U covariation, as the G/U wobble base-pair has an unpaired amino group in the same position as the cis W.C. G/A base-pair. The cis W.C. A/G base-pairs are not conserved when there is no tertiary or neighbor interaction. Obtaining the proper picture of the interactions and phylogenetic patterns of the cis W.C. A/G base-pairs requires a detailed analysis of the relation between the molecular structures and the energetics of interactions at a level of single H-bonds and contacts.  相似文献   

7.
Translation of the open reading frames (ORF) of the hepatitis C virus (HCV) and closely related GB virus B (GBV-B) genomes is driven by internal ribosome entry site (IRES) elements located within the 5' non-translated RNA. The functioning of these IRES elements is highly dependent on primary and higher order RNA structures. We present here the solution structures of a common, critical domain within each of these IRESs, stem-loop IIIc. These ten-nucleotide hairpins have nearly identical sequences and similar overall tertiary folds. The final refined structure of each shows a stem with three G:C base-pairs and a novel tetraloop fold. Although the bases are buckled, the first and fourth nucleotides of both tetraloops form a Watson-Crick type base-pair, while the apical nucleotides are located in the major groove where they adopt C(2)-endo sugar puckering with B-form geometry. No hydrogen bonding interactions were observed involving the two apical residues of the tetraloop. Stability of the loops appears to be derived primarily from the stacking of bases, and the hydrogen bonding between the fourth and seventh residues. Mutational analysis shows that the primary sequence of stem-loop IIIc is important for IRES function and that the stem and first and fourth nucleotides of the tetraloop contribute to the efficiency of internal ribosome entry. Base-pair formation between these two positions is essential. In contrast, the apical loop nucleotides differ between HCV and GBV-B, and substitutions in this region of the hairpin are tolerated without major loss of function.  相似文献   

8.
The synthetic dodecanucleotide d(CGCAAATTGGCG) has been analysed by single-crystal X-ray diffraction techniques and the structure refined to R = 0.16 and 2.25 A resolution, with the location of 94 solvent molecules. The sequence crystallizes as a full turn of a B-DNA helix with ten Watson-Crick base-pairs and two adenine-guanine mispairs. The analysis clearly shows that the mismatches are of the form A(anti).G(syn). Thermal denaturation studies indicate that the stability of the duplex is strongly pH dependent, with a maximum at pH 5.0, suggesting that the base-pair is stabilized by protonation. Three different arrangements have been observed for base-pairs between guanine and adenine and it is likely that A.G mismatch conformation is strongly influenced by dipole-dipole interactions with adjacent base-pairs.  相似文献   

9.
We reported previously on NMR studies of (Y+)n.(R+)n(Y-)n DNA triple helices containing one oligopurine strand (R)n and two oligopyrimidine strands (Y)n stabilized by T.AT and C+.GC base triples [de los Santos, C., Rosen, M., & Patel, D. J. (1989) Biochemistry 28, 7282-7289]. Recently, it has been established that guanosine can recognize a thymidine.adenosine base pair to form a G.TA triple in an otherwise (Y+)n.(R+)n(Y-)n triple-helix motif. [Griffin, L. C., & Dervan, P. B. (1989) Science 245, 967-971]. The present study extends the NMR research to the characterization of structural features of a 31-mer deoxyoligonucleotide that folds intramolecularly into a 7-mer (Y+)n.(R+)n(Y-)n triplex with the strands linked through two T5 loops and that contains a central G.TA triple flanked by T.AT triples. The G.TA triplex exhibits an unusually well resolved and narrow imino and amino exchangeable proton and nonexchangeable proton spectrum in H2O solution, pH 4.85, at 5 degrees C. We have assigned the imino protons of thymidine and amino protons of adenosine involved in Watson-Crick and Hoogsteen pairing in T.AT triples, as well as the guanosine imino and cytidine amino protons involved in Watson-Crick pairing and the protonated cytidine imino and amino protons involved in Hoogsteen pairing in C+.GC triples in the NOESY spectrum of the G.TA triplex. The NMR data are consistent with the proposed pairing alignment for the G.TA triple where the guanosine in an anti orientation pairs through a single hydrogen bond from one of its 2-amino protons to the 4-carbonyl group of thymidine in the Watson-Crick TA pair.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Biological RNAs, like their DNA counterparts, contain helical stretches, which have standard Watson-Crick base pairs in the anti conformation. Most functional RNAs also adopt geometries with far greater complexity such as bulges, loops, and multihelical junctions. Occasionally, nucleobases in these regions populate the syn conformation wherein the base resides close to or over the ribose sugar, which leads to a more compact state. The importance of the syn conformation to RNA function is largely unknown. In this study, we analyze 51 RNAs with tertiary structure, including aptamers, riboswitches, ribozymes, and ribosomal RNAs, for number, location, and properties of syn nucleobases. These RNAs represent the set of nonoverlapping, moderate- to high-resolution structures available at present. We find that syn nucleobases are much more common among purines than pyrimidines, and that they favor C2'-endo-like conformations especially among those nucleobases in the intermediate syn conformation. Strikingly, most syn nucleobases participate in tertiary stacking and base-pairing interactions: Inspection of RNA structures revealed that the majority of the syn nucleobases are in regions assigned to function, with many syn nucleobases interacting directly with a ligand or ribozyme active site. These observations suggest that judicious placement of conformationally restricted nucleotides biased into the syn conformation could enhance RNA folding and catalysis. Such changes could also be useful for locking RNAs into functionally competent folds for use in X-ray crystallography and NMR.  相似文献   

11.
The polynucleotide helix d(T)n.d(A)n.d(T)n is the only deoxypolynucleotide triple helix for which a structure has been published, and it is generally assumed as the structural basis for studies of DNA triplexes. The helix has been assigned to an A-form conformation with C3'-endo sugar pucker by Arnott and Selsing [1974; cf. Arnott et al. (1976)]. We show here by infrared spectroscopy in D2O solution that the helix is instead B-form and that the sugar pucker is in the C2'-endo region. Distamycin A, which binds only to B-form and not to A-form helices, binds to the triple helix without displacement of the third strand, as demonstrated by CD spectroscopy and gel electrophoresis. Molecular modeling shows that a stereochemically satisfactory structure can be build using C2'-endo sugars and a displacement of the Watson-Crick base-pair center from the helix axis of 2.5 A. Helical constraints of rise per residue (h = 3.26 A) and residues per turn (n = 12) were taken from fiber diffraction experiments of Arnott and Selsing (1974). The conformational torsion angles are in the standard B-form range, and there are no short contacts. In contrast, we were unable to construct a stereochemically allowed model with A-form geometry and C3'-endo sugars. Arnott et al. (1976) observed that their model had short contacts (e.g., 2.3 A between the phosphate-dependent oxygen on the A strand and O2 in the Hoogsteen-paired thymine strand) which are generally known to be outside the allowed range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We present a systematic investigation of the thermodynamic and kinetic role of the intermolecular G292-C(75 )and G293-C(74 )Watson-Crick base-pairs in the reaction catalyzed by Escherichia coli RNase P RNA. Single turnover kinetics were analyzed for wild-type RNase P RNA and two variants with a single G to C exchange (C292 or C293), either acting on wild-type precursor tRNA (ptRNA) or derivatives carrying a complementary change at the tRNA 3'-end (G(74)CA or CG(75)A). Ground state binding of tRNA was studied using three different methods, including a novel fluorescence-based assay measuring equilibrium binding. We conclude that: (1) the role of the G293-C(74 )interaction is essentially confined to Watson-Crick base-pairing, with no indication for crucial tertiary contacts involving this base-pair; (2) the G293-C(74 )pair, although being as important for ptRNA ground state binding as G292-C(75), is much less crucial to catalytic performance than the G292-C(75) pair; (3) disruption of the G292-C(75 )base-pair results in preferential destabilization of enzyme transition-state complexes; and (4) the identity of the G292-C(75) pair, as part of the higher-order structural context consisting of coplanar G292-C(75)-A258 and G291-G259-A(76 )triples, contributes to high affinity binding of ptRNA and catalytic efficiency.  相似文献   

13.
The conformation and dynamics of the deoxyribose rings of a (nogalamycin)2-d(5'-GCATGC)2 complex have been determined from an analysis of 1H-1H vicinal coupling constants and sums of coupling constants (J1'-2',J1'-2",epsilon 1', epsilon 2' and epsilon 2") measured from one-dimensional n.m.r. spectra and from H-1'-H-2' and H-1'-H-2" cross-peaks in high-resolution phase-sensitive two-dimensional correlation spectroscopy (COSY) and double-quantum-filtered correlation spectroscopy (DQF-COSY) experiments. The value of J3'-4' has also been estimated from the magnitude of H-3'-H-4' cross-peaks in DQF-COSY spectra and H-1'-H-4' coherence transfer cross-peaks in two-dimensional homonuclear Hartman-Hahn spectroscopy (HOHAHA) spectra. The data were analysed, in terms of a dynamic equilibrium between North (C-3'-endo) and South (C-2'-endo) conformers, by using the graphical-analysis methods described by Rinkel & Altona [(1987) J. Biomol. Struct. Dyn. 4,621-649]. The data reveal that the sugars of the 2C-5G and 3A-4T base-pairs, which form the drug-intercalation site, have strikingly different properties. The deoxyribose rings of the 2C-5G base-pair are best described in terms of an equilibrium heavily weighted in favour of the C-2'-endo geometry (greater than 95% 'S'), with a phase angle, P, lying in the range 170-175 degrees and amplitude of pucker between 35 and 40 degrees, as typically found for B-DNA. For the deoxyribose rings of the 3A-4T base-pair, however, the analysis shows that, for 3A, the C-2'-endo and C3'-endo conformers are equally populated, whereas a more limited data set for the 4T nucleotide restricts the equilibrium to within 65-75% C-2'-endo. The deoxyribose rings of the 1G-6C base-pair have populations of 70-80% C-2'-endo, typical of nucleotides at the ends of a duplex. Although drug-base-pair stacking interactions are an important determinant of the enhanced duplex stability of the complex [Searle, Hall, Denny, & Wakelin (1988) Biochemistry 27, 4340-4349], the current findings make it clear that the same interactions can be associated with considerable variations in the degree of local structural dynamics at the level of the sugar puckers.  相似文献   

14.
We have designed a DNA sequence, d(G-G-G-T-T-C-A-G-G), which dimerizes to form a 2-fold symmetric G-quadruplex in which G(syn). G(anti).G(syn).G(anti) tetrads are sandwiched between all trans G. (C-A) triads. The NMR-based solution structural analysis was greatly aided by monitoring hydrogen bond alignments across N-H...N and N-H...O==C hydrogen bonds within the triad and tetrad, in a uniformly ((13)C,(15)N)-labeled sample of the d(G-G-G-T-T-C-A-G-G) sequence. The solution structure establishes that the guanine base-pairs with the cytosine through Watson-Crick G.C pair formation and with adenine through sheared G.A mismatch formation within the G.(C-A) triad. A model of triad DNA was constructed that contains the experimentally determined G.(C-A) triad alignment as the repeating stacked unit.  相似文献   

15.
The base analogue N4-methoxycytosine (mo4C) is ambivalent in its hydrogen-bonding potential, since it forms stable base-pairs with both adenine and guanine in oligomer duplexes. To investigate the base-pair geometry, the structure of d(CGCGmo4CG) has been determined by single-crystal X-ray diffraction techniques. The d(CGCGmo4CG)2 crystallized in a left-handed double helical structure (Z-type). Refinement using 2559 reflections between 10 and 1.7 A converged with a final R = 0.181 (Rw = 0.130) including 68 solvent molecules. The orthorhombic crystals are in the space group P2(1)2(1)2(1), with cell dimensions a = 18.17 A, b = 30.36 A, c = 43.93 A. The mo4C.G base-pair is of the wobble type, with mo4C in the imino form, and the methoxy group in the syn configuration.  相似文献   

16.
Alternating self-complementary oligonucleotides starting with a 5'-pyrimidine usually form left-handed Z-DNA; however, with a 5'-purine start sequence they form the right-handed A-DNA. Here we report the crystal structure of the decamer d(GCGCGCGCGC) with a 5'-purine start in the Z-DNA form. The decamer crystallizes in the hexagonal space group P6(5)22, unit cell dimensions a = b = 18.08 and c = 43.10 A, with one of the following four dinucleotide diphosphates in the asymmetric unit: d(pGpC)/d(GpCp)/d(pCpG)/d(CpGp). The molecular replacement method, starting with d(pGpC) of the isomorphous Z-DNA hexamer d(araC-dG)3 without the 2'-OH group of arabinose, was used in the structure analysis. The method gave the solution only after the sugar-phosphate conformation of the GpC step was manipulated. The refinement converged to a final R value of 18.6% for 340 unique reflections in the resolution range 8.0-1.9 A. A result of the sequence alternation is the alternation in the nucleotide conformation; guanosine is C3'-endo, syn, and cytidine is C2'-endo, anti. The CpG step phosphodiester conformation is the same as ZI or ZII, whereas that of the GpC step phosphodiester is "intermediate" in the sense that zeta (O3'-P bond) is the same as ZII but alpha (P-O5' bond) is the same as ZI. The duplexes generated from the dinucleotide asymmetric unit are stacked one on top of the other in the crystal to form an infinite pseudocontinuous helix. This renders it a quasi-polymerlike structure that has assumed the Z-DNA conformation further strengthened by the long inner Z-forming stretch d(CG)4. An interesting feature of the structure is the presence of water strings in both the major and the minor grooves. In the minor groove the cytosine carbonyl oxygen atoms of the GpC and CpG steps are cross-bridged by water molecules that are not themselves hydrogen bonded but are enclosed by the water rings in the mouth of the minor groove. In the major groove three independent water molecules form a zigzagging continuous water string that runs throughout the duplex.  相似文献   

17.
Structure of the beta-form of poly d(A).poly d(U)   总被引:1,自引:0,他引:1  
The crystalline beta-form of the sodium salt of poly d(A).poly d(U) trapped in oriented fibers forms a Watson-Crick base-paired, 10(1) double-helix of pitch 3.2 nm. Two molecules are present in a monoclinic unit cell apparently isomorphous with beta-poly d(A).poly d(T). The two chains in each molecule both carry C2'-endo puckered furanose rings but are conformationally not identical. The orientations of the A:U base-pairs relative to the helix-axis are distinctly different from those in classical B-DNA and the overall morphology of the duplex in which they reside resembles that of the alpha-forms of poly (purine).poly (pyrimidine) DNA duplexes previously reported.  相似文献   

18.
The architecture of G-G-G-G tetrad-aligned DNA quadruplexes in monovalent cation solution is dependent on the directionality of the four strands, which in turn are defined by loop connectivities and the guanine syn/anti distribution along individual strands and within individual G-G-G-G tetrads. The smallest unimolecular G-quadruplex belongs to the d(G2NnG2NnG2NnG2) family, which has the potential to form two stacked G-tetrads linked by Nn loop connectivities. Previous studies have focused on the thrombin-binding DNA aptamer d(G2T2G2TGTG2T2G2), where Nn was T2 for the first and third connecting loops and TGT for the middle connecting loop. This DNA aptamer in K(+) cation solution forms a unimolecular G-quadruplex stabilized by two stacked G(syn)-G(anti)-G(syn)-G(anti) tetrads, adjacent strands which are antiparallel to each other and edge-wise connecting T2, TGT and T2 loops. We now report on the NMR-based solution structure of the d(G2T4G2CAG2GT4G2T) sequence, which differs from the thrombin-binding DNA aptamer sequence in having longer first (T4) and third (GT4) loops and a shorter (CA) middle loop. This d(G2T4G2CAG2GT4G2T) sequence in Na(+) cation solution forms a unimolecular G-quadruplex stabilized by two stacked G(syn)-G(syn)-G(anti)-G(anti) tetrads, adjacent strands which have one parallel and one antiparallel neighbors and distinct non-edge-wise loop connectivities. Specifically, the longer first (T4) and third (GT4) loops are of the diagonal type while the shorter middle loop is of the double chain reversal type. In addition, the pair of stacked G-G-G-G tetrads are flanked on one side by a G-(T-T) triad and on the other side by a T-T-T triple. The distinct differences in strand directionalities, loop connectivities and syn/anti distribution within G-G-G-G tetrads between the thrombin-binding DNA aptamer d(G2T2G2TGTG2T2G2) quadruplex reported previously, and the d(G2T4G2CAG2GT4G2T) quadruplex reported here, reinforces the polymorphic nature of higher-order DNA architectures. Further, these two small unimolecular G-quadruplexes, which are distinct from each other and from parallel-stranded G-quadruplexes, provide novel targets for ligand recognition. Our results demonstrate that the double chain reversal loop connectivity identified previously by our laboratory within the Tetrahymena telomere d(T2G4)4 quadruplex, is a robust folding topology, since it has now also been observed within the d(G2T4G2CAG2GT4G2T) quadruplex. The identification of a G-(T-T) triad and a T-T-T triple, expands on the available recognition alignments for base triads and triples.  相似文献   

19.
Three-dimensional structures of the fragile X triplet repeats (GCC)n and (GGC)n are derived by using one- dimensional/two-dimensional NMR. Under a wide range of solution conditions (10-150 mM NaCl,pH6-7)(GCC)5-7 strands form exclusively slipped hairpins with a 3' overhanging C. The slipped hairpins of (GCC)n strands show the following structural characteristics: (i) maximization of Watson-Crick G.C pairs; (ii) formation of C.C mispairs at the CpG steps in the stem; (iii) C2'-endo, anti conformations for all the nucleotides. The ability of (GCC)n strands to form hairpin structures more readily than complementary (GGC)n strands suggests preferential slippage during replication and subsequent expansion of the (GCC)n strands. In addition, the C.C. mispairs at the CpG site of (GCC)n hairpins account for their exceptional substrate efficiencies for human methyltransferase. Gel electrophoresis data show that (GGC)n strands form both hairpin and mismatched duplex structures in 10-150 mM NaCl (ph 6-7) for n < 10, but for n > or + 11 hairpin structures are exclusively present. However, (GGC)n strands remain predominantly in the duplex state for n=4-11 under NMR solution conditions, which require DNA concentrations 100- to 1000-fold higher than in gel electrophoresis. NMR analyses of [(GGC)n]2 duplexes for n=4-6 show the presence of Watson-Crick G.C and mismatched G anti G syn pairs. The mismatches adjacent to the CpG step introduce local structural flexibility in these duplexes. Similar structural properties are also expected in the stem of the hairpins formed by (GGC)n strands.  相似文献   

20.
DNA polymerase enzymes employ a number of innate fidelity mechanisms to ensure the faithful replication of the genome. However, when confronted with DNA damage, their fidelity mechanisms can be evaded, resulting in a mutation that may contribute to the carcinogenic process. The environmental carcinogen benzo[a]pyrene is metabolically activated to reactive intermediates, including the tumorigenic (+)-anti-benzo[a]pyrene diol epoxide, which can attack DNA at the exocyclic amino group of guanine to form the major (+)-trans-anti-[BP]-N(2)-dG adduct. Bulky adducts such as (+)-trans-anti-[BP]-N(2)-dG primarily block DNA replication, but are occasionally bypassed and cause mutations if paired with an incorrect base. In vitro standing-start primer-extension assays show that the preferential insertion of A opposite (+)-trans-anti-[BP]-N(2)-dG is independent of the sequence context, but the primer is extended preferentially when dT is positioned opposite the damaged base in a 5'-CG*T-3' sequence context. Regardless of the base positioned opposite (+)-trans-anti-[BP]-N(2)-dG, extension of the primer past the lesion site poses the greatest block to polymerase progression. In order to gain insight into primer-extension of each base opposite (+)-trans-anti-[BP]-N(2)-dG, we carried out molecular modeling and 1.25 ns unrestrained molecular dynamics simulations of the adduct in the +1 position of the template within the replicative pol I family T7 DNA polymerase. Each of the four bases was modeled at the 3' terminus of the primer, incorporated opposite the adduct, and the next-to-be replicated base was in the active site with its Watson-Crick partner as the incoming nucleotide. As in our studies of nucleotide incorporation, (+)-trans-anti-[BP]-N(2)-dG was modeled in the syn conformation in the +1 position, with the BP moiety on the open major groove side of the primer-template duplex region, leaving critical protein-DNA interactions intact. The present work revealed that the efficiency of primer-extension past this bulky adduct opposite each of the four bases in the 5'-CG*T-3' sequence can be rationalized by the stability of interactions between the polymerase protein, primer-template DNA and incoming nucleotide. However, the relative stabilization of each nucleotide opposite (+)-trans-anti-[BP]-N(2)-dG in the +1 position (T > G > A > or = C) differed from that when the adduct and partner were the nascent base-pair (A > T > or = G > C). In addition, extension past (+)-trans-anti-[BP]-N(2)-dG may pose a greater block to a high fidelity DNA polymerase than does nucleotide incorporation opposite the adduct because the presence of the modified base-pair in the +1 position is more disruptive to the polymerase-DNA interactions than it is within the active site itself. The dN:(+)-trans-anti-[BP]-N(2)-dG base-pair is strained to shield the bulky aromatic BP moiety from contact with the solvent in the +1 position, causing disruption of protein-DNA interactions that would likely result in decreased extension of the base-pair. These studies reveal in molecular detail the kinds of specific structural interactions that determine the function of a processive DNA polymerase when challenged by a bulky DNA adduct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号