首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two populations of Trichoplusia ni that had developed resistance to Bacillus thuringiensis sprays (Bt sprays) in commercial greenhouse vegetable production were tested for resistance to Bt cotton (BollGard II) plants expressing pyramided Cry1Ac and Cry2Ab. The T. ni colonies resistant to Bacillus thuringiensis serovar kurstaki formulations were not only resistant to the Bt toxin Cry1Ac, as previously reported, but also had a high frequency of Cry2Ab-resistant alleles, exhibiting ca. 20% survival on BollGard II foliage. BollGard II-resistant T. ni strains were established by selection with BollGard II foliage to further remove Cry2Ab-sensitive alleles in the T. ni populations. The BollGard II-resistant strains showed incomplete resistance to BollGard II, with adjusted survival values of 0.50 to 0.78 after 7 days. The resistance to the dual-toxin cotton plants was conferred by two genetically independent resistance mechanisms: one to Cry1Ac and one to Cry2Ab. The 50% lethal concentration of Cry2Ab for the resistant strain was at least 1,467-fold that for the susceptible T. ni strain. The resistance to Cry2Ab in resistant T. ni was an autosomally inherited, incompletely recessive monogenic trait. Results from this study indicate that insect populations under selection by Bt sprays in agriculture can be resistant to multiple Bt toxins and may potentially confer resistance to multitoxin Bt crops.  相似文献   

2.
Crops genetically engineered to produce Bacillus thuringiensis toxins for insect control can reduce use of conventional insecticides, but insect resistance could limit the success of this technology. The first generation of transgenic cotton with B. thuringiensis produces a single toxin, Cry1Ac, that is highly effective against susceptible larvae of pink bollworm (Pectinophora gossypiella), a major cotton pest. To counter potential problems with resistance, second-generation transgenic cotton that produces B. thuringiensis toxin Cry2Ab alone or in combination with Cry1Ac has been developed. In greenhouse bioassays, a pink bollworm strain selected in the laboratory for resistance to Cry1Ac survived equally well on transgenic cotton with Cry1Ac and on cotton without Cry1Ac. In contrast, Cry1Ac-resistant pink bollworm had little or no survival on second-generation transgenic cotton with Cry2Ab alone or with Cry1Ac plus Cry2Ab. Artificial diet bioassays showed that resistance to Cry1Ac did not confer strong cross-resistance to Cry2Aa. Strains with >90% larval survival on diet with 10 μg of Cry1Ac per ml showed 0% survival on diet with 3.2 or 10 μg of Cry2Aa per ml. However, the average survival of larvae fed a diet with 1 μg of Cry2Aa per ml was higher for Cry1Ac-resistant strains (2 to 10%) than for susceptible strains (0%). If plants with Cry1Ac plus Cry2Ab are deployed while genes that confer resistance to each of these toxins are rare, and if the inheritance of resistance to both toxins is recessive, the efficacy of transgenic cotton might be greatly extended.  相似文献   

3.
《Journal of Asia》1999,2(2):153-162
Pesticidal activity of different Bacillus thuringiensis (Bt) δ-endotoxins, Cry1Aa, Cry1Ab, Cry1Ac and Cry2A, were investigated against Helicoverpa armigera infesting cotton crop worldwide. Cry1Ac toxin was found to be the most potent toxin towards H. armigera. All selected Bt toxins were found stable in vitro processing by midgut juice of H. armigera. Saturation and competition binding experiments were performed with iodine-125 labeled proteins and brush border membrane vesicles prepared from the midgut of H. armigera. The results show saturable, specific and high affinity of all toxins except for Cry2A. Both the toxins were bound with low binding affinity but with high binding site concentration. Heterologous competition experiments showed that Cry1Aa, Cry1Ab and Cry1Ac recognized or share the same binding site which is different from that of Cry2A. The data suggest that development of multiple toxin system in transgenic plants with toxin pyramiding, which recognize different binding sites, may be useful in the deployment strategies to decrease the rate of pest adaptation to Bt toxins in transgenic plants.  相似文献   

4.

Background

Evolution of resistance by target pests is the main threat to the long-term efficacy of crops expressing Bacillus thuringiensis (Bt) insecticidal proteins. Cry2 proteins play a pivotal role in current Bt spray formulations and transgenic crops and they complement Cry1A proteins because of their different mode of action. Their presence is critical in the control of those lepidopteran species, such as Helicoverpa spp., which are not highly susceptible to Cry1A proteins. In Australia, a transgenic variety of cotton expressing Cry1Ac and Cry2Ab (Bollgard II) comprises at least 80% of the total cotton area. Prior to the widespread adoption of Bollgard II, the frequency of alleles conferring resistance to Cry2Ab in field populations of Helicoverpa armigera and Helicoverpa punctigera was significantly higher than anticipated. Colonies established from survivors of F2 screens against Cry2Ab are highly resistant to this toxin, but susceptible to Cry1Ac.

Methodology/Principal Findings

Bioassays performed with surface-treated artificial diet on neonates of H. armigera and H. punctigera showed that Cry2Ab resistant insects were cross-resistant to Cry2Ae while susceptible to Cry1Ab. Binding analyses with 125I-labeled Cry2Ab were performed with brush border membrane vesicles from midguts of Cry2Ab susceptible and resistant insects. The results of the binding analyses correlated with bioassay data and demonstrated that resistant insects exhibited greatly reduced binding of Cry2Ab toxin to midgut receptors, whereas no change in 125I-labeled-Cry1Ac binding was detected. As previously demonstrated for H. armigera, Cry2Ab binding sites in H. punctigera were shown to be shared by Cry2Ae, which explains why an alteration of the shared binding site would lead to cross-resistance between the two Cry2A toxins.

Conclusion/Significance

This is the first time that a mechanism of resistance to the Cry2 class of insecticidal proteins has been reported. Because we found the same mechanism of resistance in multiple strains representing several field populations, we conclude that target site alteration is the most likely means that field populations evolve resistance to Cry2 proteins in Helicoverpa spp. Our work also confirms the presence in the insect midgut of specific binding sites for this class of proteins. Characterizing the Cry2 receptors and their mutations that enable resistance could lead to the development of molecular tools to monitor resistance in the field.  相似文献   

5.
A laboratory strain (GY) of Helicoverpa armigera (Hübner) was established from surviving larvae collected from transgenic cotton expressing a Bacillus thuringiensis var. kurstaki insecticidal protein (Bt cotton) in Gaoyang County, Hebei Province, People's Republic of China, in 2001. The GYBT strain was derived from the GY strain through 28 generations of selection with activated Cry1Ac delivered by diet surface contamination. When resistance to Cry1Ac in the GYBT strain increased to 564-fold after selection, we detected high levels of cross-resistance to Cry1Aa (103-fold) and Cry1Ab (>46-fold) in the GYBT strain with reference to those in the GY strain. The GYBT strain had a low level of cross-resistance to B. thuringiensis var. kurstaki formulation (Btk) (5-fold) and no cross-resistance to Cry2Aa (1.4-fold). Genetic analysis showed that Cry1Ac resistance in the GYBT strain was controlled by one autosomal and incompletely recessive gene. The cross-resistance pattern and inheritance mode suggest that the Cry1Ac resistance in the GYBT strain of H. armigera belongs to “mode 1,” the most common type of lepidopteran resistance to B. thuringiensis toxins. A cadherin gene was cloned and sequenced from both the GY and GYBT strains. Disruption of the cadherin gene by a premature stop codon was associated with a high level of Cry1Ac resistance in H. armigera. Tight linkage between Cry1Ac resistance and the cadherin locus was observed in a backcross analysis. Together with previous evidence found with Heliothis virescens and Pectinophora gossypiella, our results confirmed that the cadherin gene is a preferred target for developing DNA-based monitoring of B. thuringiensis resistance in field populations of lepidopteran pests.  相似文献   

6.
One strategy for delaying evolution of resistance to Bacillus thuringiensis crystal (Cry) endotoxins is the production of multiple Cry toxins in each transgenic plant (gene stacking). This strategy relies upon the assumption that simultaneous evolution of resistance to toxins that have different modes of action will be difficult for insect pests. In B. thuringiensis-transgenic (Bt) cotton, production of both Cry1Ac and Cry2Ab has been proposed to delay resistance of Heliothis virescens (tobacco budworm). After previous laboratory selection with Cry1Ac, H. virescens strains CXC and KCBhyb developed high levels of cross-resistance not only to toxins similar to Cry1Ac but also to Cry2Aa. We studied the role of toxin binding alteration in resistance and cross-resistance with the CXC and KCBhyb strains. In toxin binding experiments, Cry1A and Cry2Aa toxins bound to brush border membrane vesicles from CXC, but binding of Cry1Aa was reduced for the KCBhyb strain compared to susceptible insects. Since Cry1Aa and Cry2Aa do not share binding proteins in H. virescens, our results suggest occurrence of at least two mechanisms of resistance in KCBhyb insects, one of them related to reduction of Cry1Aa toxin binding. Cry1Ac bound irreversibly to brush border membrane vesicles (BBMV) from YDK, CXC, and KCBhyb larvae, suggesting that Cry1Ac insertion was unaffected. These results highlight the genetic potential of H. virescens to become resistant to distinct Cry toxins simultaneously and may question the effectiveness of gene stacking in delaying evolution of resistance.  相似文献   

7.
Development of resistance to the insecticidal toxins from Bacillus thuringiensis (Bt) in insects is the major threat to the continued success of transgenic Bt crops in agriculture. The fitness of Bt‐resistant insects on Bt and non‐Bt plants is a key parameter that determines the development of Bt resistance in insect populations. In this study, a comprehensive analysis of the fitness of Bt‐resistant Trichoplusia ni strains on Bt cotton leaves was conducted. The Bt‐resistant T. ni strains carried two genetically independent mechanisms of resistance to Bt toxins Cry1Ac and Cry2Ab. The effects of the two resistance mechanisms, individually and in combination, on the fitness of the T. ni strains on conventional non‐Bt cotton and on transgenic Bt cotton leaves expressing a single‐toxin Cry1Ac (Bollgard I) or two Bt toxins Cry1Ac and Cry2Ab (Bollgard II) were examined. The presence of Bt toxins in plants reduced the fitness of resistant insects, indicated by decreased net reproductive rate (R0) and intrinsic rate of increase (r). The reduction in fitness in resistant T. ni on Bollgard II leaves was greater than that on Bollgard I leaves. A 12.4‐day asynchrony of adult emergence between the susceptible T. ni grown on non‐Bt cotton leaves and the dual‐toxin‐resistant T. ni on Bollgard II leaves was observed. Therefore, multitoxin Bt plants not only reduce the probability for T. ni to develop resistance but also strongly reduce the fitness of resistant insects feeding on the plants.  相似文献   

8.
Sesamia nonagrioides is one of the most damaging pests of corn in Spain and other Mediterranean countries. Bt corn expressing the Bacillus thuringiensis Cry1Ab toxin is being grown on about 58,000 ha in Spain. Here we studied the mode of action of this Cry protein on S. nonagrioides (binding to specific receptors, stability of binding, and pore formation) and the modes of action of other Cry proteins that were found to be active in this work (Cry1Ac, Cry1Ca, and Cry1Fa). Binding assays were performed with 125I- or biotin-labeled toxins and larval brush border membrane vesicles (BBMV). Competition experiments indicated that these toxins bind specifically and that Cry1Aa, Cry1Ab, and Cry1Ac share a binding site. Cry1Ca and Cry1Fa bind to different sites. In addition, Cry1Fa binds to Cry1A's binding site with very low affinity and vice versa. Binding of Cry1Ab and Cry1Ac was found to be stable over time, which indicates that the observed binding is irreversible. The pore-forming activity of Cry proteins on BBMV was determined using the voltage-sensitive fluorescent dye DiSC3(5). Membrane permeability increased in the presence of the active toxins Cry1Ab and Cry1Fa but not in the presence of the nonactive toxin Cry1Da. In terms of resistance management, based on our results and the fact that Cry1Ca is not toxic to Ostrinia nubilalis, we recommend pyramiding of Cry1Ab with Cry1Fa in the same Bt corn plant for better long-term control of corn borers.  相似文献   

9.
A cadherin-like protein has been identified as a putative receptor for Bacillus thuringiensis (Bt) Cry1Ac toxin in Helicoverpa armigera and plays a key role in Bt insecticidal action. In this study, we produced a fragment from this H. armigera Cry1Ac toxin-binding cadherin that included the predicted toxin-binding region. Binding of Cry1Ac toxin to this cadherin fragment facilitated the formation of a 250-kDa toxin oligomer. The cadherin fragment was evaluated for its effect on Cry1Ac toxin-binding and toxicity by ligand blotting, binding assays, and bioassays. The results of ligand blotting and binding assays revealed that the binding of Cry1Ac to H. armigera midgut epithelial cells was reduced under denaturing or native conditions in vitro. Bioassay results indicated that toxicities from Cry1Ac protoxin or activated toxin were reduced in vivo by the H. armigera cadherin fragment. The addition of the cadherin fragment had no effect on Cry2Ab toxicity.  相似文献   

10.
The cabbage looper, Trichoplusia ni, is one of only two insect species that have evolved resistance to Bacillus thuringiensis in agricultural situations. The trait of resistance to B. thuringiensis toxin Cry1Ac from a greenhouse-evolved resistant population of T. ni was introgressed into a highly inbred susceptible laboratory strain. The resulting introgression strain, GLEN-Cry1Ac-BCS, and its nearly isogenic susceptible strain were subjected to comparative genetic and biochemical studies to determine the mechanism of resistance. Results showed that midgut proteases, hemolymph melanization activity, and midgut esterase were not altered in the GLEN-Cry1Ac-BCS strain. The pattern of cross-resistance of the GLEN-Cry1Ac-BCS strain to 11 B. thuringiensis Cry toxins showed a correlation of the resistance with the Cry1Ab/Cry1Ac binding site in T. ni. This cross-resistance pattern is different from that found in a previously reported laboratory-selected Cry1Ab-resistant T. ni strain, evidently indicating that the greenhouse-evolved resistance involves a mechanism different from the laboratory-selected resistance. Determination of specific binding of B. thuringiensis toxins Cry1Ab and Cry1Ac to the midgut brush border membranes confirmed the loss of midgut binding to Cry1Ab and Cry1Ac in the resistant larvae. The loss of midgut binding to Cry1Ab/Cry1Ac is inherited as a recessive trait, which is consistent with the recessive inheritance of Cry1Ab/Cry1Ac resistance in this greenhouse-derived T. ni population. Therefore, it is concluded that the mechanism for the greenhouse-evolved Cry1Ac resistance in T. ni is an alteration affecting the binding of Cry1Ab and Cry1Ac to the Cry1Ab/Cry1Ac binding site in the midgut.  相似文献   

11.
Helicoverpa zea (Boddie) is a destructive agricultural pest species that is targeted by both Bacillus thuringiensis (Bt) maize and cotton in the United States. Cry1A.105 and Cry2Ab2 are two Bt proteins expressed in a widely planted maize event MON 89034. In this study, two tests (Test-I and Test-II) were conducted to evaluate the relative fitness of Bt-susceptible and -resistant H. zea on non-Bt diet (Test-I and Test-II) and a diet containing a mix of Cry1A.105 and Cry2Ab2 at a low concentration (Test-II only). Insect populations evaluated in Test-I were two Bt-susceptible strains and three Bt-resistant strains (a single-protein Cry1A.105-, a single-protein Cry2Ab2-, and a dual-protein Cry1A.105/Cry2Ab2-resistant strains). Test-II analyzed the same two susceptible strains, three backcrossed-and-reselected Cry1A.105/Cry2Ab2-single-/dual-protein-resistant strains, and three F1 heterozygous strains. Measurements of life table parameters showed that neither the single- nor dual-protein Cry1A.105/Cry2Ab2 resistance in H. zea was associated with fitness costs under the test conditions. The single Cry protein resistances at a concentration of a mix of Cry1A.105 and Cry2Ab2 that resulted in a zero net reproductive rate for the two susceptible strains were functionally incomplete recessive or codominant, and the dual-protein resistance was completely dominant. The lack of fitness costs could be a factor contributing to the rapid revolution of resistance to the Cry proteins in this species. Data generated from this study should aid our understanding of Cry protein resistance evolution and help in refining IRM programs for H. zea.  相似文献   

12.
Evolution of resistance in pests threatens the long-term efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays and transgenic crops. Previous work showed that genetically modified Bt toxins Cry1AbMod and Cry1AcMod effectively countered resistance to native Bt toxins Cry1Ab and Cry1Ac in some pests, including pink bollworm (Pectinophora gossypiella). Here we report that Cry1AbMod and Cry1AcMod were also effective against a laboratory-selected strain of pink bollworm resistant to Cry2Ab as well as to Cry1Ab and Cry1Ac. Resistance ratios based on the concentration of toxin killing 50% of larvae for the resistant strain relative to a susceptible strain were 210 for Cry2Ab, 270 for Cry1Ab, and 310 for Cry1Ac, but only 1.6 for Cry1AbMod and 2.1 for Cry1AcMod. To evaluate the interactions among toxins, we tested combinations of Cry1AbMod, Cry1Ac, and Cry2Ab. For both the resistant and susceptible strains, the net results across all concentrations tested showed slight but significant synergism between Cry1AbMod and Cry2Ab, whereas the other combinations of toxins did not show consistent synergism or antagonism. The results suggest that the modified toxins might be useful for controlling populations of pink bollworm resistant to Cry1Ac, Cry2Ab, or both.  相似文献   

13.
In 1996, Bt-cotton (cotton expressing a Bacillus thuringiensis toxin gene) expressing the Cry1Ac protein was commercially introduced to control cotton pests. A threat to this first generation of transgenic cotton is the evolution of resistance by the insects. Second-generation Bt-cotton has been developed with either new B. thuringiensis genes or with a combination of cry genes. However, one requirement for the “stacked” gene strategy to work is that the stacked toxins bind to different binding sites. In the present study, the binding of 125I-labeled Cry1Ab protein (125I-Cry1Ab) and 125I-Cry1Ac to brush border membrane vesicles (BBMV) of Helicoverpa armigera was analyzed in competition experiments with 11 nonlabeled Cry proteins. The results indicate that Cry1Aa, Cry1Ab, and Cry1Ac competed for common binding sites. No other Cry proteins tested competed for either 125I-Cry1Ab or 125I-Cry1Ac binding, except Cry1Ja, which competed only at the highest concentrations used. Furthermore, BBMV from four H. armigera populations were also tested with 125I-Cry1Ac and Cry1Ab to check the influence of the insect population on the binding results. Finally, the inhibitory effect of selected sugars and lectins was also determined. 125I-Cry1Ac binding was strongly inhibited by N-acetylgalactosamine, sialic acid, and concanavalin A and moderately inhibited by soybean agglutinin. In contrast, 125I-Cry1Ab binding was only significantly inhibited by concanavalin A. These results show that Cry1Ac and Cry1Ab use different epitopes for binding to BBMV.  相似文献   

14.
Cry1Ac protoxin (the active insecticidal toxin in both Bollgard and Bollgard II cotton [Gossypium hirsutum L.]), and Cry2Ab2 toxin (the second insecticidal toxin in Bollgard II cotton) were bioassayed against five of the primary lepidopteran pests of cotton by using diet incorporation. Cry1Ac was the most toxic to Heliothis virescens (F.) and Pectinophora gossypiella (Saunders), demonstrated good activity against Helicoverpa zea (Boddie), and had negligible toxicity against Spodoptera exigua (Hübner) and Spodoptera frugiperda (J. E. Smith). Cry2Ab2 was the most toxic to P. gossypiella and least toxic to S. frugiperda. Cry2Ab2 was more toxic to S. exigua and S. frugiperda than Cry1Ac. Of the three insect species most sensitive to both Bacillus thuringiensis (Bt) proteins (including H. zea), P. gossypiella was only three-fold less sensitive to Cry2Ab2 than Cry1Ac, whereas H. virescens was 40-fold less sensitive to Cry2Ab2 compared with CrylAc. Cotton plants expressing Cry1Ac only and both Cry1Ac and Cry2Ab2 proteins were characterized for toxicity against H. zea and S.frugiperda larvae in the laboratory and H. zea larvae in an environmental chamber. In no-choice assays on excised squares from plants of different ages, second instar H. zea larvae were controlled by Cry1Ac/Cry2Ab2 cotton with mortality levels of 90% and greater at 5 d compared with 30-80% mortality for Cry1Ac-only cotton, depending on plant age. Similarly, feeding on leaf discs from Cry1Ac/Cry2Ab2 cotton resulted in mortality of second instars of S.frugiperda ranging from 69 to 93%, whereas exposure to Cry1Ac-only cotton yielded 20-69% mortality, depending on plant age. When cotton blooms were infested in situ in an environmental chamber with neonate H. zea larvae previously fed on synthetic diet for 0, 24, or 48 h, 7-d flower abortion levels for Cry1Ac-only cotton were 15, 41, and 63%, respectively, whereas for Cry1Ac/Cry2Ab2 cotton, flower abortion levels were 0, 0, and 5%, respectively. Cry1Ac and Cry2Ab2 concentrations were measured within various cotton tissues of Cry1Ac-only and Cry1Ac/Cry2Ab2 plants, respectively, by using enzyme-linked immunosorbent assay. Terminal leaves significantly expressed the highest, and large leaves, calyx, and bracts expressed significantly the lowest concentrations of Cry1Ac, respectively. Ovules expressed significantly the highest, and terminal leaves, large leaves, bracts, and calyx expressed significantly (P < 0.05) the lowest concentrations of Cry2Ab2. These results help explain the observed differences between Bollgard and Bollgard II mortality against the primary lepidopteran cotton pests, and they may lead to improved scouting and resistance management practices, and to more effective control of these pests with Bt transgenic crops in the future.  相似文献   

15.
Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is an important lepidopteran pest of cotton (Gossypium spp.) in Australia and the Old World. From 2002, F2 screens were used to examine the frequency of resistance alleles in Australian populations of H. armigera to Bacillus thuringiensis (Bt) CrylAc and Cry2Ab, the two insecticidal proteins present in the transgenic cotton Bollgard II. At that time, Ingard (expressing Cry1Ac) cotton had been grown in Australia for seven seasons, and Bollgard II was about to be commercially released. The principal objective of our study was to determine whether sustained exposure caused an elevated frequency of alleles conferring resistance to Cry1Ac in a species with a track record of evolving resistance to conventional insecticides. No major alleles conferring resistance to Cry1Ac were found. The frequency of resistance alleles for Cry1Ac was <0.0003, with a 95% credibility interval between 0 and 0.0009. In contrast, alleles conferring resistance to Cry2Ab were found at a frequency of 0.0033 (0.0017, 0.0055). The first isolation of this allele was found before the widespread deployment of Bollgard II. For both toxins the experiment-wise detection probability was 94.4%. Our results suggest that alleles conferring resistance to Cry1Ac are rare and that a relatively high baseline frequency of alleles conferring resistance to Cry2Ab existed before the introduction of Bt cotton containing this toxin.  相似文献   

16.
Two strains of pink bollworm (Pectinophora gossypiella) selected in the laboratory for resistance to Bacillus thuringiensis toxin Cry1Ac had substantial cross-resistance to Cry1Aa and Cry1Ab but not to Cry1Bb, Cry1Ca, Cry1Da, Cry1Ea, Cry1Ja, Cry2Aa, Cry9Ca, H04, or H205. The narrow spectrum of resistance and the cross-resistance to activated toxin Cry1Ab suggest that reduced binding of toxin to midgut target sites could be an important mechanism of resistance.  相似文献   

17.
18.
In Australia, the cotton bollworm, Helicoverpa armigera, has a long history of resistance to conventional insecticides. Transgenic cotton (expressing the Bacillus thuringiensis toxin Cry1Ac) has been grown for H. armigera control since 1996. It is demonstrated here that a population of Australian H. armigera has developed resistance to Cry1Ac toxin (275-fold). Some 70% of resistant H. armigera larvae were able to survive on Cry1Ac transgenic cotton (Ingard) The resistance phenotype is inherited as an autosomal semidominant trait. Resistance was associated with elevated esterase levels, which cosegregated with resistance. In vitro studies employing surface plasmon resonance technology and other biochemical techniques demonstrated that resistant strain esterase could bind to Cry1Ac protoxin and activated toxin. In vivo studies showed that Cry1Ac-resistant larvae fed Cy1Ac transgenic cotton or Cry1Ac-treated artificial diet had lower esterase activity than non-Cry1Ac-fed larvae. A resistance mechanism in which esterase sequesters Cry1Ac is proposed.  相似文献   

19.
Characterization of Chimeric Bacillus thuringiensis Vip3 Toxins   总被引:5,自引:0,他引:5       下载免费PDF全文
Bacillus thuringiensis vegetative insecticidal proteins (Vip) are potential alternatives for B. thuringiensis endotoxins that are currently utilized in commercial transgenic insect-resistant crops. Screening a large number of B. thuringiensis isolates resulted in the cloning of vip3Ac1. Vip3Ac1 showed high insecticidal activity against the fall armyworm Spodoptera frugiperda and the cotton bollworm Helicoverpa zea but very low activity against the silkworm Bombyx mori. The host specificity of this Vip3 toxin was altered by sequence swapping with a previously identified toxin, Vip3Aa1. While both Vip3Aa1 and Vip3Ac1 showed no detectable toxicity against the European corn borer Ostrinia nubilalis, the chimeric protein Vip3AcAa, consisting of the N-terminal region of Vip3Ac1 and the C-terminal region of Vip3Aa1, became insecticidal to the European corn borer. In addition, the chimeric Vip3AcAa had increased toxicity to the fall armyworm. Furthermore, both Vip3Ac1 and Vip3AcAa are highly insecticidal to a strain of cabbage looper (Trichoplusia ni) that is highly resistant to the B. thuringiensis endotoxin Cry1Ac, thus experimentally showing for the first time the lack of cross-resistance between B. thuringiensis Cry1A proteins and Vip3A toxins. The results in this study demonstrated that vip3Ac1 and its chimeric vip3 genes can be excellent candidates for engineering a new generation of transgenic plants for insect pest control.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号