首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incubation of 3-mercaptopyruvate with rat heart homogenate resulted in the formation of S-(2-hydroxy-2-carboxy-ethylthio)-L-cysteine (HCETC, 3-mercaptolactate-cysteine disulfide), L-cysteine and 3-mercaptolactate with the concomitant decrease in glutamate and aspartate. These results indicate that a part of 3-mercaptopyruvate was converted to L-cysteine by transamination, a part was reduced to 3-mercaptolactate, and HCETC was formed from these two products. Another peak which corresponds to L-cysteine-glutathione disulfide on amino acid analysis was also produced during the incubation.  相似文献   

2.
Summary We have studied the transamination pathway (3-mercaptopyruvate pathway) ofl-cysteine metabolism in rats. Characterization of cysteine aminotransferase (EC 2.6.1.3) from liver indicated that the transamination, the first reaction of this pathway, was catalyzed by aspartate aminotransferase (EC 2.6.1.1). 3-Mercaptopyruvate, the product of the transamination, may be metabolized through two routes. The initial reactions of these routes are reduction and transsulfuration, and the final metabolites are 3-mercaptolactate-cysteine mixed disulfide [S-(2-hydroxy-2-carboxyethylthio)cysteine, HCETC] and inorganic sulfate, respectively. The study using anti-lactate dehydrogenase antiserum proved that the enzyme catalyzing the reduction of 3-mercaptopyruvate was lactate dehydrogenase (EC 1.1.1.27). Formation of HCETC was shown to depend on low 3-mercaptopyruvate sulfurtransferase (EC 2.8.1.2) activity. Results were discussed in relation to HCETC excretion in normal human subjects and patients with 3-mercaptolactate-cysteine disulfiduria. Incubation of liver mitochondria withl-cysteine, 2-oxoglutarate and glutathione resulted in the formation of sulfate and thiosulfate, indicating that thiosulfate was formed by transsulfuration of 3-mercaptopyruvate and finally metabolized to sulfate.  相似文献   

3.
3-Mercaptopyruvate sulfurtransferase catalyzes the transfer of sulfur from 3-mercaptopyruvate to several possible acceptor molecules, one of which is cyanide. Because the transsulfuration of cyanide is the primary in vivo mechanism of detoxification, 3-mercaptopyruvate sulfurtransferase may function in the enzymatic detoxification of cyanide in vivo. Three α-keto acids (α-ketobutyrate, α-ketoglutarate, and pyruvate) have previously been demonstrated to be cyanide antidotes in vivo, and it has been suggested that this is due to the nonenzymatic binding of cyanide by the α-keto acid. However, it has also been proposed that α-keto acids may increase the activity of enzymes involved in the transsulfuration of cyanide. Thus, the effect of these three α-keto acids on the enzyme 3-mercaptopyruvate sulfurtransferase was examined. All three α-keto acids inhibited 3-mercaptopyruvate sulfurtransferase in a concentration-dependent manner and were determined to be uncompetitive inhibitors of MST with respect to 3-mercaptopyruvate. The inhibitor constant Ki was estimated by two methods for each inhibitor and ranged from 4.3 to 6.3 mM. The I50, which is the inhibitor concentration that produces 50% inhibition, was calculated for all three α-keto acids and ranged between 9.5 and 13.7 mM. These observations add further support to the hypothesis that the mechanisms of the α-keto acid antidotes is the nonenzymatic binding of cyanide, not stimulation of enzymes involved in the transsulfuration of cyanide to thiocyanate. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
The product of Escherichia coli sseA gene (SseA) was the subject of the present investigation aimed to provide a tool for functional classification of the bacterial proteins of the rhodanese family. E. coli SseA contains the motif CGSGVTA around the catalytic cysteine (Cys238). In eukaryotic sulfurtransferases this motif discriminates for 3-mercaptopyruvate:cyanide sulfurtransferase over thiosulfate:cyanide sulfurtransferases (rhodanese). The biochemical characterization of E. coli SseA allowed the identification of the first prokaryotic protein with a preference for 3-mercaptopyruvate as donor substrate. Replacement of Ser240 with Ala showed that the presence of a hydrophobic residue did not affect the binding of 3-mercaptopyruvate, but strongly prevented thiosulfate binding. On the contrary, substitution of Ser240 with an ionizable residue (Lys) increased the affinity for thiosulfate.  相似文献   

5.
The product of Escherichia coli sseA gene (SseA) was the subject of the present investigation aimed to provide a tool for functional classification of the bacterial proteins of the rhodanese family. E. coli SseA contains the motif CGSGVTA around the catalytic cysteine (Cys238). In eukaryotic sulfurtransferases this motif discriminates for 3-mercaptopyruvate:cyanide sulfurtransferase over thiosulfate:cyanide sulfurtransferases (rhodanese). The biochemical characterization of E. coli SseA allowed the identification of the first prokaryotic protein with a preference for 3-mercaptopyruvate as donor substrate. Replacement of Ser240 with Ala showed that the presence of a hydrophobic residue did not affect the binding of 3-mercaptopyruvate, but strongly prevented thiosulfate binding. On the contrary, substitution of Ser240 with an ionizable residue (Lys) increased the affinity for thiosulfate.  相似文献   

6.
Summary We have studied the 3-mercaptopyruvate pathway (transamination pathway) ofl-cysteine metabolism in rat liver mitochondria.l-Cysteine and other substrates at 10 mM concentration were incubated with mitochondrial fraction at pH 8.4, and sulfate and thiosulfate were determined by ion chromatography. Whenl-cysteine alone was incubated, sulfate formed was 0.7µmol per mitochondria from one g of liver per 60 min. Addition of 2-oxoglutarate and GSH resulted in more than 3-fold increase in sulfate formation, and thiosulfate was formed besides sulfate. The sum (A + 2B) of sulfate (A) and thiosulfate (B) formed was approximately 7-times that withl-cysteine alone. Incubation with 3-mercaptopyruvate resulted in sulfate and thiosulfate formation, and sulfate was formed with thiosulfate. These reactions were stimulated with glutathione. Sulfate formation froml-cysteinesulfinate and 2-oxoglutarate was not enhanced by glutathione and thiosulfate was not formed. These findings indicate thatl-cysteine was metabolized and sulfate was formed through 3-mercaptopyruvate pathway in mitochondria.  相似文献   

7.
8.
Aspartate aminotransferases from pig heart cytosol and mitochondria, Escherichia coli B and Pseudomonas striata accepted L-cysteine sulfinate as a good substrate. The mitochondrial isoenzyme and the Escherichia enzyme showed higher activity toward L-cysteine sulfinate than toward the natural substrates, L-glutamate and L-aspartate. The cytosolic isoenzyme catalyzed the L-cysteine sulfinate transamination at 50% the rate of L-glutamate transamination. The Pseudomonas enzyme had the same reactivity toward the three substrates. Antisera against the two isoenzymes and the Escherichia enzyme inactivated almost completely cysteine sulfinate transamination activity in the crude extracts of pig heart muscle and Escherichia coli B, respectively. These results indicate that cysteine sulfinate transamination is catalyzed by aspartate aminotransferase in these cells.  相似文献   

9.
Sulfurtransferases transfer a sulfane atom from a donor substrate to a thiophilic acceptor molecule. Recently a sulfurtransferase specific for the substrate 3-mercaptopyruvate was isolated from Arabidopsis thaliana [Papenbrock, J. & Schmidt, A. (2000) Eur. J. Biochem. 267, 145-154]. In this study a second sulfurtransferase from Arabidopsis was characterized and compared to the enzyme described previously. Sequences of the mature proteins had an identity of 77.7%. The plant sulfurtransferases formed a distinct group within the known eukaryotic sulfurtransferases. When Southern blots were hybridized with labelled cDNA fragments from each of the plant sulfurtransferases the same pattern of bands was obtained indicating the existence of only these two closely related sulfurtransferases. The new sulfurtransferase was expressed in Escherichia coli fused with an N-terminal His6-tag, purified and tested for enzyme activity. Like the first enzyme, the newly isolated protein preferred 3-mercaptopyruvate to thiosulfate as substrate. The Km of both enzymes determined for 3-mercaptopyruvate and cyanide were almost identical. As a result of database searches it became obvious that sulfurtransferase proteins from higher plants showed high similarities to small senescence- and stress-induced proteins. To prove the involvement of sulfurtransferases in senescence-associated processes 3-mercaptopyruvate sulfurtransferase activity was determined in crude protein extracts from Arabidopsis plants of different ages. 3-mercaptopyruvate sulfurtransferase activity and steady-state RNA levels of sulfurtransferases increased with increasing age. However, steady-state protein levels as measured by using an antibody against the sulfurtransferase protein expressed previously decreased. Putative roles of sulfurtransferases in senescence-associated processes are discussed.  相似文献   

10.
We have purified three NifS homologs from Escherichia coli, CSD, CsdB, and IscS, that appear to be involved in iron-sulfur cluster formation and/or the biosynthesis of selenophosphate. All three homologs catalyze the elimination of Se and S from L-selenocysteine and L-cysteine, respectively, to form L-alanine. These pyridoxal 5'-phosphate enzymes were inactivated by abortive transamination, yielding pyruvate and a pyridoxamine 5'-phosphate form of the enzyme. The enzymes showed non-Michaelis-Menten behavior for L-selenocysteine and L-cysteine. When pyruvate was added, they showed Michaelis-Menten behavior for L-selenocysteine but not for L-cysteine. Pyruvate significantly enhanced the activity of CSD toward L-selenocysteine. Surprisingly, the enzyme activity toward L-cysteine was not increased as much by pyruvate, suggesting the presence of different rate-limiting steps or reaction mechanisms for L-cysteine desulfurization and the degradation of L-selenocysteine. We substituted Ala for each of Cys358 in CSD, Cys364 in CsdB, and Cys328 in IscS, residues that correspond to the catalytically essential Cys325 of Azotobacter vinelandii NifS. The enzyme activity toward L-cysteine was almost completely abolished by the mutations, whereas the activity toward L-selenocysteine was much less affected. This indicates that the reaction mechanism of L-cysteine desulfurization is different from that of L-selenocysteine decomposition, and that the conserved cysteine residues play a critical role only in L-cysteine desulfurization.  相似文献   

11.
Cytosolic 3-mercaptopyruvate sulfurtransferases (EC ) of Leishmania major and Leishmania mexicana have been cloned, expressed as active enzymes in Escherichia coli, and characterized. The leishmanial single-copy genes predict a sulfurtransferase that is structurally peculiar in possessing a C-terminal domain of some 70 amino acids. Homologous genes of Trypanosoma cruzi and Trypanosoma brucei encode enzymes with a similar C-terminal domain, suggesting that this feature, not known in any other sulfurtransferase, is a characteristic of trypanosomatid parasites. Short truncations of the C-terminal domain resulted in misfolded inactive proteins, demonstrating that the domain plays some key role in facilitating correct folding of the enzymes. The leishmanial recombinant enzymes exhibited high activity toward 3-mercaptopyruvate and catalyzed the transfer of sulfane sulfur to cyanide to form thiocyanate. They also used thiosulfate as a substrate and reduced thioredoxin as the accepting nucleophile, the latter being oxidized. The enzymes were expressed in all life cycle stages, and the expression level was increased under peroxide or hypo-sulfur stress. The results are consistent with the enzymes having an involvement in the synthesis of sulfur amino acids per se or iron-sulfur centers of proteins and the parasite's management of oxidative stress.  相似文献   

12.
The effect of low concentrations of cyanide on dissimilatory perchlorate and chlorate reduction and aerobic respiration was examined using pure cultures of Azospira sp. KJ. Cyanide at a concentration of 38 microM inhibited cell growth on perchlorate, chlorate and molecular oxygen, but it did not inhibit the activity of chlorite dismutase. When oxygen accumulation was prevented by adding an oxygen scavenger (Oxyrase or L-cysteine), however, cells completely reduced perchlorate in the presence of cyanide. It was concluded that the inhibition of dissimilative perchlorate reduction by cyanide at this concentration was a consequence of oxygen accumulation, not inhibition of the enzymes used for perchlorate reduction. This finding on the effect of cyanide on respiratory enzymes provides a new method to control and study respiratory enzymes used for perchlorate reduction.  相似文献   

13.
Mammalian 3-mercaptopyruvate sulfurtransferase (EC 2.8.1.2), purified to apparent homogeneity by a new procedure, was studied by steady-state kinetic methods. The enzyme-catalyzed transfer of a sulfur atom from 3-mercaptopyruvate either to 2-mercaptoethanol or to a second molecule of 3-mercaptopyruvate was found to proceed by a sequential formal mechanism. An overall mechanism incorporating both of these transfers was shown to be capable of generating all of the initial velocity and product inhibition behavior observed.  相似文献   

14.
  • 1.1. The activity of cysteine aminotransferase (CAT), 3-mercaptopyruvate sulfurtransferase (MPST) and rhodanese is much lower in Ehrlich ascites tumor cells (EATC) than in mouse liver.
  • 2.2. Contrary to mouse liver homogenate, no synthesis of sulphane sulphur-containing compounds from L-cysteine is observed in EATC homogenate.
  • 3.3. 2-Methyl-thiazolidine-2,4-dicarboxylic acid (CP), 2-methyl-thiazolidine-4-carboxylic acid (CA) and thiazolidine-4-carboxylic acid (CF) can be used as sources of low molecular-weight thiol compounds both in EATC and mouse liver homogenate.
  • 4.4. Pyruvate formed from phosphoenolopyruvate (PEP) in EATC homogenates reacts with L-cysteine (l-CYS) to CP.
  相似文献   

15.
Among the L-amino acids, only L-cysteine was oxidized by isolated washed membranes of group B Neisseria meningitidis SD1C. The cysteine oxidase in the membrane obeyed Michaelis-Menten kinetics and was heat labile. The pH optimum for the maximum velocity of the reaction was 9.8. Specific activity of the enzyme increased as cell growth progressed through the exponential phase toward the stationary phase of growth. The enzyme activity was markedly sensitive to inhibition by metal chelators, but was resistant to inhibitors of terminal oxidases with the exception of cyanide. All known cytochromes in the membrane, except b563, were reduced with L-cysteine. The additive nature of L-cysteine oxidase and succinate oxidase activities suggests that an unidentified oxidase is involved in the oxidation of cysteine.  相似文献   

16.
Nagahara N  Sawada N  Nakagawa T 《Biochimie》2004,86(9-10):723-729
A bisubstrate enzyme, rat mercaptopyruvate sulfurtransferase (EC 2.8.1.2), is inactivated by 3-chloropyruvate, an analog of 3-mercaptopyruvate serving as a sulfur-donor and -acceptor substrate. To elucidate a reaction mechanism of the enzyme, the inactivation kinetic studies using 3-chloropyruvate were carried out. However, 3-chloropyruvate cannot be mixed with 3-mercaptopyruvate, 2-mercaptoethanol and thiosulfate because these substrates decompose 3-chloropyruvate. Thus, 3-mercaptopyruvate sulfurtransferase was incubated with 3-chloropyruvate, and then the remaining activity was measured separately in the assay system containing 3-mercaptopyruvate and 2-mercaptoethanol. The inactivation kinetics was analyzed by Kitz and Wilson method (J. Biol. Chem. 237 (1962) 3245-3248). The inactivation of mercaptopyruvate sulfurtransferase by 3-chloropyruvate proceeded in one-on-one manner and exhibited pseudo first-order kinetics with k(inact) = 0.068 +/- 0.003 min(-1) and K(I) = 4.0 +/- 0.2 mM (n = 3, mean +/- S.D.). Further, SH titration using DTNB revealed that MST was inactivated by 3-chloropyruvate in a 1:1 stoichiometry. Site-directed mutagenesis for binding sites of 3-mercaptopyruvate (Arg(187)-->Gly or Arg(196)-->Gly) (J. Biol. Chem. 271 (1996) 27395-27401) did not critically affect the inactivation. These findings suggest that 3-chloropyruvate behaves as an affinity label and directly tags the catalytic site, Cys(247). An ESI-LC/Q-TOF mass spectrometric study suggests that a pyruvate adduct is formed at Cys(247), which mimics a reaction intermediate.  相似文献   

17.
Summary l-Cysteine is mainly metabolized to sulfate and taurine through cysteinesulfinate pathway. Alternatively, sulfate is formed in rat liver mitochondria via 3-mercaptopyruvate pathway. Intraperitoneal administration of 5 mmol ofl-cysteine per kg of body weight resulted in the increase in sulfate and taurine (plus hypotaurine) excretion in the 24-h urine, which corresponded to 45.3 and 29.3%, respectively, ofl-cysteine administered. Subcutaneous injection of (aminooxy)acetate, a potent inhibitor of transaminases, together withl-cysteine halved the sulfate excretion and doubled the taurine excretion. In vitro sulfate formation froml-cysteine and froml-cysteinesulfinate in rat liver mitochondria was inhibited by (aminooxy)-acetate. The sulfate-forming activity of liver mitochondria obtained from rats injected with (aminooxy) acetate was also inhibited. These results indicate that the transamination reaction is crucial in sulfate formation and in the regulation of sulfur metabolism. Sulfur equilibrium in mammals was discussed.  相似文献   

18.
Leishmania major 3-mercaptopyruvate sulfurtransferase is a crescent-shaped molecule comprising three domains. The N-terminal and central domains are similar to the thiosulfate sulfurtransferase rhodanese and create the active site containing a persulfurated catalytic cysteine (Cys-253) and an inhibitory sulfite coordinated by Arg-74 and Arg-185. A serine protease-like triad, comprising Asp-61, His-75, and Ser-255, is near Cys-253 and represents a conserved feature that distinguishes 3-mercaptopyruvate sulfurtransferases from thiosulfate sulfurtransferases. During catalysis, Ser-255 may polarize the carbonyl group of 3-mercaptopyruvate to assist thiophilic attack, whereas Arg-74 and Arg-185 bind the carboxylate group. The enzyme hydrolyzes benzoyl-Arg-p-nitroanilide, an activity that is sensitive to the presence of the serine protease inhibitor N alpha-p-tosyl-L-lysine chloromethyl ketone, which also lowers 3-mercaptopyruvate sulfurtransferase activity, presumably by interference with the contribution of Ser-255. The L. major 3-mercaptopyruvate sulfurtransferase is unusual with an 80-amino acid C-terminal domain, bearing remarkable structural similarity to the FK506-binding protein class of peptidylprolyl cis/trans-isomerase. This domain may be involved in mediating protein folding and sulfurtransferase-protein interactions.  相似文献   

19.
Rat brain mitochondria were found to convert 3-mercaptopyruvate to 2-mercaptoacetate in the presence of NAD+, coenzyme A and thiamin pyrophosphate. The overall reaction probably consists of an oxidative decarboxylation of 3-mercaptopyruvate with 2-mercaptoacetyl CoA as a product which is then hydrolyzed to 2-mercaptoacetate by acyl CoA hydrolase.  相似文献   

20.
Summary Changes of the specific activity of 3-mercaptopyruvate sulfurtransferase (MPST), rhodanese and cystathionase in Ehrlich ascites tumor cells (EATC) and tumor-bearing mouse liver after intraperitoneal administration of thiazolidine derivatives, L-cysteine, D,L-methionine, thiocystine or thiosulfate were estimated. Thiazolidine derivatives used were: thiazolidine-4-carboxylic acid (CF), 2-methyl-thiazolidine-2,4-dicarboxylic acid (CP) and 2-methyl-thiazolidine-4-carboxylic acid (CA). In the liver, the activity of MPST was significantly increased by all the studied compounds, whereas the activity of rhodanese was by CF and thiocystine and that of cystathionase was by the administration of cysteine and CP. Un the other hand, cysteine lowered the rhodanese activity and the activity of cystathionase was decreased by the administration of methionine and thiocystine. Activities of MPST and rhodanese were even lower in EATC than those in the liver of tumor-bearing mouse and the activity of cystathionase in EATC was not be detected. The thiazolidine derivatives significantly increased the level of MPST activity in EATC, but decreased the rhodanese activity. Thiosulfate also increased the activity of MPST to a lesser degree, but cysteine, methionine and thiocystine gave little change in the activity. The rhodanese activity in EATC was slightly increased only by thiocystine. These findings suggest that the sulfur metabolism in the tumor-bearing mouse liver is different from that in the normal mouse liver, and that sulfur compounds are minimally metabolized to sulfane sulfur, a labile sulfur, in EATC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号