首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wound healing is a complex process involving intrinsic dermal and epidermal cells, and infiltrating macrophages and leukocytes. Excessive oxidative stress and associated inflammatory processes can impair wound healing, and antioxidants have been reported to improve wound healing in animal models and human subjects. Uric acid (UA) is an efficient free radical scavenger, but has a very low solubility and poor tissue penetrability. We recently developed novel UA analogs with increased solubility and excellent free radical-scavenging properties and demonstrated their ability to protect neural cells against oxidative damage. Here we show that the uric acid analog (6, 8 dithio-UA, but not equimolar concentrations of UA or 1, 7 dimethyl-UA) modified the behaviors of cultured vascular endothelial cells, keratinocytes and fibroblasts in ways consistent with enhancement of the wound healing functions of all three cell types. We further show that 6, 8 dithio-UA significantly accelerates the wound healing process when applied topically (once daily) to full-thickness wounds in mice. Levels of Cu/Zn superoxide dismutase were increased in wound tissue from mice treated with 6, 8 dithio-UA compared to vehicle-treated mice, suggesting that the UA analog enhances endogenous cellular antioxidant defenses. These results support an adverse role for oxidative stress in wound healing and tissue repair, and provide a rationale for the development of UA analogs in the treatment of wounds and for modulation of angiogenesis in other pathological conditions.  相似文献   

2.
Dysregulation of monocyte/macrophage phenotype in wounds of diabetic mice   总被引:1,自引:0,他引:1  
Mirza R  Koh TJ 《Cytokine》2011,56(2):256-264
The hypothesis of this study was that cells of the monocyte/macrophage lineage (Mo/Mp) exhibit an impaired transition from pro-inflammatory to pro-healing phenotypes in wounds of diabetic mice, which contributes to deficient healing. Mo/Mp isolated from excisional wounds in non-diabetic db/+ mice exhibited a pro-inflammatory phenotype on day 5 post-injury, with high level expression of the pro-inflammatory molecules interleukin-1β, matrix metalloprotease-9 and inducible nitric oxide synthase. Wound Mo/Mp exhibited a less inflammatory phenotype on day 10 post-injury, with decreased expression of the pro-inflammatory molecules and increased expression of the alternative activation markers CD206 and CD36. In contrast, in db/db mice, the pro-inflammatory phenotype persisted through day 10 post-injury and was associated with reduced expression of insulin-like growth factor-1, transforming growth factor-β1 and vascular endothelial growth factor. Reduced levels of these growth factors in wounds of db/db mice may have contributed to impaired wound closure, reduced granulation tissue formation, angiogenesis and collagen deposition. The persistent pro-inflammatory wound Mo/Mp phenotype in db/db mice may have resulted from elevated levels of pro-inflammatory interleukin-1β and interferon-γ and reduced levels of anti-inflammatory interleukin-10 in the wound environment. Our findings are consistent with the hypothesis that dysregulation of Mo/Mp phenotypes contributes to impaired healing of diabetic wounds.  相似文献   

3.
In the present study, the role of finger millet feeding on skin antioxidant status, nerve growth factor (NGF) production and wound healing parameters in healing impaired early diabetic rats is reported. Hyperglycemic rats received food containing 50 g/100 g finger millet (FM). Non-diabetic controls and diabetic controls received balanced nutritive diet. Full-thickness excision skin wounds were made after 2 weeks prior feeding of finger millet diet. The rate of wound contraction, and the levels of collagen, hexosamine and uronic acid in the granulation tissue were determined. The skin antioxidant status and lipid peroxide concentration were also monitored during the study. In hyperglycemic rats fed with finger millet diet, the healing process was hastened with an increased rate of wound contraction. Skin levels of glutathione (GSH), ascorbic acid and alpha-tocopherol in alloxan-induced diabetic rat were lower as compared to non-diabetics. Altered activities of superoxide dismutase (SOD) and catalase (CAT) were also recorded in diabetics. Interestingly, thiobarbituric acid reactive substances (TBARS) were elevated in the wound tissues of all the groups, when compared to normal (unwounded) skin tissues. However, in diabetic rats the TBARS levels of both normal and wounded skin tissues were significantly elevated (P < 0.001) when compared with control (non-diabetic) and diabetics fed with FM. Impaired production of NGF, determined by ELISA, in diabetic rats was improved upon FM feeding and further confirmed by immunocytochemical observations reflects the increased expression of NGF in hyperglycemic rats supplemented with FM-enriched diet. Histological and electron microscopical evaluations revealed the epithelialization, increased synthesis of collagen, activation of fibroblasts and mast cells in FM-fed animals. Thus, increased levels of oxidative stress markers accompanied by decreased levels of antioxidants play a vital role in delaying wound healing in diabetic rats. However, FM feeding to the diabetic animals, for 4 weeks, controlled the glucose levels and improved the antioxidant status, which hastened the dermal wound healing process.  相似文献   

4.
The reasons that cause delay in wound healing in diabetes are a decrease in the level of growth factors secretion, an increase in the destruction of growth factors and in oxidative stress. Platelet derived growth factor (PDGF) is one of the important growth factors that play a role in all phases of wound healing. This study investigates time-dependent effects of topically PDGF-BB administration on oxidative events on the healing of dorsolateral-excisional wounds in diabetic rats. Forty-two female Wistar-albino rats with streptozotocin-induced diabetes were divided into four groups: control group, untreated group, chitosan-treated group, chitosan?+?PDGF-BB-treated group. Two identical full-thickness excisional skin wounds were made under anaesthesia in all rats except for the control group. In the PDGF-BB-treated and chitosan-treated groups, the wounds were treated topically PDGF-BB (7?ng/mL, single daily dose) and blank chitosan gel (equal amount) after wounding, respectively. After these administrations, on day 3 and day 7 of wound healing, rats were sacrificed. Thiobarbituric acid reactive substances, glutathione, nitric oxide, ascorbic acid levels, and superoxide dismutase activity in wound tissues were spectrophotometrically measured. PDGF-BB administration significantly increased TBARS levels and non-enzymatic antioxidant levels in early phase of diabetic wound healing. PDGF-BB dramatically reduced NOx levels on day 3 and sharply increased NOx levels on day 7 of wound healing. Consequently, PDGF-BB administration can be effective on oxidative balance in the early phase of diabetic wound healing.  相似文献   

5.
Sirtuin 3 (SIRT3) plays a vital role in several dermatological diseases. However, the role and detailed mechanism of SIRT3 in diabetic wound healing are unknown well yet. To explore possible involvement of SIRT3 and necroptosis in diabetic skin wound healing, SIRT3 knockout (KO) mice and 129S1/SvImJ wild‐type (WT) mice were injected with streptozotocin (STZ), and mice skin fibroblasts were exposed to high glucose (HG). It was found that SIRT3 expression decreased in the skin of diabetic patients. SIRT3 deficiency delayed healing rate, reduced blood supply and vascular endothelial growth factor expression, promoted superoxide production, increased malondialdehyde (MDA) levels, decreased total antioxidant capacity (T‐AOC), reduced superoxide dismutase (SOD) activity and aggravated ultrastructure disorder in skin wound of diabetic mice. SIRT3 deficiency inhibited mice skin fibroblasts migration with HG stimulation, which was restored by SIRT3 overexpression. SIRT3 deficiency also suppressed α‐smooth muscle actin (α‐SMA) expression, enhanced superoxide production but decreased mitochondrial membrane potential with HG stimulation after scratch. SIRT3 deficiency further elevated receptor‐interacting protein kinase 3 (RIPK3), RIPK1 and caspase 3 expression both in vitro and in vivo. Collectively, SIRT3 deficiency delayed skin wound healing in diabetes, the mechanism might be related to impaired mitochondria function, enhanced oxidative stress and increased necroptosis. This may provide a novel therapeutic target to accelerate diabetic skin wound healing.  相似文献   

6.
Endothelial dysfunction develops as a result of oxidative stress and is responsible for diabetic vascular complications. We investigated the effects of selenium on endothelial dysfunction and oxidative stress in type 2 diabetic rats. Male Wistar rats were divided into five groups: controls, untreated diabetics, and diabetics treated with 180, 300, 500 mcg/kg selenium each day. Diabetes was induced by a single intraperitoneal injection of low dose streptozotocin to rats fed a high fat diet. Endothelium-dependent and -independent relaxations were measured in the thoracic aorta. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and endothelial nitric oxide synthase (eNOS) mRNA expressions were analyzed using real-time polymerase chain reaction (RT-PCR). Fasting blood glucose, lipid profile, lipid oxidation, insulin and nitric oxide were measured in blood samples. Malondialdehyde, superoxide dismutase, catalase and glutathione peroxidase levels were measured in liver samples. RT-PCR showed that selenium reversed increased NADPH oxidase expression and decreased eNOS expression to control levels. Selenium also improved the impairment of endothelium-dependent vasorelaxation in the diabetic aorta. Selenium treatment significantly decreased blood glucose, cholesterol and triglyceride levels, and enhanced the antioxidant status in diabetic rats. Our findings suggest that selenium restores a normal metabolic profile and ameliorates vascular responses and endothelial dysfunction in diabetes by regulating antioxidant enzyme and nitric oxide release.  相似文献   

7.
8.
We showed in previous studies that human umbilical cord Wharton’s jelly stem cells (hWJSCs) improved the healing rates of excisional and diabetic wounds in the mouse model. As an extension of those studies, we report here the more detailed quantitative histological, immunohistochemical, and genomic evaluation of biopsies from those excisional and diabetic wounds in an attempt to understand the mechanisms of the enhanced wound healing aided by hWJSCs. Bright-field microscopic observations and ImageJ software analysis on histological sections of the excisional and diabetic wound biopsies collected at different time points showed that the thickness of the epidermis and dermis, and positive picrosirius-red stained areas for collagen, were significantly greater in the presence of hWJSCs compared with controls (P < 0.05). Immunohistochemistry of the diabetic wound biopsies showed increased positive staining for the vascular endothelial marker CD31 and cell proliferation marker Ki67 in the presence of hWJSCs and its conditioned medium (hWJSC-CM). Quantitative real-time polymerase chain reaction showed upregulation of groups of genes involved in extracellular matrix regulation, collagen biosynthesis, angiogenesis, antifibrosis, granulation, and immunomodulation in the presence of hWJSCs. Taken together, the results demonstrated that hWJSCs and hWJSC-CM that contains the paracrine secretions of hWJSCs, enhance the healing of excisional and diabetic wounds via re-epithelialization, collagen deposition, angiogenesis, and immunomodulation. The inclusion of an Aloe vera-polycaprolactone (AV/PCL) nanocarrier did not significantly change the effect of the hWJSCs. However, the topical application of an AV/PCL nanocarrier impregnated with hWJSCs is convenient and less invasive than the administration of hWJSC injections into wounds.  相似文献   

9.
Treatment of diabetes-impaired wound healing remains a major unresolved medical challenge. Here, we identified suppressed formation of a novel reparative lipid mediator 14S,21R-dihydroxydocosa-4Z,7Z,10Z,12E,16Z,19Z-hexaenoic acid (14S,21R-diHDHA) in cutaneous wounds of diabetic db/db mice. These results indicate that diabetes impedes the biosynthetic pathways of 14S,21R-diHDHA in skin wounds. Administration of exogenous 14S,21R-diHDHA to wounds in diabetic animals rescued healing and angiogenesis. When db/db mesenchymal stem cells (MSCs) were administered together with 14S,21R-diHDHA to wounds in diabetic animals, they coacted to accelerate wound re-epithelialization, granulation tissue formation, and synergistically improved vascularization. In the pivotal cellular processes of angiogenesis, 14S,21R-diHDHA enhanced VEGF release, vasculature formation, and migration of db/db dermal microvascular endothelial cells (DMVECs), as well as remedied paracrine angiogenic functions of db/db MSCs, including VEGF secretion and the promotion of DMVEC migration and vasculature formation. Our results show that 14S,21R-diHDHA activates the p38 MAPK pathway in wounds, db/db MSCs, and DMVECs. Overall, the impeded formation of 14S,21R-diHDHA described in this study suggests that diabetes could affect the generation of pro-healing lipid mediators in wound healing. By restoring wound healing and MSC functions, 14S,21R-diHDHA is a new lead for the development of better therapeutics used in treating wounds of diabetics.  相似文献   

10.
Diabetic wounds remain a major medical challenge with often disappointing outcomes despite the best available care. An impaired response to tissue hypoxia and insufficient angiogenesis are major factors responsible for poor healing in diabetic wounds. Here we show that the antimycotic drug ciclopirox olamine (CPX) can induce therapeutic angiogenesis in diabetic wounds. Treatment with CPX in vitro led to upregulation of multiple angiogenic genes and increased availability of HIF-1α. Using an excisional wound splinting model in diabetic mice, we showed that serial topical treatment with CPX enhanced wound healing compared to vehicle control treatment, with significantly accelerated wound closure, increased angiogenesis, and increased dermal cellularity. These findings offer a promising new topical pharmacologic therapy for the treatment of diabetic wounds.  相似文献   

11.
Nonhealing wounds in diabetes remain a global clinical and research challenge. Exosomes are primary mediators of cell paracrine action, which are shown to promote tissue repair and regeneration. In this study, we investigated the effects of serum derived exosomes (Serum-Exos) on diabetic wound healing and its possible mechanisms. Serum-Exos were isolated from blood serum of normal healthy mice and identified by transmission electron microscopy and western blot. The effects of Serum-Exos on diabetic wound healing, fibroblast growth and migration, angiogenesis and extracellular matrix (ECM) formation were investigated. Our results showed that the isolated Serum-Exos exhibited a sphere-shaped morphology with a mean diameter at 150 nm, and expressed classical markers of exosomes including HSP70, TSG101, and CD63. Treatment with Serum-Exos elevated the percentage of wound closure and shortened the time of healing in diabetic mice. Mechanistically, Serum-Exos promoted granulation tissue formation and increased the expression of CD31, fibronectin and collagen-ɑ in diabetic mice. Serum-Exos also promoted the migration of NIH/3T3 cells, which was associated with increased expression levels of PCNA, Ki67, collagen-α and fibronectin. In addition, Serum-Exos enhanced tube formation in human umbilical vein endothelial cells and induced the expression of CD31 at both protein and messenger RNA levels. Collectively, our results suggest that Serum-Exos may facilitate the wound healing in diabetic mice by promoting angiogenesis and ECM formation, and show the potential application in treating diabetic wounds.  相似文献   

12.
Involvement of notch signaling in wound healing   总被引:1,自引:0,他引:1  
The Notch signaling pathway is critically involved in cell fate decisions during development of many tissues and organs. In the present study we employed in vivo and cell culture models to elucidate the role of Notch signaling in wound healing. The healing of full-thickness dermal wounds was significantly delayed in Notch antisense transgenic mice and in normal mice treated with gamma-secretase inhibitors that block proteolytic cleavage and activation of Notch. In contrast, mice treated with a Notch ligand Jagged peptide showed significantly enhanced wound healing compared to controls. Activation or inhibition of Notch signaling altered the behaviors of cultured vascular endothelial cells, keratinocytes and fibroblasts in a scratch wound healing model in ways consistent with roles for Notch signaling in wound healing functions all three cell types. These results suggest that Notch signaling plays important roles in wound healing and tissue repair, and that targeting the Notch pathway might provide a novel strategy for treatment of wounds and for modulation of angiogenesis in other pathological conditions.  相似文献   

13.
Wound healing consists of an orderly progression of events that re-establish the integrity of the damaged tissue. Several natural products have been shown to accelerate the healing process. The present investigation was undertaken to determine the role of curcumin on changes in collagen characteristics and antioxidant property during cutaneous wound healing in rats. Full-thickness excision wounds were made on the back of rat and curcumin was administered topically. The wound tissues removed on 4th, 8th and 12th day (post-wound) were used to analyse biochemical and pathological changes. Curcumin increased cellular proliferation and collagen synthesis at the wound site, as evidenced by increase in DNA, total protein and type III collagen content of wound tissues. Curcumin treated wounds were found to heal much faster as indicated by improved rates of epithelialisation, wound contraction and increased tensile strength which were also confirmed by histopathological examinations. Curcumin treatment was shown to decrease the levels of lipid peroxides (LPs), while the levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), activities were significantly increased exhibiting the antioxidant properties of curcumin in accelerating wound healing. Better maturation and cross linking of collagen were observed in the curcumin treated rats, by increased stability of acid-soluble collagen, aldehyde content, shrinkage temperature and tensile strength. The results clearly substantiate the beneficial effects of the topical application of curcumin in the acceleration of wound healing and its antioxidant effect. Both the authors have contributed equally towards this paper.  相似文献   

14.
We have previously reported that H(2)O(2) is actively generated by cells at the wound site and that H(2)O(2)-driven redox signaling supports wound angiogenesis and healing. In this study, we have standardized a novel and effective electron paramagnetic resonance spectroscopy-based approach to assess the redox environment of the dermal wound site in vivo. Rac2 regulates inducible NADPH oxidase activation and other functional responses in neutrophils. Using Rac2-deficient mice we sought to investigate the significance of Rac2 in the wound-site redox environment and healing responses. Noninvasive measurements of metabolism of topically applied nitroxide (15)N-perdeuterated tempone in murine excisional dermal wounds demonstrated that the wound site is rich in oxidants, the levels of which peak 2 days postwounding in the inflammatory phase. Rac2-deficient mice had threefold lower production of superoxide compared to controls with similar wounds. In these mice, a lower wound-site superoxide level was associated with compromised wound closure. Immunostaining of wound edges harvested during the inflammatory phase showed that the numbers of phagocytic cells recruited to the wound site in Rac2-deficient and control mice were similar, but the amount of lipid peroxidation was significantly lower in Rac2-deficient mice, indicating compromised NADPH oxidase activity. Taken together, the findings of this study support that the wound site is rich in oxidants. Rac2 significantly contributes to oxidant production at the wound site and supports the healing process.  相似文献   

15.
Innate defense regulators (IDRs) are synthetic immunomodulatory versions of natural host defense peptides (HDP). IDRs mediate protection against bacterial challenge in the absence of direct antimicrobial activity, representing a novel approach to anti-infective and anti-inflammatory therapy. Previously, we reported that IDR-1018 selectively induced chemokine responses and suppressed pro-inflammatory responses. As there has been an increasing appreciation for the ability of HDPs to modulate complex immune processes, including wound healing, we characterized the wound healing activities of IDR-1018 in vitro. Further, we investigated the efficacy of IDR-1018 in diabetic and non-diabetic wound healing models. In all experiments, IDR-1018 was compared to the human HDP LL-37 and HDP-derived wound healing peptide HB-107. IDR-1018 was significantly less cytotoxic in vitro as compared to either LL-37 or HB-107. Furthermore, administration of IDR-1018 resulted in a dose-dependent increase in fibroblast cellular respiration. In vivo, IDR-1018 demonstrated significantly accelerated wound healing in S. aureus infected porcine and non-diabetic but not in diabetic murine wounds. However, no significant differences in bacterial colonization were observed. Our investigation demonstrates that in addition to previously reported immunomodulatory activities IDR-1018 promotes wound healing independent of direct antibacterial activity. Interestingly, these effects were not observed in diabetic wounds. It is anticipated that the wound healing activities of IDR-1018 can be attributed to modulation of host immune pathways that are suppressed in diabetic wounds and provide further evidence of the multiple immunomodulatory activities of IDR-1018.  相似文献   

16.
One of the major reasons for the delayed wound healing in diabetes is the dysfunction of endothelial progenitor cells (EPCs) induced by hyperglycaemia. Improvement of EPC function may be a potential strategy for accelerating wound healing in diabetes. Procyanidin B2 (PCB2) is one of the major components of procyanidins, which exhibits a variety of potent pharmacological activities. However, the effects of PCB2 on EPC function and diabetic wound repair remain elusive. We evaluated the protective effects of PCB2 in EPCs with high glucose (HG) treatment and in a diabetic wound healing model. EPCs derived from human umbilical cord blood were treated with HG. The results showed that PCB2 significantly preserved the angiogenic function, survival and migration abilities of EPCs with HG treatment, and attenuated HG-induced oxidative stress of EPCs by scavenging excessive reactive oxygen species (ROS). A mechanistic study found the protective role of PCB2 is dependent on activating nuclear factor erythroid 2-related factor 2 (Nrf2). PCB2 increased the expression of Nrf2 and its downstream antioxidant genes to attenuate the oxidative stress induced by HG in EPCs, which were abolished by knockdown of Nrf2 expression. An in vivo study showed that intraperitoneal administration of PCB2 promoted wound healing and angiogenesis in diabetic mice, which was accompanied by a significant reduction in ROS level and an increase in circulating EPC number. Taken together, our results indicate that PCB2 treatment accelerates wound healing and increases angiogenesis in diabetic mice, which may be mediated by improving the mobilization and function of EPCs.  相似文献   

17.
Endostatin is a cleavage product of collagen XVIII that strongly inhibits tumor angiogenesis. To determine if endostatin affects other angiogenic processes, we generated full-thickness excisional wounds on the back of mice that were systemically treated with recombinant murine endostatin. No macroscopic abnormalities of the wound healing process were observed. Histological analysis revealed normal wound contraction and re-epithelialization, but a slight reduction in granulation tissue formation and reduced matrix deposition at the wound edge. The blood vessel density in the wounds of endostatin-treated mice was not affected. However, ultrastructural analysis demonstrated severe abnormalities in blood vessel maturation. The wound vessels in the endostatin-treated mice were narrowed or closed with an irregular luminal surface, resulting in a severe reduction in the number of functional vessels and extravasation of erythrocytes. Endostatin treatment did not affect the expression level and localization of collagen XVIII mRNA and protein. Furthermore, the angiogenesis regulators vascular endothelial growth factor, angiopoietin-1, and angiopoietin-2 were normally expressed in the wounds of endostatin-treated mice. However, expression of the major wound matrix proteins fibronectin and collagens I and III was significantly reduced. This reduction is likely to explain the reduced density of the wound matrix. Our results demonstrate that endostatin treatment reduces the number of functional blood vessels and the matrix density in the granulation tissue, but does not significantly affect the overall wound healing process.  相似文献   

18.
Acute ethanol exposure represents an increased risk factor for morbidity and mortality associated with surgical or traumatic injury. Despite clinical observations suggesting that ethanol exposure before injury alters tissue repair processes, little direct evidence about the mechanism by which ethanol affects the wound healing process is available. In this study, excisional wounds from female BALB/c mice with or without circulating ethanol levels of 100 mg/dl were used to assess wound closure, angiogenesis, and collagen content. Ethanol exposure resulted in a significant but transient delay in wound closure at day 2 postwounding (28 +/- 4% vs. 17 +/- 1%). In addition, total collagen content was significantly reduced by up to 37% in wounds from ethanol-treated mice compared with controls. The most significant effect of ethanol exposure on wounds was on vascularity because angiogenesis was reduced by up to 61% in wounds from ethanol-treated mice. The reduction in vessel density occurred despite near-normal levels of proangiogenic factors VEGF and FGF-2, suggesting a direct effect of ethanol exposure on endothelial cell function. Further evidence for a direct effect was observed in an in vitro angiogenesis assay because the exposure of endothelial cells to ethanol reduced angiogenic responsiveness to just 8.33% of control in a cord-forming assay. These studies provide novel information regarding the effect of a single dose of ethanol on multiple parameters of the wound healing process in vivo and suggest a potential mechanism by which ethanol impairs healing after traumatic injury.  相似文献   

19.
Reactive oxygen species (ROS) may play key roles in vascular inflammation and atherogenesis in patients with diabetes. In this study, xanthine oxidase (XO) system was examined as a potential source of superoxide in mice with streptozotocin (STZ)-induced experimental diabetes. Plasma XO activity increased 3-fold in diabetic mice (50±33 μU/ml) 2 weeks after the onset of diabetes, as compared with non-diabetic control mice (15±6 μU/ml). In vivo superoxide generation in diabetic mice was evaluated by an in vivo electron spin resonance (ESR)/spin probe method. Superoxide generation was significantly enhanced in diabetic mice, and the enhancement was restored by the administration of superoxide dismutase (SOD) and 4,5-dihydroxy-1,3-benzene disulfonic acid (Tiron), which was reported to scavenge superoxide. Pretreatment of diabetic mice with XO inhibitors, allopurinol and its active metabolite oxipurinol, normalized the increased superoxide generation. In addition, there was a correlation (r=0.78) between the level of plasma XO activity and the relative degree of superoxide generation in diabetic and non-diabetic mice. Hence, the results of this study strongly suggest that superoxide should be generated through the increased XO seen in the diabetic model mice, which may be involved in the pathogenesis of diabetic vascular complications.  相似文献   

20.
Type 2 diabetes mellitus affects 6% of western populations and represents a major risk factor for the development of skin complications, of which impaired wound healing, manifested in e.g. "diabetic foot ulcer", is most prominent. Impaired angiogenesis is considered a major contributing factor to these non-healing wounds. At present it is still unclear whether diabetes-associated wound healing and skin vascular dysfunction are direct consequences of impaired insulin/IGF-1 signaling, or secondary due to e.g. hyperglycemia. To directly test the role of vascular endothelial insulin signaling in the development of diabetes-associated skin complications and vascular function, we inactivated the insulin receptor and its highly related receptor, the IGF-1 receptor, specifically in the endothelial compartment of postnatal mice, using the inducible Tie-2CreERT (DKO(IVE)) deleter. Impaired endothelial insulin/IGF-1 signaling did not have a significant impact on endothelial homeostasis in the skin, as judged by number of vessels, vessel basement membrane staining intensity and barrier function. In contrast, challenging the skin through wounding strongly reduced neo-angiogenesis in DKO(IVE) mice, accompanied by reduced granulation tissue formation reduced. These results show that endothelial insulin/IGF signaling is essential for neo-angiogenesis upon wounding, and imply that reduced endothelial insulin/IGF signaling directly contributes to diabetes-associated impaired healing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号