首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Deployment of membrane fusion protein domains during fusion   总被引:2,自引:0,他引:2  
It is clear that both viral and intracellular membrane fusion proteins contain a minimal set of domains which must be deployed at the appropriate time during the fusion process. An account of these domains and their functions is given here for the four best-described fusion systems: influenza HA, sendai virus F1, HIV gp120/41 and the neuronal SNARE core composed of synaptobrevin (syn), syntaxin (stx) and the N- and C-termini of SNAP25 (sn25), together with the Ca(2+)binding protein synaptotagmin (syt). Membrane fusion begins with the binding of the virion or vesicle to the target membrane via receptors. The committed step in influenza HA- mediated fusion begins with an aggregate of HAs (at least eight) with some of their HA2 N-termini, a.k.a. fusion peptides, embedded into the viral bilayer (Bentz, 2000 a). The hypothesis presented in Bentz (2000 b) is that the conformational change of HA to the extended coiled coil extracts the fusion peptides from the viral bilayer. When this extraction occurs from the center of the site of restricted lipid flow, it exposes acyl chains and parts of the HA transmembrane domains to the aqueous media, i.e. a hydrophobic defect is formed. This is the 'transition state' of the committed step of fusion. It is stabilized by a 'dam' of HAs, which are inhibited from diffusing away by the rest of the HAs in the aggregate and because that would initially expose more acyl chains to water. Recruitment of lipids from the apposed target membrane can heal this hydrophobic defect, initiating lipid mixing and fusion. The HA transmembrane domains are required to be part of the hydrophobic defect, because the HA aggregate must be closely packed enough to restrict lipid flow. This hypothesis provides a simple and direct coupling between the energy released by the formation of the coiled coil to the energy needed to create and stabilize the high energy intermediates of fusion. Several of these essential domains have been described for the viral fusion proteins SV5 F1 and HIV gp120/41, and for the intracellular SNARE fusion system. By comparing these domains, we have constructed a minimal set which appears to be adequate to explain how the conformational changes can produce a successful fusion event, i.e. communication of aqueous compartments.  相似文献   

2.
Many viral fusion-mediating glycoproteins couple alpha-helical bundle formation to membrane merger, but have different methods for fusion activation. To study paramyxovirus-mediated fusion, we mutated the SV5 fusion (F) protein at conserved residues L447 and I449, which are adjacent to heptad repeat (HR) B and bind to a prominent cavity in the HRA trimeric coiled coil in the fusogenic six-helix bundle (6HB) structure. These analyses on residues L447 and I449, both in intact F protein and in 6HB, suggest a metamorphic region around these residues with dual structural roles. Mutation of L447 and I449 to aliphatic residues destabilizes the 6HB structure and attenuates fusion activity. Mutation of L447 and I449 to aromatic residues also destabilizes the 6HB structure despite promoting hyperactive fusion, indicating that 6HB stability alone does not dictate fusogenicity. Thus, residues L447 and I449 adjacent to HRB in paramyxovirus F have distinct roles in fusion activation and 6HB formation, suggesting this region is involved in a conformational switch.  相似文献   

3.
Background information. Protein‐mediated merger of biological membranes, membrane fusion, is an important process. To investigate the role of fusogenic proteins in the initial size and dynamics of the fusion pore (a narrow aqueous pathway, which widens to finalize membrane fusion), two different fusion proteins expressed in the same cell line were investigated: the major glycoprotein of baculovirus Autographa californica (GP64) and the HA (haemagglutinin) of influenza X31. Results. The host Sf9 cells expressing these viral proteins, irrespective of protein species, fused to human RBCs (red blood cells) upon acidification of the medium. A high‐time‐resolution electrophysiological study of fusion pore conductance revealed fundamental differences in (i) the initial pore conductance; pores created by HA were smaller than those created by GP64; (ii) the ability of pores to flicker; only HA‐mediated pores flickered; and (iii) the time required for pore formation; HA‐mediated pores took much longer to form after acidification. Conclusion. HA and GP64 have divergent electrophysiological phenotypes even when they fuse identical membranes, and fusion proteins play a crucial role in determining initial fusion pore characteristics. The structure of the initial fusion pore detected by electrical conductance measurements is sensitive to the nature of the fusion protein.  相似文献   

4.
Pairing of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins on vesicles (v-SNAREs) and SNARE proteins on target membranes (t-SNAREs) mediates intracellular membrane fusion. VAMP3/cellubrevin is a v-SNARE that resides in recycling endosomes and endosome-derived transport vesicles. VAMP3 has been implicated in recycling of transferrin receptors, secretion of alpha-granules in platelets, and membrane trafficking during cell migration. Using a cell fusion assay, we examined membrane fusion capacity of the ternary complexes formed by VAMP3 and plasma membrane t-SNAREs syntaxin1, syntaxin4, SNAP-23 and SNAP-25. VAMP3 forms fusogenic pairing with t-SNARE complexes syntaxin1/SNAP-25, syntaxin1/SNAP-23 and syntaxin4/SNAP-25, but not with syntaxin4/SNAP-23. Deletion of the N-terminal domain of syntaxin4 enhanced membrane fusion more than two fold, indicating that the N-terminal domain negatively regulates membrane fusion. Differential membrane fusion capacities of the ternary v-/t-SNARE complexes suggest that transport vesicles containing VAMP3 have distinct membrane fusion kinetics with domains of the plasma membrane that present different t-SNARE proteins.  相似文献   

5.
Molecular dynamics simulations of the influenza hemagglutinin fusion peptide in two differently sized dodecylphosphocholine micelles and a palmitoyl oleoyl phosphatidylcholine bilayer were generated to analyze the influence of the environment. Four independent trajectories (5 ns each for the bilayer, and 2 ns each for the micelles) were generated for each system. The peptide lies at the surface of the micelles, while its N-terminal region inserts deeply in the bilayer. This leads to a substantial increase of the solvation and rigidity of the peptide in micelles as compared to the bilayer. The average structures, nevertheless, are similar in all three systems and agree reasonably with micelle-based NMR structures. When in the bilayer, the peptide increases the chain gauche population and area of adjacent lipids in the same binding leaflet, while it has the opposite effect for the nearby lipids of the other leaflet. These changes, which occur spontaneously to fill voids and defects, cause a decrease in the thickness of the membrane in the neighborhood of the peptide. They would be expected to promote positive curvature, as consistent with the formation of the convex bulge, or "nipple", in the initial stage of membrane fusion. An extension of the classical surfactant theory of Israelachvili based on shapes is proposed to introduce the concept of a "dynamically induced shape" of the membrane lipids by the peptide.  相似文献   

6.
Neurotransmitter release is regulated by SNARE complex-mediated synaptic vesicle fusion. Tomosyn sequesters target SNAREs (t-SNAREs) through its C-terminal VAMP-like domain (VLD). Cumulative biochemical results suggest that the tomosyn-SNARE complex is so tight that VAMP2 cannot displace tomosyn. Based on these results, the tomosyn-SNARE complex has been believed to be a dead-end complex to inhibit neurotransmitter release. On the other hand, some studies using siRNA depletion of tomosyn suggest that tomosyn positively regulates exocytosis. Therefore, it is still controversial whether tomosyn is a simple inhibitor for neurotransmitter release. We recently reported that the inhibitory activity of tomosyn is regulated by the tail domain binding to the VLD. In this study, we employed the liposome fusion assay in order to further understand modes of action of tomosyn in detail. The tail domain unexpectedly had no effect on binding of the VLD to t-SNARE-bearing liposomes. Nonetheless, the tail domain decreased the inhibitory activity of the VLD on the SNARE complex-mediated liposome fusion. These results indicate that the tail domain controls membrane fusion through tomosyn displacement by VAMP2. Deletion of the tail domain-binding region in the VLD retained the binding to t-SNAREs and promoted the liposome fusion. Together, we propose here a novel mechanism of tomosyn that controls synaptic vesicle fusion positively by serving as a placeholder for VAMP2.  相似文献   

7.
The fusion of a vesicle to a target membrane is mediated by temporally and spatially regulated interactions within a set of evolutionarily conserved proteins. Integral to proper fusion is the interaction between proteins originating on both vesicle and target membranes to form a protein bridge between the two membranes, known as the SNARE complex. This protein complex includes the single-pass transmembrane helix proteins: syntaxin and synaptobrevin. Experimental data and amino acid sequence analysis suggest that an interface of interaction is conserved between the transmembrane regions of the two proteins. However, conflicting reports have been presented on the role of the synaptobrevin transmembrane domain in mediating important protein-protein interactions. To address this question, a thermodynamic study was carried out to determine quantitatively the self-association propensities of the transmembrane domains of synaptobrevin and syntaxin. Our results show that the transmembrane domain of synaptobrevin has only a modest ability to self-associate, whereas the transmembrane domain of syntaxin is able to form stable homodimers. Nevertheless, by a single amino acid substitution, synaptobrevin can be driven to dimerize with the same affinity as syntaxin. Furthermore, crosslinking studies show that dimerization of synaptobrevin is promoted by oxidizing agents. Despite the presence of a conserved cysteine residue in the same location as in synaptobrevin, syntaxin dimerization is not promoted by oxidization. This analysis suggests that subtle yet distinct differences are present between the two transmembrane dimer interfaces. A syntaxin/synaptobrevin heterodimer is able to form under oxidizing conditions, and we propose that the interface of interaction for the heterodimer may resemble the homodimer interface formed by the synaptobrevin transmembrane domain. Computational analysis of the transmembrane sequences of syntaxin and synaptobrevin reveal structural models that correlate with the experimental data. These data may provide insight into the role of transmembrane segments in the mechanism of vesicle fusion.  相似文献   

8.
本研究旨在探讨融合蛋白TAT-RIG-I-GFP原核表达载体的构建并验证TAT在跨膜递送中的作用。首先设计了4对特异性引物,克隆了绿头鸭AnasplatyrhynchosRIG-I基因,构建了pET-TAT-RIG-I-GFP和pET-RIG-I-GFP原核表达载体;转化至感受态DE3细胞,经IPTG诱导表达,利用His60镍亲和层析柱纯化,进行SDS-PAGE;然后,将纯化后的上述两种表达蛋白分别孵育DF-1细胞;最后利用荧光显微镜观察是否在DF-1细胞产生相应的荧光。结果证实,携带有TAT的pET-TAT-RIG-I-GFP融合蛋白在DF-1细胞中显示出明显的绿色荧光;而不具有TAT的pET-RIG-I-GFP蛋白却不能显示绿色荧光。这表明携带TAT的融合蛋白已成功进入DF-1细胞,并在跨膜递送过程中发挥了关键作用。上述为进一步研制家禽的抗病毒药物奠定了基础。  相似文献   

9.
Recent crystal structures of Flavivirus and Alphavirus fusion proteins (class II) confirm two major principles of protein machineries that mediate the merger of two opposing lipid bilayers. First, the fusion protein can bridge both membranes tethered by two membrane anchors. Second, refolding or domain rearrangement steps lead to the positioning of both anchors into close proximity at the same end of an elongated structure. Although these two steps are in principle sufficient to pull two opposing membranes together and initiate membrane fusion, accumulating evidence suggests that the process requires the concerted action of a number of fusion proteins at and outside the contact sites. This review will focus on the structures of viral class I and class II fusion proteins and their similarities in facilitating membrane fusion.  相似文献   

10.
Syntaxins are differentially localized in polarized cells and play an important role in vesicle trafficking and membrane fusion. These soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins are believed to be involved in tubulovesicle trafficking and membrane fusion during the secretory cycle of the gastric parietal cell. We examined the cellular localization and distribution of syntaxin-1 and syntaxin-3 in rabbit parietal cells. Fractionation of gastric epithelial cell membranes showed that syntaxin-1 was more abundant in a fraction enriched in apical plasma membranes, whereas syntaxin-3 was found predominantly in the H,K-ATPase-rich tubulovesicle fraction. We also examined the cellular localization of syntaxins in cultured parietal cells. Parietal cells were infected with CFP-syntaxin-1 and CFP-syntaxin-3 adenoviral constructs. Fluorescence microscopy of live and fixed cells demonstrated that syntaxin-1 was primarily on the apical membrane vacuoles of infected cells, but there was also the expression of syntaxin-1 in a subadjacent cytoplasmic compartment. In resting, non-secreting parietal cells, syntaxin-3 was distributed throughout the cytoplasmic compartment; after stimulation, syntaxin-3 translocated to the apical membrane vacuoles, there co-localizing with H,K-ATPase, syntaxin-1 and F-actin. The differential location of these syntaxin isoforms in gastric parietal cells suggests that these proteins may be critical for maintaining membrane compartment identity and that they may play important, but somewhat different, roles in the membrane recruitment processes associated with secretory activation.  相似文献   

11.
Regulation of organelle membrane fusion by Pkc1p   总被引:3,自引:1,他引:2  
Membrane fusion relies on complex protein machineries, which act in sequence to catalyze the fusion of bilayers. The fusion of endoplasmic reticulum membranes requires the t-SNARE Ufe1p, and the AAA ATPase p97/Cdc48p. While the mechanisms of membrane fusion events have begun to emerge, little is known about how this fusion process is regulated. We provide first evidence that endoplasmic reticulum membrane fusion in yeast is regulated by the action of protein kinase C. Specifically, Pkc1p kinase activity is needed to protect the fusion machinery from ubiquitin-mediated degradation .  相似文献   

12.
PMP1 is a 38-residue single-spanning membrane protein whose C-terminal cytoplasmic domain, Y25-F38, is highly positively charged. The conformational coupling between the transmembrane span and the cytoplasmic domain of PMP1 was investigated from 1H-nuclear magnetic resonance data of two synthetic fragments: F9-F38, i.e. 80% of the whole sequence, and Y25-F38, the isolated cytoplasmic domain. Highly disordered in aqueous solution, the Y25-F38 peptide adopts a well-defined conformation in the presence of dodecylphosphocholine micelles. Compared with the long PMP1 fragment, this structure exhibits both native and non-native elements. Our results make it possible to assess the influence of a hydrophobic anchor on the intrinsic conformational propensity of a cytoplasmic domain.  相似文献   

13.
Vesicular transport between different membrane compartments is a key process in cell biology required for the exchange of material and information. The complex machinery that executes the formation and delivery of transport vesicles has been intensively studied and yielded a comprehensive view of the molecular principles that underlie the budding and fusion process. Tethering also represents an essential step in each trafficking pathway. It is mediated by Rab GTPases in concert with so‐called tethering factors, which constitute a structurally diverse family of proteins that share a similar role in promoting vesicular transport. By simultaneously binding to proteins and/or lipids on incoming vesicles and the target compartment, tethers are thought to bridge donor and acceptor membrane. They thus provide specificity while also promoting fusion. However, how tethering works at a mechanistic level is still elusive. We here discuss the recent advances in the structural and biochemical characterization of tethering complexes that provide novel insight on how these factors might contribute the efficiency of fusion.  相似文献   

14.
Kim SY  Jung Y  Hwang GS  Han H  Cho M 《Proteins》2011,79(11):3155-3165
Despite the notion that a control of protein function by phosphorylation works mainly by inducing its conformational changes, the phosphorylation effects on even small peptide conformation have not been fully understood yet. To study its possible effects on serine and threonine peptide conformations, we recently carried out pH- and temperature-dependent circular dichroism (CD) as well as (1)H NMR studies of the phosphorylated serine and threonine peptides and compared them with their unphosphorylated analogs. In the present article, by performing the self-consistent singular value decomposition analysis of the temperature-dependent CD spectra and by analyzing the (3)J(H(N),H(α)) coupling constants extracted from the NMR spectra, the populations of the polyproline II (PPII) and β-strand conformers of the phosphorylated Ser and Thr peptides are determined. As temperature is increased, the β-strand populations of both phosphorylated serine and threonine peptides increase. However, the dependences of PPII/β-strand population ratio on pH are different for these two cases. The phosphorylation of the serine peptide enhances the PPII propensity, whereas that of the threonine peptide has the opposite effect. This suggests that the serine and threonine phosphorylations can alter the backbone conformational propensity via direct but selective intramolecular hydrogen-bonding interactions with the peptide N--H groups. This clearly indicates that the phosphoryl group actively participates in modulating the peptide backbone conformations.  相似文献   

15.
SNARE‐dependent membrane fusion requires the disassembly of cis‐SNARE complexes (formed by SNAREs anchored to one membrane) followed by the assembly of trans‐SNARE complexes (SNAREs anchored to two apposed membranes). Although SNARE complex disassembly and assembly might be thought to be opposing reactions, the proteins promoting disassembly (Sec17p/Sec18p) and assembly (the HOPS complex) work synergistically to support fusion. We now report that trans‐SNARE complexes formed during vacuole fusion are largely associated with Sec17p. Using a reconstituted proteoliposome fusion system, we show that trans‐SNARE complex, like cis‐SNARE complex, is sensitive to Sec17p/Sec18p mediated disassembly. Strikingly, HOPS inhibits the disassembly of SNARE complexes in the trans‐, but not in the cis‐, configuration. This selective HOPS preservation of trans‐SNARE complexes requires HOPS:SNARE recognition and is lost when the apposed bilayers are dissolved in Triton X‐100; it is also observed during fusion of isolated vacuoles. HOPS thus directs the Sec17p/Sec18p chaperone system to maximize functional trans‐SNARE complex for membrane fusion, a new role of tethering factors during membrane traffic.  相似文献   

16.
The 70-kDa peroxisomal membrane protein (PMP70) is a major component of peroxisomal membranes. Human PMP70 consists of 659 amino acid residues and has six putative transmembrane domains (TMDs). PMP70 is synthesized on cytoplasmic ribosomes and targeted posttranslationally to peroxisomes by an unidentified peroxisomal membrane protein targeting signal (mPTS). In this study, to examine the mPTS within PMP70 precisely, we expressed various COOH-terminally or NH(2)-terminally deleted constructs of PMP70 fused with green fluorescent protein (GFP) in Chinese hamster ovary cells and determined their intracellular localization by immunofluorescence. In the COOH-terminally truncated PMP70, PMP70(AA.1-144)-GFP, including TMD1 and TMD2 of PMP70, was still localized to peroxisomes. However, by further removal of TMD2, PMP70(AA.1-124)-GFP lost the targeting ability, and PMP70(TMD2)-GFP did not target to peroxisomes by itself. The substitution of TMD2 in PMP70(AA.1-144)-GFP for TMD4 or TMD6 did not affect the peroxisomal localization, suggesting that PMP70(AA.1-124) contains the mPTS and an additional TMD is required for the insertion into the peroxisomal membrane. In the NH(2)-terminal 124-amino acid region, PMP70 possesses hydrophobic segments in the region adjacent to TMD1. By the disruption of these hydrophobic motifs by the mutation of L21Q/L22Q/L23Q or I70N/L71Q, PMP70(AA.1-144)-GFP lost targeting efficiency. The NH(2)-terminally truncated PMP70, GFP-PMP70(AA.263-375), including TMD5 and TMD6, exhibited the peroxisomal localization. PMP70(AA.263-375) also possesses hydrophobic residues (Ile(307)/Leu(308)) in the region adjacent to TMD5, which were important for targeting. These results suggest that PMP70 possesses two distinct targeting signals, and hydrophobic regions adjacent to the first TMD of each region are important for targeting.  相似文献   

17.
Viral fusion proteins are intriguing molecular machines that undergo drastic conformational changes to facilitate virus-cell membrane fusion. During fusion a hydrophobic region of the protein, termed the fusion peptide (FP), is inserted into the target host cell membrane, with subsequent conformational changes culminating in membrane merger. Class I fusion proteins contain FPs between 20 and 30 amino acids in length that are highly conserved within viral families but not between. To examine the sequence dependence of the Hendra virus (HeV) fusion (F) protein FP, the first eight amino acids were mutated first as double, then single, alanine mutants. Mutation of highly conserved glycine residues resulted in inefficient F protein expression and processing, whereas substitution of valine residues resulted in hypofusogenic F proteins despite wild-type surface expression levels. Synthetic peptides corresponding to a portion of the HeV F FP were shown to adopt an α-helical secondary structure in dodecylphosphocholine micelles and small unilamellar vesicles using circular dichroism spectroscopy. Interestingly, peptides containing point mutations that promote lower levels of cell-cell fusion within the context of the whole F protein were less α-helical and induced less membrane disorder in model membranes. These data represent the first extensive structure-function relationship of any paramyxovirus FP and demonstrate that the HeV F FP and potentially other paramyxovirus FPs likely require an α-helical structure for efficient membrane disordering and fusion.  相似文献   

18.
Hepatitis C Virus (HCV) is one of the most persistent human viruses. Although effective therapeutic approaches have been recently discovered, their use is limited by the elevated costs. Therefore, the development of alternative/complementary strategies is an urgent need. The E2 glycoprotein, the most immunogenic HCV protein, and its variants represent natural candidates to achieve this goal. Here we report an extensive molecular dynamics (MD) analysis of the intrinsic properties of E2. Our data provide interesting clues on the global and local intrinsic dynamic features of the protein. Present MD data clearly indicate that E2 combines a flexible structure with a network of covalent bonds. Moreover, the analysis of the two most important antigenic regions of the protein provides some interesting insights into their intrinsic structural and dynamic properties. Our data indicate that a fluctuating β-hairpin represents a populated state by the region E2412?423. Interestingly, the analysis of the epitope E2427?446 conformation, that undergoes a remarkable rearrangement in the simulation, has significant similarities with the structure that the E2430?442 fragment adopts in complex with a neutralizing antibody. Present data also suggest that the strict conservation of Gly436 in E2 protein of different HCV genotypes is likely dictated by structural restraints. Moreover, the analysis of the E2412?423 flexibility provides insights into the mechanisms that some antibodies adopt to anchor Trp437 that is fully buried in E2. Finally, the present investigation suggests that MD simulations should systematically complement crystallographic studies on flexible proteins that are studied in combination with antibodies.  相似文献   

19.
20.
Due to their high hydrophobicity, it is a challenge to obtain high yields of transmembrane peptides for structural and functional characterization. In the present work, a robust method is developed for the expression, purification and reconstitution of transmembrane peptides, especially for those containing conserved methionines. By using a truncated and mutated glutathione-S-transferase construct as the carrier protein and hydroxylamine (which specifically cleaves the peptide bond between Asn and Gly) as the cleavage reagent, 10 mg of the first transmembrane helix of CorA, a Mg2+ transporter from Mycobacterium tuberculosis, can be conveniently obtained with high purity from 1 L of M9 minimal media under optimized conditions. The biophysical properties of the peptide were studied by circular dichroism and nuclear magnetic resonance spectroscopy, and the results show that this CorA peptide is well folded in detergent micelles and the secondary structure is very similar to that in recent crystal structures. In addition, this CorA construct is oligomeric in perfluoro-octanoic acid micelles. The compatibility with the transmembrane peptides containing conserved methionines, the high yield and the simple process make the present method competitive with other commonly used methods to produce such peptides for structural and functional studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号