首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A collagen-like peptide with the sequence (GER)(15) GPCCG was synthesized to study the formation of a triple helix in the absence of proline residues. This peptide can form a triple helix at acidic and basic pH, but is insoluble around neutral pH. The formation of a triple helix can be used to covalently oxidize the cysteine residues into a disulfide knot. Three disulfide bonds are formed between the three chains as has been found at the carboxyl-terminal end of the type III collagen triple helix. This is a new method to covalently link collagen-like peptides with a stereochemistry that occurs in nature. The peptide undergoes a reversible, cooperative triple helix coil transition with a transition midpoint (T(m)) of 17 to 20 degrees C at acidic pH and 32 to 37 degrees C at basic pH. At acidic pH there was little influence of the T(m) on the salt concentration of the buffer. At basic pH increasing the salt concentration reduced the T(m) to values comparable to the stability at acidic pH. These experiments show that the tripeptide unit GER which occurs frequently in collagen sequences can form a triple helical structure in the absence of more typical collagen-like tripeptide units and that charge-charge interactions play a role in the stabilization of the triple helix of this peptide.  相似文献   

2.
Four small type I collagen CNBr peptides containing complete natural sequences were purified from bovine skin and investigated by CD and 1H- and 13C-nmr spectroscopies to obtain information concerning their conformation and thermal stability. CD showed that a triple helix was formed at 10 degrees C in acidic aqueous solution by peptide alpha l(I) CB2 only, and to lesser extent, by alpha 1(I) CB4, whereas peptides alpha 1(I) CB5 and alpha 2(I) CB2 remained unstructured. Analytical gel filtration confirmed that peptides alpha 1(I) CB2 and alpha 1(I) CB4 only were able to form trimeric species at temperature between 14 and 20 degrees C, and indicated that the monomer = trimer equilibrium was influenced by the chaotropic nature of the salt present in the eluent, by its concentration, and by temperature variations. CD measurements at increasing temperatures showed that alpha 1(I) CB2 was less stable than its synthetic counterpart due to incomplete prolyl hydroxylation of the preparation from the natural source. 1H- and 13C-nmr spectra acquired in the temperature range 0-47 and 0-27 degrees C, respectively, indicated that with decreasing temperature the most abundant from of alpha 1(I) CB2 was in slow exchange with an assembled form, characterized by broad lines, as expected for the triple-helical conformation. A large number of trimer cross peaks was observed both in the proton and carbon spectra, and these were most likely due to the nonequivalence of the environments of the three chains in the triple helix. This nonequivalence may have implications for the aggregation of collagen molecules and for collagen binding to other molecules. The thermal transition from trimer to monomer was also monitored by 1H-nmr following the change in area of the signal belonging to one of the two beta protons of the C-terminal homoserine. The unfolding process was found to be fully reversible with a melting temperature of 13.4 degrees C, in agreement with CD results. The qualitative superposition of the melting curves obtained by CD for the peptide bond characteristics and by nmr for a side chain suggests that triple-helical backbone and side chains constitute a single unit.  相似文献   

3.
The differential scanning calorimetry analysis of the murine major histocompatibility complex class II molecule, I-E(k), in complex with an antigenic peptide derived from mouse hemoglobin, showed that the thermal stability at the mildly acidic pH is higher than that at the neutral pH. Although the thermal unfolding of I-E(k)-hemoglobin was irreversible, we extracted the equilibrium thermodynamic parameters from the kinetically controlled heat capacity curves. Both the denaturation temperatures and the enthalpy changes were almost independent of the heating rate over 1 degrees C per min. The linear relation between the denaturation temperature and the calorimetric enthalpy change provided the heat capacity changes, which are classified into one for the mildly acidic pH region and another for the neutral pH region. The equilibrium thermodynamic parameters showed that the increased stability at the mildly acidic pH is because of the entropic effect. These thermodynamic data provided new insight into the current structural model of a transition to an open conformation at the mildly acidic pH, which is critical for the peptide exchange function of major histocompatibility complex class II in the endosome.  相似文献   

4.
The interaction between amphotericin B molecules in aqueous medium solution was studied using absorption and circular dichroism approaches. The results showed that at concentrations below 1 microM of amphotericin B, an equilibrium between the monomer and aggregate occurred with a constant of approximately 0.6x10(6) M(-1). The aggregate formation constant was dependent on the experimental conditions of the medium: its value increased at acidic pH values, while alkaline medium induced the equilibrium displacement to the monomer formation. Either neutral salts or chaotropic agents such as urea prevented the formation of the aggregate. The presence of net electrical charge on the amine and carboxyl groups plays a role in the thermodynamic stability of the aggregate. A hydrophobic effect was also found between the monomer form and the water molecules of neighbours. In the aggregate formation water molecules were released contributing to an increase in the entropic change.  相似文献   

5.
Mertz EL  Leikin S 《Biochemistry》2004,43(47):14901-14912
We use direct infrared measurements to determine the number of binding sites, their dissociation constants, and preferential interaction parameters for inorganic phosphate and sulfate anions in collagen fibrils from rat tail tendons. In contrast to previous reports of up to 150 bound phosphates per collagen molecule, we find only 1-2 binding sites for sulfate and divalent phosphate under physiological conditions and approximately 10 binding sites at low ionic strength. The corresponding dissociation constants depend on NaCl concentration and pH and vary from approximately 50 microM to approximately 1-5 mM in the physiological range of pH. In fibrils, bound anions appear to form salt bridges between positively charged amino acid residues within regions of high excess positive charge. In solution, we found no evidence of appreciable sulfate or phosphate binding to isolated collagen molecules. Although sulfate and divalent phosphate bind to fibrillar collagen at physiological concentrations, our X-ray diffraction and in vitro fibrillogenesis experiments suggest that this binding plays little role in the formation, stability and structure of fibrils. In particular, we demonstrate that the previously reported increase in the critical fibrillogenesis concentration of collagen is caused by preferential exclusion of "free" (not bound to specific sites) sulfate and divalent phosphate from interstitial water in fibrils rather than by anion binding. Contrary to divalent phosphate, monovalent phosphate does not bind to collagen. It is preferentially excluded from interstitial water in fibrils, but it has no apparent effect on critical fibrillogenesis concentration at physiological NaCl and pH.  相似文献   

6.
The interaction of a dimeric membrane anchor-free form of the envelope protein E (sE dimer) from tick-borne encephalitis virus with liposomes at acidic pH levels leads to its conversion into membrane-inserted sE trimers. Electron microscopy shows that these trimers have their long dimensions along the threefold molecular axis, which is oriented perpendicularly to the plane of the membrane, where the protein inserts via the internal fusion peptide. Liposomes containing sE at their surface display paracrystalline arrays of protein in a closely packing arrangement in which each trimer is surrounded by six others, suggesting cooperativity in the insertion process. sE trimers, solubilized with nonionic detergents, yielded three-dimensional crystals suitable for X-ray diffraction analysis.  相似文献   

7.
Tyrosine O-sulfation is a posttranslational modification of secretory and membrane proteins transported through the Golgi apparatus, which is widespread among higher eukaryotes. O-Sulfated tyrosines are not immediately identified during sequencing of peptides and proteins, because the sulfate ester is acid labile and rapidly hydrolyses to tyrosine in strong acidic solutions. Little is known about the hydrolysis at mildly acidic solutions, which are used during several protein purification and analysis procedures. We have examined the stability of tyrosine sulfate using sulfated gastrin-17, caerulein, and drosulfokinin as models for tyrosine O-sulfated peptides. The peptides were incubated in acidic solutions in a pH range of 1 to 3 at different temperatures and time spans. Only marginal hydrolysis of gastrin-17 was observed in triflouroacetic acid at room temperature or below. Comparison of the acid hydrolysis of the three peptides showed that hydrolysis rate depends mainly on the primary amino acid composition of the peptide. The activation energy (E(a)) for the hydrolysis of sulfated gastrin-17 was found to be E(a)=98.7+/-5 kJ mol(-1). This study serves as a general reference for handling tyrosine sulfated peptides in aqueous acidic solutions. We conclude that tyrosine sulfate is more stable under normal protein purification conditions than previously assumed.  相似文献   

8.
BackgroundHemagglutinin (HA) of influenza A is one of the key virulence factors that mediates the release of viral components in host cells. HA is initially synthesized as a trimeric precursor (HA0) and then it is cleaved by proteases to become a functional HA. Low pH induces irreversible conformational changes in both HA0 and HA but only HA is fusion compatible. Here, we used high-speed atomic force microscopy (HS-AFM) to record conformational changes in HA0 trimers (H5N1) from neutral to acidic conditions at a millisecond scale.MethodsPurified HA0 protein was diluted with either neutral Tris-HCl (pH 7.4) or acetic acid-titrated Tris-HCl (pH 5.0) and then loaded onto bare mica. Neutral or acidic Tris-HCl was used as the scanning buffer. HS-AFM movies were recorded and processed using Image J software.ResultsThe conformation of HA0neutral visualized using HS-AFM was comparable to the HA trimer structures depicted in the PDB data and the AFM simulator. HA0 underwent rapid conformational changes under low pH condition. The circularity and area of HA0acid were significantly higher than in HA0neutral. In contrast, the height of HA0acid was significantly lower than in HA0neutral.ConclusionsWe have captured real-time images of the native HA0 trimer structure under physiological conditions using HS-AFM. By analyzing the images, we confirm that HA0 trimer is sensitive to acidic conditions.General significanceThe dynamic nature of the HA structure, particularly in the host endosome, is essential for H5N1 infectivity. Understanding this acidic behavior is imperative for designing therapeutic strategies against H5N1. This article reports a sophisticated new tool for studying the spatiotemporal dynamics of the HA precursor protein.  相似文献   

9.
A high resolution peptide mapping system has been described. The method utilizes three maps for separation of the acidic, basic, and neutral constituents of a proteolytic digest of a protein. Peptides from a proteolytic digest are separated by electrophoresis at pH 6.5 into acidic, basic, and neutral peptides. The secondddimensional electrophoresis is performed at pH 2.1 for each of acidic peptides and basic peptides. The third map is prepared from the neutral peptides. For this map, paper chromatography was used for the first dimension and electrophoresis at pH 2.1 for the second dimension.  相似文献   

10.
A 34-amino acid synthetic peptide was derived from the third domain of human alpha-fetoprotein, and the peptide was shown to inhibit estrogen-stimulated growth. Under certain conditions, however, the peptide lost growth-inhibitory activity. A biophysical study of the peptide was undertaken with a goal of obtaining completely reliable preparations. The peptide was studied using gel-filtration column chromatography as a function of peptide concentration and age of solution, and was found to exhibit complex aggregation behaviors. During the early period (0-3 h) after dissolving lyophilized peptide into pH 7.4 buffer, solutions were composed mostly of trimers. At higher peptide concentrations (> or = 3.0 g/L), the trimers aggregated extensively to a large aggregate (minimum size approximately 102 peptides). At 5.0-8.0 g/L, these large aggregates increased in size (up to approximately 146 peptides) until trimers were largely exhausted from solution. During the later times (>3 h) after sample preparation, the trimeric oligomer of the peptide dissociated slowly to form dimers for samples at 0.10-3.0 g/L. After their build-up, a very small number of dimers associated to form hexamers. Disulfide bonds stabilized the dimers as indicated by the conversion of dimers to trimers upon the addition of a reducing agent, and the failure of dimers to form in the presence of reducing agent. Reducing agent did not affect trimer or large aggregate formation. Trimers were found to be active in an assay monitoring inhibition of estrogen-stimulated growth, whereas dimers and large aggregates were inactive. The two cysteines in the peptide were modified to either S-methylcysteine or S-(2-aminoethyl)cysteine, and both derivatives showed significant growth-inhibition activity. A serine analog in which both cysteines were replaced had very different aggregation behavior than the cysteine peptide and lacked its growth inhibitory ability. Peptide aggregation is critically important in establishing the ability of the peptide to inhibit growth and have anticancer activity, but the state of its two cysteines is of little influence.  相似文献   

11.
In this study, we test the hypothesis that the carboxyl noncollagenous (NC1) domain of collagen X is sufficient to direct multimer formation without a triple helix. Two peptides containing the NC1 domain of avian collagen X have been synthesized using a bacterial expression system and their properties characterized. One peptide consists only of the NC1 domain, and the other is a chimeric molecule with a noncollagenous A domain of matrilin-1 fused to the N terminus of NC1. The NC1 peptide alone forms a 45-kDa trimer under native conditions, suggesting that NC1 contains all the information for trimerization without any triple helical residues. This trimeric association is highly thermostable without intermolecular disulfide bonds. This indicates that the NC1 domain contributes to the remarkable structural stability of collagen X. Chemical cross-linking of the NC1 trimer results in a series of varying sized multimers, the smallest of which is a trimer. Therefore the NC1 trimer is sufficient to form higher order multimers. The chimeric A-NC1 peptide forms a homotrimer by itself, and a series of heterotrimers with the NC1 peptide via the NC1 domain. Thus the NC1(X) domain directs multimer formation, even in a noncollagenous molecule.  相似文献   

12.
《Biophysical journal》2020,118(8):1901-1913
Pore formation by membrane-active peptides, naturally encountered in innate immunity and infection, could have important medical and technological applications. Recently, the well-studied lytic peptide melittin has formed the basis for the development of combinatorial libraries from which potent pore-forming peptides have been derived, optimized to work under different conditions. We investigate three such peptides, macrolittin70, which is most active at neutral pH; pHD15, which is active only at low pH; and MelP5_Δ6, which was rationally designed to be active at low pH but formed only small pores. There are three, six, and six acidic residues in macrolittin70, pHD15, and MelP5_Δ6, respectively. We perform multi-microsecond simulations in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) of hexamers of these peptides starting from transmembrane orientations at neutral pH (all residues at standard protonation), low pH (acidic residues and His protonated), and highly acidic environments in which C-termini are also protonated. Previous simulations of the parent peptides melittin and MelP5 in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) are repeated in POPC. We find that the most potent pore-forming peptides exhibit strong interpeptide interactions, including salt bridges, H-bonds, and polar interactions. Protonation of the C-terminus promotes helicity and pore size. The proximity of the peptides allows fewer lipid headgroups to line the pores than in previous simulations, making the pores intermediate between barrel stave and toroidal. Based on these structures and geometrical arguments, we attempt to rationalize the factors that under different conditions can increase or decrease pore stability and propose mutations that could be tested experimentally.  相似文献   

13.
Cationic amphipathic histidine rich peptides demonstrate differential nucleic acid binding capabilities at neutral and acidic pH and adopt conformations at acidic pH that enable interaction with endosomal membranes, their subsequent disordering and facilitate entry of cargo to the cell cytosol. To better understand the relative contributions of each stage in the process and consequently the structural requirements of pH responsive peptides for optimal nucleic acid transfer, we used biophysical methods to dissect the series of events that occur during endosomal acidification. Far-UV circular dichroism was used to characterise the solution conformation of a series of peptides, containing either four or six histidine residues, designed to respond at differing pH while a novel application of near-UV circular dichroism was used to determine the binding affinities of the peptides for both DNA and siRNA. The peptide induced disordering of neutral and anionic membranes was investigated using (2)H solid-state NMR. While each of these parameters models key stages in the nucleic acid delivery process and all were affected by increasing the histidine content of the peptide, the effect of a more acidic pH response on peptide self-association was most notable and identified as the most important barrier to further enhancing nucleic acid delivery. Further, the results indicate that Coulombic interactions between the histidine residues modulate protonation and subsequent conformational transitions required for peptide mediated gene transfer activity and are an important factor to consider in future peptide design.  相似文献   

14.
A general model has been proposed for the fusion mechanisms of class I viral fusion proteins. According to this model a metastable trimer, anchored in the viral membrane through its transmembrane domain, transits to a trimeric prehairpin intermediate, anchored at its opposite end in the target membrane through its fusion peptide. A subsequent refolding event creates a trimer of hairpins (often termed a six-helix bundle) in which the previously well-separated transmembrane domain and fusion peptide (and their attached membranes) are brought together, thereby driving membrane fusion. While there is ample biochemical and structural information on the trimer-of-hairpins conformation of class I viral fusion proteins, less is known about intermediate states between native metastable trimers and the final trimer of hairpins. In this study we analyzed conformational states of the transmembrane subunit (TM), the fusion subunit, of the Env glycoprotein of the subtype A avian sarcoma and leukosis virus (ASLV-A). By analyzing forms of EnvA TM on mildly denaturing sodium dodecyl sulfate gels we identified five conformational states of EnvA TM. Following interaction of virions with a soluble form of the ASLV-A receptor at 37 degrees C, the metastable form of EnvA TM (which migrates at 37 kDa) transits to a 70-kDa and then to a 150-kDa species. Following subsequent exposure to a low pH (or an elevated temperature or the fusion promoting agent chlorpromazine), an additional set of bands at >150 kDa, and then a final band at 100 kDa, forms. Both an EnvA C-helix peptide (which inhibits virus fusion and infectivity) and the fusion-inhibitory agent lysophosphatidylcholine inhibit the formation of the >150- and 100-kDa bands. Our data are consistent with the 70- and 150-kDa bands representing precursor and fully formed prehairpin conformations of EnvA TM. Our data are also consistent with the >150-kDa bands representing higher-order oligomers of EnvA TM and with the 100-kDa band representing the fully formed six-helix bundle. In addition to resolving fusion-relevant conformational intermediates of EnvA TM, our data are compatible with a model in which the EnvA protein is activated by its receptor (at neutral pH and a temperature greater than or equal to room temperature) to form prehairpin conformations of EnvA TM, and in which subsequent exposure to a low pH is required to stabilize the final six-helix bundle, which drives a later stage of fusion.  相似文献   

15.
The genome of Thermus thermophilus contains two genes encoding putative glutamate dehydrogenases. One of these genes (TTC1211) was cloned and overexpressed in Escherichia coli. The purified enzyme was a trimer that catalyzed the oxidation of glutamate to alpha-ketoglutarate and ammonia with either NAD+ or NADP+ as cofactors. The enzyme was also able to catalyze the inverse reductive reaction. The thermostability of the enzyme at neutral pH was very high even at 70 degrees C, but at acidic pH values, the dissociation of enzyme subunits produced the rapid enzyme inactivation even at 25 degrees C. The immobilization of the enzyme on glyoxyl agarose permitted to greatly increase the enzyme stability under all conditions studied. It was found that the multimeric structure of the enzyme was stabilized by the immobilization (enzyme subunits could be not desorbed from the support by boiling it in the presence of sodium dodecyl sulfate). This makes the enzyme very stable at pH 4 (e.g., the enzyme activity did not decrease after 12 h at 45 degrees C) and even improved the enzyme stability at neutral pH values. This immobilized enzyme can be of great interest as a biosensor or as a biocatalyst to regenerate both reduced and oxidized cofactors.  相似文献   

16.
The dissociation of allophycocyanin trimers to monomers was examined under a variety of conditions. For alkyl ureas and alcohols the dissociation increased as the straight-chain alkyls increased in length. The effect of branching chains was smaller. Tetrapropylammonium chloride was found to be a very effective agent for trimer dissociation when compared to ureas and alcohols with similar or longer alkyl chains. An explanation for these observations is that the hydrocarbons have an affinity for nonpolar regions in the contact areas between monomers in a trimeric structure. A comparison among several inorganic salts demonstrated that the chaotropic salts (NaSCN greater than NaClO4 much greater than NaNO3 greater than NaBr) fostered increased trimer dissociation, while nonchaotropes (KF, (NH4)2SO4, K phosphate, and NaCl) produced no measurable amounts of monomer. Allophycocyanin dissolved in D2O was much more stable against dissociation than when dissolved in H2O. All the above observations were consistent with hydrophobic forces being the dominant source of trimer stabilization. The equilibrium constant for the dissociation of trimers to monomers was calculated to be about 6 X 10(-16) mol2 liter-2. Calculations were made of the apparent total number of amino acids (40) in the two contact regions on each monomer. An absorption change analogous but not necessarily identical to a conversion of allophycocyanin II to III was noted when (NH4)2SO4 was present. When allophycocyanin's nonexchangeable hydrogens were replaced by deuteriums, it was more readily dissociated to monomers.  相似文献   

17.
Nishimura C  Uversky VN  Fink AL 《Biochemistry》2001,40(7):2113-2128
The stability and folding kinetics of wild-type and a mutant staphylococcal nuclease (SNase) at neutral pH are significantly perturbed by the presence of moderate to high concentrations of salts. Very substantial increases in stability toward thermal and urea denaturation were observed; for example, 0.4 M sodium sulfate increased the free energy of wild-type SNase by more than 2 kcal/mol. For the NCA SNase mutant, the presence of the salts abolished the cold denaturation observed at neutral pH with this variant, and substantially increased its stability. Significant effects of salts on the kinetics of refolding were also observed. For NCA SNase, the presence of the salts markedly increased the folding rates (up to 5-fold). On the other hand, chloride, in particular, substantially decreased the rate of folding of the wild-type protein. Since the rates of the slow phases due to proline isomerization were increased by salt, these steps must be coupled to conformational processes. Fluorescence energy transfer between the lone tryptophan (Trp140) and an engineered fluorescent acceptor at residue 64 revealed that the addition of a high concentration of KCl led to the formation of a transient folding intermediate not observed at lower salt concentrations, and in which residues 140 and 64 were much closer than in the native state. The salt-induced effects on the kinetics of folding are attributed to the enhanced stability of the transient folding intermediates. It is likely that the combination of the high net charge, due to the high isoelectric point, and the relatively low intrinsic hydrophobicity, leads to staphylococcal nuclease having only marginal stability at neutral pH. The salt-induced effects on the structure, stability, and kinetics of staphylococcal nuclease are attributed to the binding of counterions, namely, anions, resulting in minimization of intramolecular electrostatic repulsion. This leads to increased stability, more structure, and greater compactness, as observed. Consequently, localized electrostatic repulsion is present at neutral pH in SNase, probably contributing to its marginal stability. The results suggest that, in general, marginally stable globular proteins will be significantly stabilized by salts under conditions where they have a substantial net charge.  相似文献   

18.
We have synthesized five amphiphilic anionic peptides derived from E5 peptide [Murata, M., Takahashi, S., Kagiwada, S., Suzuki, A., Ohnishi, S. 1992. Biochemistry 31:1986-1992. E5NN and E5CC are duplications of the N-terminal and the C-terminal halves of E5, respectively, and E5CN is an inversion of the N- and the C-terminal halves. E5P contains a Pro residue in the center of E5 and E8 has 8 Glu residues and 9 Leu residues. We studied fusion of dioleoylphosphatidylcholine (DOPC) large unilamellar vesicles assayed by fluorescent probes. The peptides formed alpha-helical structure with different degrees; E5NN, E5CN, and E8 with high helical content and E5CC and E5P with low helical content. These peptides bound to DOPC vesicles at acidic pH in proportion to the helical content of peptide. The peptides caused leakage of DOPC vesicles which increased with decreasing pH. The leakage was also proportional to the helicity of peptide. Highly helical peptides E5NN, E5CN, and E8 caused hemolysis at acidic pH but not at neutral pH. The fusion activity was also dependent on the helicity of peptides. In fusion induced by an equimolar mixture of E5 analogues and K5 at neutral pH, E8, E5NN, and E5CN were most active but E5CC did not cause fusion. In fusion induced by E5-analogue peptides alone, E5CN was active at acidic pH but not at neutral pH. Other peptides did not cause fusion. Amphiphilic peptides also appear to require other factors to cause fusion.  相似文献   

19.
Viral membrane fusion proceeds through a sequence of steps that are driven by triggered conformational changes of viral envelope glycoproteins, so-called fusion proteins. Although high-resolution structural snapshots of viral fusion proteins in their prefusion and postfusion conformations are available, it has been difficult to define intermediate structures of the fusion pathway because of their transient nature. Flaviviruses possess a class II viral fusion protein (E) mediating fusion at acidic pH that is converted from a dimer to a trimer with a hairpin-like structure during the fusion process. Here we show for tick-borne encephalitis virus that exposure of virions to alkaline instead of acidic pH traps the particles in an intermediate conformation in which the E dimers dissociate and interact with target membranes via the fusion peptide without proceeding to the merger of the membranes. Further treatment to low pH, however, leads to fusion, suggesting that these monomers correspond to an as-yet-elusive intermediate required to convert the prefusion dimer into the postfusion trimer. Thus, the use of nonphysiological conditions allows a dissection of the flavivirus fusion process and the identification of two separate steps, in which membrane insertion of multiple copies of E monomers precedes the formation of hairpin-like trimers. This sequence of events provides important new insights for understanding the dynamic process of viral membrane fusion.  相似文献   

20.
The heparin-induced self-aggregation behaviours of four repeat peptides (R1-R4) in an acidic solution (pH = 4.5) were investigated by fluorescence and circular dichroism (CD) measurements and compared with those in a neutral solution (pH = 7.5). In contrast with the self-aggregation-resistive behaviours of the R1 and R4 repeat peptides in the neutral solution, the R4 peptide formed a filament similarly to the R2 and R3 peptides in the acidic solution, whereas the R1 peptide still showed resistive behaviour for filament formation. This is the first report on the markedly different self-aggregation behaviours of the first and fourth repeat peptides on tau microtubule-binding domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号