首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well established that endothelial dysfunction is present in coronary artery disease (CAD), although few studies have determined the effect of training on peripheral conduit vessel function in patients with CAD. A randomized, crossover design determined the effect of 8 wk of predominantly lower limb, combined aerobic and resistance training, in 10 patients with treated CAD. Endothelium-dependent dilation of the brachial artery was determined, by using high-resolution vascular ultrasonography, from flow-mediated vasodilation (FMD) after ischemia. Endothelium-independent vasodilation was measured after administration of glyceryl trinitrate (GTN). Baseline function was compared with that of 10 control subjects. Compared with matched healthy control subjects, FMD and GTN responses were significantly impaired in the untrained CAD patients [3.0 +/- 0.8 (SE) vs. 5.8 +/- 0.8% and 14.5 +/- 1.9 vs. 20.4 +/- 1.5%, respectively; both P < 0.05]. Training significantly improved FMD in the CAD patients (from 3.0 +/- 0.8 to 5.7 +/- 1.1%; P < 0.05) but not responsiveness to GTN (14.5 +/- 1.9 vs. 12.1 +/- 1.4%; P = not significant). Exercise training improves endothelium-dependent conduit vessel dilation in subjects with CAD, and the effect, evident in the brachial artery, appears to be generalized rather than limited to vessels of exercising muscle beds. These results provide evidence for the benefit of exercise training, as an adjunct to routine therapy, in patients with a history of CAD.  相似文献   

2.
Flow-mediated dilation (FMD) has become a commonly applied approach for the assessment of vascular function and health, but methods used to calculate FMD differ between studies. For example, the baseline diameter used as a benchmark is sometimes assessed before cuff inflation, whereas others use the diameter during cuff inflation. Therefore, we compared the brachial artery diameter before and during cuff inflation and calculated the resulting FMD in healthy children (n=45; 10+/-1 yr), adults (n=31; 28+/-6 yr), and older subjects (n=22; 58+/-5 yr). Brachial artery FMD was examined after 5 min of distal ischemia. Diameter was determined from either 30 s before cuff inflation or from the last 30 s during cuff inflation. Edge detection and wall tracking of high resolution B-mode arterial ultrasound images was used to calculate conduit artery diameter. Brachial artery diameter during cuff inflation was significantly larger than before inflation in children (P=0.02) and adults (P<0.001) but not in older subjects (P=0.59). Accordingly, FMD values significantly differed in children (11.2+/-5.1% vs. 9.4+/-5.2%; P=0.02) and adults (7.3+/-3.2% vs. 4.6+/-3.3%; P<0.001) but not in older subjects (6.3+/-3.4% vs. 6.0+/-4.2%; P=0.77). When the diameter before cuff inflation was used, an age-dependent decline was evident in FMD, whereas FMD calculated using the diameter during inflation was associated with higher FMD values in older than younger adults. In summary, the inflation of the cuff significantly increases brachial artery diameter, which results in a lower FMD response. This effect was found to be age dependent, which emphasizes the importance of using appropriate methodology to calculate the FMD.  相似文献   

3.
Brachial artery flow-mediated dilation (FMD) is a strong predictor of future cardiovascular disease and is believed to represent a "barometer" of systemic endothelial health. Although a recent study [Padilla et al. Exp Biol Med (Maywood) 235: 1287-1291, 2010] in pigs confirmed a strong correlation between brachial and femoral artery endothelial function, it is unclear to what extent brachial artery FMD represents a systemic index of endothelial function in humans. We conducted a retrospective analysis of data from our laboratory to evaluate relationships between the upper (i.e., brachial artery) vs. lower limb (superficial femoral n = 75; popliteal artery n = 32) endothelium-dependent FMD and endothelium-independent glyceryl trinitrate (GTN)-mediated dilation in young, healthy individuals. We also examined the relationship between FMD assessed in both brachial arteries (n = 42). There was no correlation between brachial and superficial femoral artery FMD (r(2) = 0.008; P = 0.46) or between brachial and popliteal artery FMD (r(2) = 0.003; P = 0.78). However, a correlation was observed in FMD between both brachial arteries (r(2) = 0.34; P < 0.001). Brachial and superficial femoral artery GTN were modestly correlated (r(2) = 0.13; P = 0.007), but brachial and popliteal artery GTN responses were not (r(2) = 0.08; P = 0.11). Collectively, these data indicate that conduit artery vasodilator function in the upper limbs (of healthy humans) is not predictive of that in the lower limbs, whereas measurement of FMD in one arm appears to be predictive of FMD in the other. These data do not support the hypothesis that brachial artery FMD in healthy humans represents a systemic index of endothelial function.  相似文献   

4.
To determine whether conduit artery size affects functional responses, we compared the magnitude, time course, and eliciting shear rate stimulus for flow-mediated dilation (FMD) in healthy men (n = 20; 31 +/- 7 yr). Upper limb (brachial and radial) and lower limb (common and superficial femoral) FMD responses were simultaneously assessed, whereas popliteal responses were measured in the same subjects during a separate visit. Glyceryl trinitrate (GTN)-mediated responses were similarly examined. Edge detection and wall tracking of high-resolution B-mode arterial ultrasound images, combined with synchronized Doppler waveform envelope analysis, were used to calculate conduit artery diameter, blood flow, and shear rate continuously across the cardiac cycle. Baseline artery size correlated inversely with the FMD response (r = -0.57, P < 0.001). Within-artery comparisons revealed a significant inverse correlation between artery size and FMD% for the radial (r = -0.66, P = 0.001), brachial (r = -0.55, P = 0.01), and popliteal artery (r = -0.48, P = 0.03), but not for the superficial and common femoral artery. Normalization of FMD responses for differences in eliciting shear rate did not abolish the between-artery relationship for artery function and size (r = -0.48, P < 0.001), suggesting that differences between artery function responses were not entirely due to size-related differences in shear rate. This was reinforced by a significant between-artery correlation for GTN responses and baseline artery size (r = -0.74, P < 0.001). In summary, systematic differences exist in vascular function responses of conduit arteries that differ in size. This raises the possibility that differences in artery size within or between individuals may influence functional responses.  相似文献   

5.
Sildenafil citrate (Viagra) is the pharmacological agent used to treat erectile dysfunction in men. Because this drug has a vasodilatory effect, we hypothesized that such an action may induce a preconditioning-like cardioprotective effect via opening of mitochondrial ATP-sensitive K (K(ATP)) channels. Rabbits were treated with sildenafil citrate (0.7 mg/kg iv) either 30 min (acute phase) or 24 h (delayed phase) before 30 min of ischemia and 3 h of reperfusion. Mitochondrial K(ATP) channel blocker 5-hydroxydecanoate (5-HD, 5 mg/kg iv) was given 10 min before ischemia-reperfusion. Infarct size was measured by tetrazolium staining. Sildenafil caused reduction in arterial blood pressure within 2 min of treatment, which returned to nearly baseline levels 3 min later. The infarct size (% risk area, means +/- SE) reduced from 33.8 +/- 1.7 in control rabbits to 10.8 +/- 0.9 during the acute phase (68% reduction, P < 0.05) and 19.9 +/- 2.0 during the delayed phase (41% reduction, P < 0.05). 5-HD abolished protection with an increase in infarct size to 35.6 +/- 0.4% and 36.8 +/- 1.6% during the acute and delayed phase, respectively (P < 0.05). Similar acute and delayed cardioprotective effects were observed when sildenafil was administered orally. Systemic hemodynamics also decreased after oral administration of the drug. However, these changes were mild and occurred slowly. For the first time, we demonstrate that sildenafil induces acute and delayed protective effects against ischemia-reperfusion injury, which are mediated by opening of mitochondrial K(ATP) channels.  相似文献   

6.

Introduction  

Patients with recent-onset rheumatoid arthritis (RA) have impaired brachial artery endothelial function compared with controls matched for age, sex and cardiovascular risk factors. The present study examined endothelium-dependent (flow-mediated dilatation (FMD)) and independent (glyceryl trinitrate (GTN)-mediated dilatation (GMD)) structural responses in early RA patients, and determined progress over one year.  相似文献   

7.
The mechanisms mediating arterial stiffening with aging and menopause are not completely understood. We determined whether administration of tetrahydrobiopterin (BH(4)), a critical cofactor for endothelial nitric oxide synthase to produce nitric oxide, would increase vascular endothelial-dependent vasodilatory tone and decrease arterial stiffness in estrogen-deficient postmenopausal women. Additionally, we examined whether the beneficial effects of estrogen on vascular function were possibly related to BH(4). Arterial stiffness (carotid artery compliance) and endothelial-dependent vasodilation [brachial artery flow-mediated dilation (FMD)] were measured in postmenopausal (n = 24; 57 ± 1 yr, mean ± SE) and eumenorrheic premenopausal (n = 9; 33 ± 2 yr) women before and 3 h after the oral administration of BH(4). Subsequently, in postmenopausal women, vascular testing (before and after BH(4)) was repeated following randomization to either 2 days of transdermal estradiol or placebo. Baseline carotid artery compliance and brachial artery FMD were lower in postmenopausal than in premenopausal women (P < 0.0001). BH(4) administration increased carotid artery compliance (0.61 ± 0.05 to 0.73 ± 0.04 mm(2)·mmHg(-1)·10(-1) vs. baseline, P < 0.0001) and brachial artery FMD (P < 0.001) in postmenopausal women but had no effect in premenopausal women (P = 0.62). Carotid artery compliance (0.59 ± 0.05 to 0.78 ± 0.06 mm(2)·mmHg(-1)·10(-1), P < 0.001) and FMD increased in postmenopausal women in response to estradiol (P = 0.02) but were not further improved with the coadministration of BH(4), possibly because estrogen increased BH(4) bioavailability. Carotid artery compliance and FMD increased with BH(4) in the placebo group (P = 0.02). Although speculative, these results suggest that reduced vascular BH(4) may be an important contributor to arterial stiffening in estrogen-deficient postmenopausal women, related in part to reduced endothelial-dependent vasodilatory tone.  相似文献   

8.
BACKGROUND: Sildenafil citrate (SIL) is contraindicated in patients with coronary heart disease who are treated with nitric oxide (NO) donators such as organic nitrates, as it potentiates NO-mediated vasodilation. The present study investigated whether SIL also affects the vasodilatory effects of nebivolol (NEB), a selective beta1-adrenoceptor blocker with an additional, endothelium-dependent NO-liberating property, in comparison to the combination SIL/glycerol trinitrate (GTN). METHODS AND RESULTS: Experiments were performed in isolated vessel rings of rat aorta (Wistar rats, 8-12 weeks), which had been pre-contracted with phenylephrine (10(-5) M). Isometric tension was measured by a force transducer, and cumulative concentration-response curves were obtained for each drug. The rank order of vasodilatory potency as measured by the concentration needed to achieve 50% relaxation (EC50) was GTN (0.08 microM) > SIL (1.25 microM) > or = NEB (3.5 microM). In the presence of both therapeutic (1 nM) and high (1 microM) concentrations of SIL, vasodilation of GTN was potentiated as indicated by a significant increase in vasodilatory potency (EC50 GTN + low SIL: 0.019 microM, EC50 GTN + high SIL: 0.002 microM; both P < 0.01 vs. GTN). In contrast, SIL did not potentiate the vasodilatory effect of NEB (EC50 NEB + low SIL: 5.01 microM, EC50 NEB + high SIL: 3.2 microM; n.s. vs. NEB). CONCLUSIONS: These data demonstrate that SIL does not potentiate NEB-induced vasodilation in vitro. These findings indicate that the interaction between SIL and NO-donators/organic nitrates does not apply to the NO-liberating properties of NEB. Our findings suggest that SIL may safely be used in hypertensive patients treated with NEB.  相似文献   

9.
Previous work from our laboratory demonstrated that isometric handgrip (IHG) training improved local, endothelium-dependent vasodilation in medicated hypertensives [McGowan CL (PhD Thesis), 2006; McGowan et al. Physiologist 47: 285, 2004]. We investigated whether changes in the capacity of smooth muscle to dilate (regardless of endothelial factors) influenced this training-induced change, and we examined the acute vascular responses to a single bout of IHG. Seventeen subjects performed four 2-min unilateral IHG contractions at 30% of maximal voluntary effort, three times a week for 8 wk. Pre- and posttraining, brachial artery flow-mediated dilation (FMD, an index of endothelium-dependent vasodilation) and nitroglycerin-mediated maximal vasodilation (an index of endothelium-independent vasodilation) were measured in the exercised arm by using ultrasound before and immediately after acute IHG exercise. IHG training resulted in improved resting brachial FMD (P < 0.01) and no change in nitroglycerin-mediated maximal vasodilation. Pre- and posttraining, brachial artery FMD decreased following an acute bout of IHG exercise (normalized to peak shear rate, pre-, before IHG exercise: 0.01 +/- 0.002, after IHG exercise: 0.008 +/- 0.002%/s(-1); post-, before IHG exercise: 0.020 +/- 0.003, after IHG exercise: 0.010 +/- 0.003%/s(-1); P < 0.01). Posttraining, resting brachial artery FMD improved yet nitroglycerin-mediated maximal vasodilation was unchanged in persons medicated for hypertension. This suggests that the training-induced improvements in the resting brachial artery FMD were not due to underlying changes in the forearm vasculature. Acute IHG exercise attenuated brachial artery FMD, and although this impairment may be interpreted as hazardous to medicated hypertensives with already dysfunctional endothelium, the effects appear transient as repeated exposure to the IHG stimulus improved resting endothelium-dependent vasodilation.  相似文献   

10.
Sildenafil citrate (Viagra) is the most widely used pharmacological drug for treating erectile dysfunction in men. It has potent cardioprotective effects against ischemia-reperfusion injury via nitric oxide and opening of mitochondrial ATP-sensitive K(+) channels. We further investigated the role of protein kinase C (PKC)-dependent signaling pathway in sildenafil-induced cardioprotection. Rabbits were treated (orally) with sildenafil citrate (1.4 mg/kg) 30 min before index ischemia for 30 min and reperfusion for 3 h. The PKC inhibitor chelerythrine (5 mg/kg i.v.) was given 5 min before sildenafil. Infarct size (% of risk area) reduced from 33.65 +/- 2.17 in the vehicle (saline) group to 15.07 +/- 0.63 in sildenafil-treated groups, a 45% reduction compared with vehicle (mean +/- SE, P < 0.05). Chelerythrine abolished sildenafil-induced protection, as demonstrated by increase in infarct size to 31.14 +/- 2.4 (P < 0.05). Chelerythrine alone had an infarct size of 33.5 +/- 2.5, which was not significantly different compared with DMSO-treated group (36.8 +/- 1.7, P > 0.05). Western blot analysis demonstrated translocation of PKC-alpha, -, and -delta isoforms from cytosol to membrane after treatment with sildenafil. However, no change in the PKC-beta and -epsilon isoforms was observed. These data provide direct evidence of an essential role of PKC, and potentially PKC-alpha, -, and -delta, in sildenafil-induced cardioprotection in the rabbit heart.  相似文献   

11.
Previous investigations of age-associated changes in flow-mediated vasodilation (FMD) in women have been limited to the upper extremity and have not accounted for possible age differences in the stimulus for dilation. The purpose of the present study was to compare age differences in brachial and popliteal FMD and its stimulus (changes in shear rate following occlusion). Ultrasound-derived diameters and Doppler flow velocities of the brachial and popliteal arteries were measured in 14 young (20- to 30-yr-old) and 14 older (60- to 79-yr-old) healthy women at rest and during and after 5 min of distal cuff occlusion. Resting diameters were similar (both P > 0.39) in both age groups. Peak shear rate did not differ with age in either artery: approximately 1,300-1,400 and approximately 400-500 s(-1) in brachial and popliteal arteries, respectively. FMD (percent change above diameter measured during occlusion) was approximately 50-60% lower (P < 0.05) in the brachial (15.8 + 0.8% vs. 8.1 + 1.5%) and popliteal (4.6 +/- 0.7% vs. 1.8 +/- 0.4%) arteries of the older women. The normalized response of the brachial and popliteal arteries (%FMD per unit change in shear rate) was also reduced with age (55% and 53%, respectively) but did not exhibit limb specificity. Additionally, endothelium-independent dilation, as assessed by administration of nitroglycerin, was similarly blunted (by 45-65%) in brachial and popliteal arteries of older women. These results suggest that 1) brachial and popliteal artery FMD (after 5 min of distal occlusion) are similarly reduced with age, 2) when normalized to the change in shear stimulus, both arteries are equally responsive to 5 min of distal cuff occlusion in women, and 3) the age-associated decline in FMD may be attributable in part to diminished smooth muscle responsiveness.  相似文献   

12.
We tested the hypothesis that chronic treatment with sildenafil attenuates myocardial infarction (MI)-induced heart failure. Sildenafil has potent protective effects against necrosis and apoptosis following ischemia-reperfusion in the intact heart and cardiomyocytes. ICR mice underwent MI by left anterior descending coronary artery ligation and were treated with sildenafil (0.71 mg/kg bid) or saline for 4 wk. Infarct size (IS) was measured 24 h postinfarction, and apoptosis was measured by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling. Left ventricular end-diastolic diameter (LVEDD) and fractional shortening (FS) were measured by echocardiography. Sildenafil reduced IS (40.0 +/- 4.6%) compared with that in saline (69.6 +/- 4.1%, P < 0.05). NG-nitro-l-arginine methyl ester, a nitric oxide synthase (NOS) inhibitor (15 mg/kg bid), blocked the protective effect of sildenafil (IS, 60.2 +/- 1.6%, P < 0.05 vs. sildenafil). Western blot analysis revealed a significant increase in endothelial NOS/inducible NOS proteins 24 h post-MI after treatment with sildenafil versus saline. Apoptosis decreased from 2.4 +/- 0.3% with saline to 1.2 +/- 0.1% with sildenafil (P < 0.05) on day 7 and from 2.0 +/- 0.2% with saline to 1.2 +/- 0.1% with sildenafil on day 28 (P < 0.05), which was associated with an early increase in the Bcl-2-to-Bax ratio. LVEDD increased from baseline value of 3.6 +/- 0.1 to 5.2 +/- 0.2 and to 5.5 +/- 0.1 mm on days 7 and 28, respectively, with saline (P < 0.05) but was attenuated to 4.4 +/- 0.2 and 4.4 +/- 0.1 mm following sildenafil treatment on days 7 and 28, respectively (P > 0.05 vs. baseline). FS significantly improved post-MI with sildenafil. A marked decline in cardiac hypertrophy was observed with sildenafil, which paralleled a reduction in pulmonary edema. Survival rate was lower with saline (36%) compared with sildenafil (93%, P < 0.05). Sildenafil attenuates ischemic cardiomyopathy in mice by limiting necrosis and apoptosis and by preserving left ventricular function possibly through a nitric oxide-dependent pathway.  相似文献   

13.
Zulu traditional health practitioners have claimed that the roots of Eriosema kraussianum N. E. Br. (Fabaceae) and other Eriosema species (Zulu indigenous umbrella name of "uBangalala") are effective remedies for the treatment of erectile dysfunction (ED) and/or impotence. In order to scientifically appraise the significance and contribution of Eriosema kraussianum to its ethnomedical use as "uBangalala" and "VIAGRA substitute", the present study was undertaken to investigate the vasodilatory and hypoglycaemic properties of the two main bioactive chemical compounds obtained from E. kraussianum, in experimental rat models, using sildenafil citrate (VIAGRA) as the reference drug for comparison. The two E. kraussianum rootstock constituents (K1 and K2, 20-80 mg/kg p.o.) caused dose-dependent and significant (P<0.05-0.001) hypoglycaemia in rats. Relatively low to high concentrations of the plant's extracts (K1 and K2, 100-2000 microg/ml) always produced biphasic effects on rat isolated portal veins. K1- and K2-provoked responses of the isolated portal veins always consisted of concentration-related initial transient, but significant (P<0.05), contractions of the venous muscle preparations, followed by secondary, longer-lasting, highly significant (P<0.01-0.001) relaxations of the venous muscle strips. Sildenafil citrate (VIAGRA, 5-100 microg/ml) always produced concentration-related and highly significant relaxations of the rat isolated portal veins. Unlike K1 and K2 (20-80 mg/kg p.o.), however, sildenafil citrate (VIAGRA, 100 mg/kg p. o.) only caused slight and insignificant (P>0.05) reductions in the blood glucose levels of the experimental animals used. On the other hand, glibenclamide (10 mg/kg p.o.) induced highly significant (P<0.05-0.001), marked reductions in the blood glucose concentrations of the rats. The findings of this laboratory animal study indicate that the two hydro-ethanol extractives of E. kraussianum (K1 and K2) possess hypoglycaemic and secondary, vasorelaxant effects in the experimental paradigms used.  相似文献   

14.
Exercise training reverses endothelial dysfunction, but the effect in young, healthy subjects is less clear. We determined the influence of maximal oxygen uptake (VO2max) and a single bout of high-intensity exercise on flow-mediated dilatation (FMD), brachial artery diameter, peak blood flow, nitric oxide (NO) bioavailability, and antioxidant status in highly endurance-trained men and their sedentary counterparts. Ten men athletes (mean +/- SEM age 23.5 +/- 0.9 years, height 182.6 +/- 2.4 cm, weight 72.5 +/- 2.4 kg, VO2max 75.9 +/- 0.8 mL.kg.min) and seven healthy controls (age 25.4 +/- 1.2 years, height 183.9 +/- 3.74 cm, weight 92.8 +/- 3.9 kg, VO2max 47.7 +/- 1.7 mL.kg.min) took part in the study. FMD, brachial artery diameter, and peak blood flow were measured using echo-Doppler before, 1 hour, 24 hours, and 48 hours after a single bout of interval running for 5 x 5 minutes at 90% of maximal heart rate. NO bioavailability and antioxidant status in blood were measured at all time points. Maximal arterial diameter and peak flow were 10-15% (P < 0.02) and 28-35% (P < 0.02) larger, respectively, in athletes vs. controls at all time points, and similar FMD were observed, apart from a transient decay of FMD in athletes 1 hour post exercise. NO bioavailability increased significantly after exercise in both groups and decreased to baseline levels after 24 hours in controls but remained increased 80% and 93% above baseline 24 and 48 hours post exercise in athletes. Antioxidant status was equal in the two groups at baseline and increased by approximately 10% 1 hour post exercise, an effect that lasted for 24 hours. Athletes had larger arterial diameter but similar FMD as untrained subjects, i.e., athletes had larger capacity for blood transport compared with their untrained counterparts. The observed FMD, bioavailability of NO, and antioxidant status in blood were highly dependent on the time elapsed after the exercise session.  相似文献   

15.
Attenuation of endothelium-derived nitric oxide (NO) synthesis is a hallmark of endothelial dysfunction. Early detection of this disorder may have therapeutic and prognostic implications. Plasma nitrite mirrors acute and chronic changes in endothelial NO-synthase activity. We hypothesized that local plasma nitrite concentration increases during reactive hyperemia of the forearm, reflecting endothelial function. In healthy subjects (n = 11) plasma nitrite and nitrate were determined at baseline and during reactive hyperemia of the forearm using reductive gas-phase chemiluminescence and flow-injection analysis, respectively. Endothelium-dependent dilation of the brachial artery was measured as flow-mediated dilation (FMD) using high-resolution ultrasound. Results were compared to patients with endothelial dysfunction as defined by reduced FMD (n = 11). Reactive hyperemia of the forearm increased local plasma nitrite concentration from 68 +/- 5 to 126 +/- 13 nmol/L (p < 0.01), whereas in endothelial dysfunction nitrite remained unaffected (116 +/- 12 to 104 +/- 10 nmol/L; n.s.), corresponding to nitrite reserves of 94 +/- 21 and -8 +/- 4%. This was accompanied by a significantly greater increase in brachial artery diameter (FMD: 8.5 +/- 0.4% vs 2.9 +/- 0.5%, for healthy subjects and endothelial dysfunction, respectively; p < 0.001). This observation suggests that nitrite changes reflect endothelial function. Assessment of local plasma nitrite during reactive hyperemia may open new avenues in the diagnosis of vascular function.  相似文献   

16.
Sildenafil induces vasodilation and is used for treating erectile dysfunction. Although its influence on resting heart function appears to be minimal, recent studies suggest that sildenafil can increase sympathetic activity. We therefore tested whether sildenafil injected into the central nervous system alters the autonomic control of the cardiovascular system in conscious rats. The effect of sildenafil citrate injected into the lateral cerebral ventricle was evaluated in conscious rats by means of the recording of lumbar sympathetic nerve activity (LSNA), spectral analysis of systolic arterial pressure and heart rate variability, spontaneous baroreflex sensitivity, and baroreflex control of LSNA. Intracerebroventricular (ICV, 100 microg /5 microl) administration of sildenafil caused remarkable tachycardia without significant change in basal arterial pressure and was associated with a conspicuous increase (47 +/- 14%) in LSNA. Spectral analysis demonstrated that systolic arterial pressure oscillations in the low frequency (LF) range were increased (from 6.3 +/- 1.5 to 12.8 +/- 3.8 mmHg(2)), whereas the high frequency (HF) range was not affected by ICV administration of sildenafil. Sildenafil increased pulse interval oscillations at LF and decreased them at HF. The LF-HF ratio increased from 0.04 +/- 0.01 to 0.17 +/- 0.06. Spontaneous baroreflex sensitivity measured by the sequence method and the baroreflex relationship between mean arterial pressure and LSNA were not affected by ICV administration of sildenafil. In conclusion, sildenafil elicited an increase in sympathetic nerve activity that is not baroreflex mediated, suggesting that this drug is able to elicit an autonomic imbalance of central origin. This finding may have implications for understanding the cardiovascular outcomes associated with the clinical use of this drug.  相似文献   

17.
Assessment of flow-mediated dilation (FMD) after forearm ischemia is widely used as a noninvasive bioassay of stimulated nitric oxide (NO)-mediated conduit artery vasodilator function in vivo. Whether this stimulated endothelial NO function reflects basal endothelial NO function is unknown. To test this hypothesis, retrospective analysis of randomized crossover studies was undertaken in 17 subjects with Type 2 diabetes; 9 subjects undertook an exercise training or control period, whereas the remaining 8 subjects were administered an angiotensin II receptor blocker or placebo. FMD was assessed by using wall tracking of high-resolution brachial artery ultrasound images in response to reactive hyperemia. Resistance vessel basal endothelium-dependent NO function was assessed by using intrabrachial administration of NG-monomethyl-L-arginine (L-NMMA) and plethysmographic assessment of forearm blood flow (FBF). FMD was higher after intervention compared with control/placebo (6.15+/-0.53 vs. 3.81+/-0.72%, P<0.001). There were no significant changes in the FBF responses to L-NMMA. Regression analysis between FMD and L-NMMA responses at entry to the study revealed an insignificant correlation (r=-0.10, P=0.7), and improvements in FMD with the interventions were not associated with changes in the L-NMMA responses (r=-0.04, P=0.9). We conclude that conduit artery-stimulated endothelial NO function (FMD) does not reflect basal resistance vessel endothelial NO function in subjects with Type 2 diabetes.  相似文献   

18.
Despite the high prevalence of obstructive sleep apnea (OSA) in type 2 diabetes mellitus (DM), the attributable vascular risk from each condition is unknown. We hypothesize that OSA may have a similar effect on vascular function as type 2 diabetes does. Healthy normal‐weight subjects, healthy obese subjects, subjects with type 2 diabetes, and obese subjects with OSA were enrolled. Vascular function was assessed with brachial artery ultrasound for flow‐mediated dilatation (FMD) and in skin microcirculation by laser Doppler flowmetry. One hundred fifty‐three subjects were studied: healthy normal‐weight controls (NCs) (n = 14), healthy obese controls (OCs) (n = 33), subjects with DM (n = 68), and obese subjects with OSA (n = 38). The DM group did not undergo sleep study and thus may have had subclinical OSA. The OSA and type 2 diabetes groups had impaired FMD as compared to both the normal‐weight and OC groups (5.8 ± 3.8%, 5.4 ± 1.6% vs. 9.1 ± 2.5%, 8.3 ± 5.1%, respectively, P < 0.001, post hoc Fischer test). When referenced to the NC group, a multiple linear regression model adjusting for covariates found that baseline brachial artery diameter (β = ?3.75, P < 0.001), OSA (β = ?2.45, P = 0.02) and type 2 diabetes status (β = ?2.31, P = 0.02), negatively predicted % FMD. OSA status did not seem to affect nitroglycerin‐induced vasodilation (endothelium‐independent) of the brachial artery or vascular function in the skin microcirculation. OSA impairs endothelial function in the brachial artery to a similar degree as type 2 diabetes does. OSA, however, does not appear to affect brachial endothelium‐independent vasodilation or skin microcirculatory function. Treatment of OSA in patients with concomitant type 2 diabetes, therefore, may be a potential therapeutic option to improve macro‐, but not microvascular outcomes.  相似文献   

19.
Endothelial dysfunction reflects reduced nitric oxide (NO) bioavailability due to either reduced production, inactivation of NO, or reduced smooth muscle responsiveness. Oral methionine loading causes acute endothelial dysfunction in healthy subjects and provides a model in which to study mechanisms. Endothelial function was assessed using flow-mediated dilatation (FMD) of the brachial artery in humans. Three markers of oxidative stress were measured ex vivo in venous blood. NO responsiveness was assessed in vascular smooth muscle and platelets. Oral methionine loading induced endothelial dysfunction (FMD decreased from 2.8 +/- 0.8 to 0.3 +/- 0.3% with methionine and from 2.8 +/- 0.8 to 1.3 +/- 0.3% with placebo; P < 0.05). No significant changes in measures of plasma oxidative stress or in vascular or platelet sensitivity to submaximal doses of NO donors were detected. These data suggest that oxidative stress is not the mechanism of endothelial dysfunction after oral methionine loading. Furthermore, the preservation of vascular and platelet NO sensitivity makes a signal transduction abnormality unlikely.  相似文献   

20.
Exercise elevates shear stress in the supplying conduit artery. Although this is the most relevant physiological stimulus for flow-mediated dilation (FMD), the fluctuating pattern of shear that occurs may influence the shear stress-FMD stimulus response relationship. This study tested the hypothesis that the brachial artery FMD response to a step increase in shear is influenced by the fluctuating characteristics of the stimulus, as evoked by forearm exercise. In 16 healthy subjects, we examined FMD responses to step increases in shear rate in three conditions: stable shear upstream of heat-induced forearm vasodilation (FHStable); fluctuating shear upstream of heat-induced forearm vasodilation and rhythmic forearm cuff inflation/deflation (FHFluctuating); and fluctuating shear upstream of exercise-induced forearm vasodilation (FEStep Increase). The mean increase in shear rate (+/-SD) was the same in all trials (FHFluctuating): 51.69 +/- 15.70 s(-1); FHStable: 52.16 +/- 14.10 s(-1); FEStep Increase: 50.14 +/- 13.03 s(-1) P = 0.131). However, the FHFluctuating and FEStep Increase trials resulted in a fluctuating shear stress stimulus with rhythmic high and low shear periods that were 96.18 +/- 24.54 and 11.80 +/- 7.30 s(-1), respectively. The initial phase of FMD (phase I) was followed by a second, delayed-onset FMD and was not different between conditions (phase I: FHFluctuating: 5.63 +/- 2.15%; FHStable: 5.33 +/- 1.85%; FEStep Increase: 5.30 +/- 2.03%; end-trial: FHFluctuating: 7.76 +/- 3.40%; FHStable: 7.00 +/- 3.03%; FEStep Increase: 6.68 +/- 3.04%; P = 0.196). Phase I speed also did not differ (P = 0.685). In conclusion, the endothelium transduced the mean shear when exposed to shear fluctuations created by a typical handgrip protocol. Muscle activation did not alter the FMD response. Forearm exercise may provide a viable technique to investigate brachial artery FMD in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号