首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclear pore complexes (NPCs) conduct selective, bidirectional transport across the nuclear envelope. The NPC passageway is lined by intrinsically disordered proteins that contain hydrophobic phenylalanine-glycine (FG) motifs, known as FG nucleoporins (FG nups), that play the key role in the NPC transport mechanism. Cohesive interactions among the FG nups, which arise from the combination of hydrophobic, electrostatic, and other forces, have been hypothesized to control the morphology of the assemblies of FG nups in the NPC, as well as their permeability with respect to the transport proteins. However, the role of FG nup cohesiveness is still vigorously debated. Using coarse-grained polymer theory and numerical simulations, we study the effects of cohesiveness on the selective permeability of in vitro FG nup assemblies in different geometries that have served as proxies for the morphological and transport properties of the NPC. We show that in high-density FG nup assemblies, increase in cohesiveness leads to the decrease in their permeability, in accordance with the accepted view. On the other hand, the permeability of low-density assemblies is a nonmonotonic function of the cohesiveness, and a moderate increase in cohesiveness can enhance permeability. The density- and cohesiveness-dependent effects on permeability are explained by considering the free-energy cost associated with penetrating the FG nup assemblies. We discuss the implications of these findings for the organization and function of the NPC.  相似文献   

2.
Developing treatment strategies for osteoporosis would be facilitated by identifying genes regulating bone mineral density (BMD). One way to do so is through quantitative trait locus (QTL) mapping. However, there are sex differences in terms of the presence/absence and locations of BMD QTLs. In a previous study, our group identified a BMD QTL on chromosome 17 in the F2 female mice of the MRL/MpJ × SJL/J cross. Here, we determined whether it was also present in the male mice of the same cross. Furthermore, we also intended to reduce the QTL region by increasing marker density. Interval mapping showed that the same QTL based on chromosomal positions was present in the male mice, with logarithmic odds (LOD) scores of 4.0 for femur BMD and 5.2 for total body BMD. Although there was a body weight QTL at the same location, the BMD QTL was not affected by the adjustment for body weight. Mapping with increased marker density indicated a most likely region of 35–55 Mb for this QTL. There were also co-localized QTLs for femur length, femur periosteal circumference (PC) and total body bone area, suggesting possibility of pleiotropy. Runx2 and VEGFA are strong candidate genes located within this QTL region.  相似文献   

3.
Liu J  Jambunathan N  McNellis TW 《Planta》2005,221(1):85-94
The copines are a newly identified, widely distributed class of Ca2+-dependent, phospholipid-binding proteins that may be involved in cellular signaling. The copines have a characteristic domain structure: two C2 domains in the N-terminal region and a von Willebrand A (VWA) domain in the C-terminal region. Studies suggest that copines interact with target protein(s) via their VWA domain and recruit the proteins to a membrane location through the activity of the C2 domains. Arabidopsis thaliana (L.) Heynh. plants with loss-of-function mutations in the BONZAI 1/COPINE 1 (BON1/CPN1) gene display aberrant regulation of defense responses, including development of a lesion-mimic phenotype, an accelerated hypersensitive response, and increased resistance to a bacterial and an oomycetous pathogen. The phenotype of mutants in BON1/CPN1 is both humidity- and temperature-sensitive. In this study, we generated transgenic plants expressing either the VWA or the C2 portions of BON1/CPN1 in the wild-type Columbia-0 (Col-0) genetic background. Transgenic plants expressing the BON1/CPN1 C2 domain portion appeared like wild-type plants. However, transgenic plants expressing the BON1/CPN1 VWA domain exhibited a lesion-mimic phenotype that partially phenocopied bon1/cpn1 mutant plants. Our data suggest that BON1/CPN1 VWA domain fragments may interfere with the function of the full-length endogenous BON1/CPN1 protein, possibly by competing with the full-length BON1/CPN1 protein for association with target proteins normally bound to the full-length BON1/CPN1 protein.  相似文献   

4.
The probability of, and time to, fixation of a mutation in a population has traditionally been studied by the classic Wright–Fisher model where population size is constant. Recent theoretical expansions have covered fluctuating populations in various ways but have not incorporated models of how the environment fluctuates in combination with different levels of density-compensation affecting fecundity. We tested the hypothesis that the probability of, and time to, fixation of neutral, advantageous and deleterious mutations is dependent on how the environment fluctuates over time, and on the level of density-compensation. We found that fixation probabilities and times were dependent on the pattern of autocorrelation of carrying capacity over time and interacted with density-compensation. The pattern found was most pronounced at small population sizes. The patterns differed greatly depending on whether the mutation was neutral, advantageous, or disadvantageous. The results indicate that the degree of mismatch between carrying capacity and population size is a key factor, rather than population size per se, and that effective population sizes can be very low also when the census population size is far above the carrying capacity. This study highlights the need for explicit population dynamic models and models for environmental fluctuations for the understanding of the dynamics of genes in populations.  相似文献   

5.
6.
Meng X  Huang B  Zhou L  He Y  Chen Q  Yuan Y  Xu Z  Song R 《Génome》2010,53(9):667-674
Coix lacryma-jobi L. (Coix) is a close relative of maize and is considered a valuable genetic resource for crop improvement. Here we report the construction of the first Coix bacterial artificial chromosome (BAC) library using accession PI 324059. This BAC library contains about 230?400 clones with an average insert size of 113?kb, has low organellar DNA contamination, and provides 16.3-fold coverage of the genome. The library was stored in 12?× 96 pools that could be screened with a PCR protocol. Library screening was performed for the 22?kDa α-coixin gene family. A total of 57 positive pools were identified, and single clones were isolated from 19 of these pools. Based on DNA fingerprinting and Southern blot analysis, these 19 BAC clones form a single contig of about 340?kb in length, indicating that the 22 kDa α-coixin genes occur in a cluster. These results demonstrated the suitability of this BAC library for gene isolation and comparative genomics studies of the Coix genome.  相似文献   

7.
Efforts for the conservation of the endangered bat species Hipposideros turpis turpis in southern Japan are hampered by a lack of information about its biology and natural history and by the increasing effect of human activities. In an attempt to address some of the conservation challenges faced by this species, we studied the genetic structure and dispersal of intra- and interisland populations using six species-specific microsatellite markers. In particular, we sought to establish the relationship between island populations and to define effective management units for conservation. Pairwise co-ancestry index (F ST) analysis, analysis of molecular variance, and Bayesian clustering suggested the presence of significant genetic differentiation between islands but little differentiation within them. The small Yonaguni Island population appeared to be not only geographically isolated, but also genetically isolated. This population is at the greatest risk of extinction, considering its size and low genetic variation. The larger populations on Iriomote and Ishigaki Islands are genetically related to each other to a greater degree and exhibit higher genetic variation than the Yonaguni Island population. This suggests that these two island populations should be included in a single management unit, while bats from Yonaguni Island should be managed independently and given higher priority for conservation. Actions such as defining vegetation corridors between colonies, as well as building gates at the entrance of the largest known colony, should be included in the conservation agenda of this still poorly known species.  相似文献   

8.
Bistability in apoptosis, or programmed cell death, is crucial for the healthy functioning of multicellular organisms. The aim in this study is to show the presence of bistability in a mitochondria-dependent apoptosis model under nitric oxide effects using chemical reaction network theory. The model equations are a set of coupled ordinary differential equations arising from the assumed mass action kinetics. Whether these equations have a capacity for bistability (cell survival and apoptosis) is determined using a modular approach in which the model is decomposed into modules. Each module contains only a subset of the whole model and is analyzed separately. It is seen that bistability in a module is preserved throughout the whole model after adding the remaining reactions in the pathway on these modules. It is also found that inhibitor effect of some proteins and the appearance of a reacting protein in a later stage as a product is a desired feature but not sufficient for bistability (in the absence of cooperativity effects). On the whole model, two apoptotic and two cell survival states are obtained depending on the initial cell conditions. The results suggest that the antiapoptotic effects of nitric oxide species are responsible for the bistable character of the apoptotic pathway when cooperativity is not assumed in the apoptosome formation.  相似文献   

9.
Escherichia coli can perform two modes of formate metabolism. Under respiratory conditions, two periplasmically-located formate dehydrogenase isoenzymes couple formate oxidation to the generation of a transmembrane electrochemical gradient; and under fermentative conditions a third cytoplasmic isoenzyme is involved in the disproportionation of formate to CO2 and H2. The respiratory formate dehydrogenases are redox enzymes that comprise three subunits: a molybdenum cofactor- and FeS cluster-containing catalytic subunit; an electron-transferring ferredoxin; and a membrane-integral cytochrome b. The catalytic subunit and its ferredoxin partner are targeted to the periplasm as a complex by the twin-arginine transport (Tat) pathway. Biosynthesis of these enzymes is under control of an accessory protein termed FdhE. In this study, it is shown that E. coli FdhE interacts with the catalytic subunits of the respiratory formate dehydrogenases. Purification of recombinant FdhE demonstrates the protein is an iron-binding rubredoxin that can adopt monomeric and homodimeric forms. Bacterial two-hybrid analysis suggests the homodimer form of FdhE is stabilized by anaerobiosis. Site-directed mutagenesis shows that conserved cysteine motifs are essential for the physiological activity of the FdhE protein and are also involved in iron ligation.  相似文献   

10.
Leptospira infection involves the adhesion of the bacteria followed by invasion of the host crossing the extracellular matrix barrier. In an effort to understand the molecular mechanism of this process, the possibility of occurrence of matrix degrading enzymes from Leptospira was investigated. Zymographic analysis showed that the outer membrane of Leptospires contains a gelatinase of average molecular size of 46 kDa. The gelatinase exhibited maximum activity at neutral pH and was inhibited by metal chelators such as EGTA, EDTA, and Orthophenanthroline and was activated by calcium, magnesium, zinc, and copper, suggesting that it is a membrane-associated neutral matrix metalloproteinase. Analysis of the production of the enzyme by various serovars showed that the pathogenic serovars expressed significant amount of this enzyme while nonpathogenic forms either did not express or showed only very low activity, suggesting that this enzyme may be associated with pathogenesis of leptospirosis.  相似文献   

11.
The aquatic environment is affected by numerous chemical contaminants. There is an increasing need to identify these chemicals and to evaluate their potential toxicity towards aquatic life. In this research we optimized techniques for primary cell culture of Cyprinus carpio hepatocytes as one adjunct model for ecotoxicological evaluation of the potential hazards of xenobiotics in the aquatic environment. In this study, Cyprinus carpio hepatocytes were isolated by mechanical separation, two-step collagenase perfusion, and pancreatin digestion. The hepatocytes or parenchymal cells could be separated from cell debris and from non-parenchymal cells by low-speed centrifugation (Percoll gradient centrifugation). The harvested hepatocytes were suspended in DMEM, M199 (cultured in 5% CO2), or L-15 (cultured without 5% CO2) medium then cultured at 17, 27, or 37 °C. Cell yield was counted by use of a hemocytometer, and the viability of the cells was assessed by use of the Trypan blue exclusion test. Results from these studies showed that the best method of isolation was pancreatin digestion (the cell yield was 2.7 × 108 per g (liver weight) and the viability was 98.4%) and the best medium was M199 (cultured in 5% CO2) or L-15 (cultured without 5% CO2). The optimum culture temperature was 27 °C. The primary hepatocytes culture of Cyprimus carpio grew well and satisfied requirements for most toxicological experiments in this condition.  相似文献   

12.
Epidemic transmission is one of the critical density-dependent mechanisms that affect species viability and dynamics. In a predator-prey system, epidemic transmission can strongly affect the success probability of hunting, especially for social animals. Predators, therefore, will suffer from the positive density-dependence, i.e., Allee effect, due to epidemic transmission in the population. The rate of species contacting the epidemic, especially for those endangered or invasive, has largely increased due to the habitat destruction caused by anthropogenic disturbance. Using ordinary differential equations and cellular automata, we here explored the epidemic transmission in a predator-prey system. Results show that a moderate Allee effect will destabilize the dynamics, but it is not true for the extreme Allee effect (weak or strong). The predator-prey dynamics amazingly stabilize by the extreme Allee effect. Predators suffer the most from the epidemic disease at moderate transmission probability. Counter-intuitively, habitat destruction will benefit the control of the epidemic disease. The demographic stochasticity dramatically influences the spatial distribution of the system. The spatial distribution changes from oil-bubble-like (due to local interaction) to aggregated spatially scattered points (due to local interaction and demographic stochasticity). It indicates the possibility of using human disturbance in habitat as a potential epidemic-control method in conservation.  相似文献   

13.
We study the evolution of an individual’s reproductive strategy in a mechanistic modeling framework. We assume that the total number of juveniles one adult individual can produce is a finite constant, and we study how this number should be distributed during the season, given the types of inter-individual interactions and mortality processes included in the model. The evolution of the timing of reproduction in this modeling framework has already been studied earlier in the case of equilibrium resident dynamics, but we generalize the situation to also fluctuating population dynamics. We find that, as in the equilibrium case, the presence or absence of inter-juvenile aggression affects the functional form of the evolutionarily stable reproductive strategy. If an ESS exists, it can have an absolutely continuous part only if inter-juvenile aggression is included in the model. If inter-juvenile aggression is not included in the model, an ESS can have no continuous parts, and only Dirac measures are possible.  相似文献   

14.
Theory predicts that genetic variation in phenotypic plasticity (genotype × environment interaction or G × E) should be eroded by selection acting across environments. However, it appears that G × E is often maintained under selection, although not universally. This variation in the presence and strength of G × E requires explanation. Here I ask whether the explanation may lie in the grain of the environment at which G × E is expressed. The grain (or grain size) of the environment refers to the scale of environmental heterogeneity relative to generation time – that is, relative to the window of operation of selection – with higher rates of heterogeneity occurring in finer‐grained environments. The hypothesis that the grain of the environment explains variation in the expression of G × E encapsulates variation in the power of selection to shape reaction norms: selection should be able to erode G × E in fine‐grained environments but lose its power as the grain becomes coarser. I survey studies of G × E in sexual traits and demonstrate that the strength of G × E varies with the grain of the environment across which it is expressed, with G × E being stronger in coarser‐grained environments. This result elucidates when G × E is most likely to be sustained in the reaction norms of fitness‐related traits and when its evolutionary consequences will be most pronounced.  相似文献   

15.
We study the final size equation for an epidemic in a subdivided population with general mixing patterns among subgroups. The equation is determined by a matrix with the same spectrum as the next generation matrix and it exhibits a threshold controlled by the common dominant eigenvalue, the basic reproduction number R0{\mathcal{R}_{0}}: There is a unique positive solution giving the size of the epidemic if and only if R0{\mathcal{R}_{0}} exceeds unity. When mixing heterogeneities arise only from variation in contact rates and proportionate mixing, the final size of the epidemic in a heterogeneously mixing population is always smaller than that in a homogeneously mixing population with the same basic reproduction number R0{\mathcal{R}_{0}}. For other mixing patterns, the relation may be reversed.  相似文献   

16.
17.
Wen X  Qiu N  Lu Q  Lu C 《Planta》2005,220(3):486-497
Thermotolerance of photosystem II (PSII) in leaves of salt-adapted Artemisia anethifolia L. plants (100–400 mM NaCl) was evaluated after exposure to heat stress (30–45°C) for 30 min. After exposure to 30°C, salt adaptation had no effects on the maximal efficiency of PSII photochemistry (Fv/Fm), the efficiency of excitation capture by open PSII centers (Fv/Fm), or the actual PSII efficiency (PSII). After pretreatment at 40°C, there was a striking difference in the responses of Fv/Fm, Fv/Fm and PSII to heat stress in non-salt-adapted and salt-adapted leaves. Leaves from salt-adapted plants maintained significantly higher values of Fv/Fm, Fv/Fm and PSII than those from non-salt-adapted leaves. The differences in Fv/Fm, Fv/Fm and PSII between non-salt-adapted and salt-adapted plants persisted for at least 12 h following heat stress. These results clearly show that thermotolerance of PSII was enhanced in salt-adapted plants. This enhanced thermotolerance was associated with an improvement in thermotolerance of the PSII reaction centers, the oxygen-evolving complexes and the light-harvesting complex. In addition, we observed that after exposure to 42.5°C for 30 min, non-salt-adapted plants showed a significant decrease in CO2 assimilation rate while in salt-adapted plants CO2 assimilation rate was either maintained or even increased to some extent. Given that photosynthesis is considered to be the physiological process most sensitive to high-temperature damage and that PSII appears to be the most heat-sensitive part of the photosynthetic apparatus, enhanced thermotolerance of PSII may be of significance for A. anethifolia, a halophyte plant, which grows in the high-salinity regions in the north of China, where the air temperature in the summer is often as high as 45°C.  相似文献   

18.
In this work, embryos of selected Vicia species were examined to reveal the micromorphological characters that could have taxonomic significance. Experimental results show that morphological characters such as cotyledons shape and colour, radicle shape, colour and position, plumule colour and stipular parts attachments are variable and could be used for taxa identification in the genus Vicia. Numerical analysis based on 38 micromorphological characters was used to build a phenogram that indicated the relationships among the studied taxa. In addition, an identification key using embryo characters was prepared for Vicia species. The variability of embryo characters were discussed in the taxonomic context. Although the embryo characters have only limited phylogenetic signal for Vicia species, they might be used for their morphological delimitation.  相似文献   

19.
T Shen  Y Cao  S Zhuang  H Li 《Biophysical journal》2012,103(4):807-816
Determining the structure of the transition state is critical for elucidating the mechanism behind how proteins fold and unfold. Due to its high free energy, however, the transition state generally cannot be trapped and studied directly using traditional structural biology methods. Thus, characterizing the structure of the transition state that occurs as proteins fold and unfold remains a major challenge. Here, we report a novel (to our knowledge) method that uses engineered bi-histidine (bi-His) metal-binding sites to directly map the structure of the mechanical unfolding transition state of proteins. This method is adapted from the traditional ψ-value analysis, which uses engineered bi-His metal chelation sites to probe chemical (un)folding transition-state structure. The ϕM2+U-value is defined as ΔΔG‡-N/ΔΔGU-N, which is the energetic effects of metal chelation by the bi-His site on the unfolding energy barrier (ΔG‡-N) relative to its thermodynamic stability (ΔGU-N) and can be used to obtain information about the transition state in the mutational site. As a proof of principle, we used the small protein GB1 as a model system and set out to map its mechanical unfolding transition-state structure. Using single-molecule atomic force microscopy and spectrofluorimetry, we directly quantified the effect of divalent metal ion binding on the mechanical unfolding free energy and thermodynamic stability of GB1, which allowed us to quantify ϕM2+U-values for different sites in GB1. Our results enabled us to map the structure of the mechanical unfolding transition state of GB1. Within GB1’s mechanical unfolding transition state, the interface between force-bearing β-strands 1 and 4 is largely disrupted, and the first β-hairpin is partially disordered while the second β-hairpin and the α-helix remain structured. Our results demonstrate the unique application of ψ-value analysis in elucidating the structure of the transition state that occurs during the mechanical unfolding process, offering a potentially powerful new method for investigating the design of novel elastomeric proteins.  相似文献   

20.
Chen L  Lou Q  Zhuang Y  Chen J  Zhang X  Wolukau JN 《Planta》2007,225(3):603-614
We used a newly synthesized allotetraploid between C. sativus (2n = 2x = 14, n gametic chromosome number, x haploid chromosome number) and C. hystrix (2n = 2x = 24) to study the genomic events in its early generations. Results from cytological characterization of the F1 and the allotetraploid progenies showed that the rate of bivalents in meiotic metaphase I of the F1 was greatly improved by chromosome doubling, and further improved during the selfing process of allopolyploid resulting into relatively diploid-like meiosis. Extensive genomic changes were detected by amplified fragment length polymorphism analysis. The changes mainly involved loss of parental restriction fragments and gaining of novel fragments. The total detectable changes were from 11.1 to 32.1%, and the frequency of losing parental fragments was much higher than that of gaining novel fragments. Some of the changes were initiated as early as in the F1 hybrid, whereas others occurred after chromosome doubling (polyploid formation). No significant differences were detected in the reciprocal F1 hybrids and S0 generations. But the data showed that the frequency of sequence losing in C. sativus was about two times higher than in the C. hystrix. Our results demonstrated that the sequence elimination was the major event of genomic changes, and it might provide the physical basis for the diploid-like meiotic behavior in the diploidization of the newly formed allopolyploids. Moreover, the results suggest that the sequence elimination was not caused by cytoplasmic factors, and might relate to genomic recombination and to the numbers of parental chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号