首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the outstanding developments in clinical neurology has been the identification of ion channel mutations as the origin of a wide variety of inherited disorders like migraine, epilepsy, and ataxia. The study of several channelopathies has provided crucial insights into the molecular mechanisms, pathogenesis, and therapeutic approaches to complex neurological diseases. This review addresses the mutations underlying familial hemiplegic migraine (FHM) with particular interest in Cav2.1 (i.e., P/Q-type) voltage-activated Ca2+ channel FHM type-1 mutations (FHM1). Transgenic mice harboring the human pathogenic FHM1 mutation R192Q or S218L (KI) have been used as models to study neurotransmission at several central and peripheral synapses. FHM1 KI mice are a powerful tool to explore presynaptic regulation associated with expression of Cav2.1 channels. FHM1 Cav2.1 channels activate at more hyperpolarizing potentials and show an increased open probability. These biophysical alterations may lead to a gain-of-function on synaptic transmission depending upon factors such as action potential waveform and/or Cav2.1 splice variants and auxiliary subunits. Analysis of FHM knock-in mouse models has demonstrated a deficient regulation of the cortical excitation/inhibition (E/I) balance. The resulting excessive increases in cortical excitation may be the mechanisms that underlie abnormal sensory processing together with an increase in the susceptibility to cortical spreading depression (CSD). Increasing evidence from FHM KI animal studies support the idea that CSD, the underlying mechanism of aura, can activate trigeminal nociception, and thus trigger the headache mechanisms.  相似文献   

2.
Familial hemiplegic migraine type 2 (FHM2) is an autosomal dominant form of migraine with aura that is caused by mutations of the α2-subunit of the Na,K-ATPase, an isoform almost exclusively expressed in astrocytes in the adult brain. We generated the first FHM2 knock-in mouse model carrying the human W887R mutation in the Atp1a2 orthologous gene. Homozygous Atp1a2(R887/R887) mutants died just after birth, while heterozygous Atp1a2(+/R887) mice showed no apparent clinical phenotype. The mutant α2 Na,K-ATPase protein was barely detectable in the brain of homozygous mutants and strongly reduced in the brain of heterozygous mutants, likely as a consequence of endoplasmic reticulum retention and subsequent proteasomal degradation, as we demonstrate in transfected cells. In vivo analysis of cortical spreading depression (CSD), the phenomenon underlying migraine aura, revealed a decreased induction threshold and an increased velocity of propagation in the heterozygous FHM2 mouse. Since several lines of evidence involve a specific role of the glial α2 Na,K pump in active reuptake of glutamate from the synaptic cleft, we hypothesize that CSD facilitation in the FHM2 mouse model is sustained by inefficient glutamate clearance by astrocytes and consequent increased cortical excitatory neurotransmission. The demonstration that FHM2 and FHM1 mutations share the ability to facilitate induction and propagation of CSD in mouse models further support the role of CSD as a key migraine trigger.  相似文献   

3.
Gain-of-function mutations in CaV 2.1 (P/Q-type) Ca2+ channels cause familial hemiplegic migraine type 1 (FHM1), a subtype of migraine with aura. Knockin (KI) mice carrying FHM1 mutations show increased neuronal P/Q-type current and facilitation of induction and propagation of cortical spreading depression (CSD), the phenomenon that underlies migraine aura and may activate migraine headache mechanisms. We recently studied cortical neurotransmission in neuronal microcultures and brain slices of FHM1 KI mice, and showed (1) gain-of-function of excitatory neurotransmission, due to increased action potential-evoked Ca2+ influx and increased probability of glutamate release at pyramidal cell synapses, but unaltered inhibitory neurotransmission at fast-spiking interneuron synapses, and (2) a causative link between enhanced glutamate release and facilitation of CSD induced by brief pulses of high K+ in cortical slices. Here, we show that after blockade of either the P/Q-type Ca2+ channels or the NMDA receptors, CSD cannot be induced in wild-type mouse cortical slices. In contrast, blockade of N- or R-type Ca2+ channels has only a small inhibitory effect on CSD threshold and velocity of propagation. Our findings support a model in which Ca2+ influx through presynaptic P/Q-type Ca2+ channels with consequent release of glutamate from recurrent cortical pyramidal cell synapses and activation of NMDA receptors are required for initiation and propagation of the CSD involved in migraine.  相似文献   

4.
Mutations in the brain specific P/Q type Ca2+ channel alpha1 subunit gene, CACNA1A, have been identified in three clinically distinct disorders, viz. episodic ataxia type 2 (EA-2), familial hemiplegic migraine (FHM) and spinocerebellar ataxia 6 (SCA6). For individuals with EA-2, the mutations described thus far are presumed to result in a truncated protein product. Several different missense mutations have been identified in patients with FHM. At least two of these mutations have been identified on two different chromosome 19p13 haplotypes and thus represent recurrent mutations. In the present study, we have screened several individuals for mutations in all 47 exons in the CACNA1A gene by single-strand conformation analysis. We have characterised a novel missense mutation, G5260A, in exon 32 in a family segregating for EA-2. The consequence of this mutation is an amino acid substitution at a highly conserved position within the CACNA1A gene. This represents the first point mutation not resulting in a proposed truncated protein. Furthermore, this mutation has been detected in a family member with mild clinical signs including only migraine. Additionally, a second previously identified recurrent muta tion, C2272T, in exon 16 has been discovered in a patient with FHM.  相似文献   

5.
Mutations in the Cav2.1 alpha1-subunit of P/Q-type Ca2+ channels cause human diseases, including familial hemiplegic migraine type-1 (FHM1). FHM1 mutations alter channel gating and enhanced channel activity at negative potentials appears to be a common pathogenetic mechanism. Different beta-subunit isoforms (primarily beta4 and beta3) participate in the formation of Cav2.1 channel complexes in mammalian brain. Here we investigated not only whether FHM1 mutations K1336E (KE), W1684R (WR), and V1696I (VI) can affect Cav2.1 channel function but focused on the important question whether mutation-induced changes on channel gating depend on the beta-subunit isoform. Mutants were co-expressed in Xenopus oocytes together with beta1, beta3, or beta4 and alpha2delta1 subunits, and channel function was analyzed using the two-electrode voltage-clamp technique. WR shifted the voltage dependence for steady-state inactivation of Ba2+ inward currents (IBa) to more negative voltages with all beta-subunits tested. In contrast, a similar shift was observed for KE only when expressed with beta3. All mutations promoted IBa decay during pulse trains only when expressed with beta1 or beta3 but not with beta4. Enhanced decay could be explained by delayed recovery from inactivation. KE accelerated IBa inactivation only when co-expressed with beta3, and VI slowed inactivation only with beta1 or beta3. KE and WR shifted channel activation of IBa to more negative voltages. As the beta-subunit composition of Cav2.1 channels varies in different brain regions, our data predict that the functional FHM1 phenotype also varies between different neurons or even within different neuronal compartments.  相似文献   

6.
Update on the genetics of migraine   总被引:10,自引:0,他引:10  
Estevez M  Gardner KL 《Human genetics》2004,114(3):225-235
The field of migraine genetics has seen an explosion of information over the last year. In a recent breakthrough, missense mutations in a chromosome 1q23 gene, ATP1A2, encoding a Na+, K+-ATPase, have been identified in four distinct pedigrees with a rare form of familial hemiplegic migraine (FHM). ATP1A2 is expressed in the brain, like the voltage gated calcium channel gene, CACNA1A, previously identified as the first hemiplegic migraine gene (FHM1). The shared hemiplegic migraine phenotype of mutations in ATP1A2 and CACNA1A raises the possibility that they coordinately regulate ion homeostasis that determines susceptibility to the initiation of both migraine aura and the pain phase of migraine. For the more common and genetically complex forms of migraine, genome-wide screens have identified several new loci on 4q24, 6p12.2–21.1, 11q24, and 14q21.2-q22.3, suggesting additional migraine genes in these regions. In addition, a recent large case-control association study has linked single nucleotide polymorphisms in the insulin receptor/INSR gene with migraine. However, these polymorphisms do not result in detectable changes in receptor function. The continuing genetic identification of key proteins involved in migraine will refine our understanding of this common and sometimes debilitating disorder, which can strike during the most productive years of a persons life. Given the co-morbidity of migraine with depression and bipolar disorder, our knowledge of the causes of migraine may also contribute to our understanding of these disorders.  相似文献   

7.
Molecular genetics of migraine   总被引:2,自引:0,他引:2  
Migraine is an episodic neurovascular disorder that is clinically divided into two main subtypes that are based on the absence or presence of an aura: migraine without aura (MO) and migraine with aura (MA). Current molecular genetic insight into the pathophysiology of migraine predominantly comes from studies of a rare monogenic subtype of migraine with aura called familial hemiplegic migraine (FHM). Three FHM genes have been identified, which all encode ion transporters, suggesting that disturbances in ion and neurotransmitter balances in the brain are responsible for this migraine type, and possibly the common forms of migraine. Cellular and animal models expressing FHM mutations hint toward neuronal hyperexcitability as the likely underlying disease mechanism. Additional molecular insight into the pathophysiology of migraine may come from other monogenic syndromes (for instance cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, which is caused by NOTCH3 mutations), in which migraine is prominent. Investigating patients with common forms of migraine has had limited successes. Except for 5′,10′-methylenetetrahydrolate reductase, an enzyme in folate metabolism, the large majority of reported genetic associations with candidate migraine genes have not been convincingly replicated. Genetic linkage studies using migraine subtypes as an end diagnosis did not yield gene variants thus far. Clinical heterogeneity in migraine diagnosis may have hampered the identification of such variants. Therefore, the recent introduction of more refined methods of phenotyping, such as latent-class analysis and trait component analysis, may be certainly helpful. Combining the new phenotyping methods with genome-wide association studies may be a successful strategy toward identification of migraine susceptibility genes. Likely the identification of reliable biomarkers for migraine diagnosing will make these efforts even more successful.  相似文献   

8.
The neurological disorder familial hemiplegic migraine type II (FHM2) is caused by mutations in the α2-isoform of the Na(+),K(+)-ATPase. We have studied the partial reaction steps of the Na(+),K(+)-pump cycle in nine FHM2 mutants retaining overall activity at a level still compatible with cell growth. Although it is believed that the pathophysiology of FHM2 results from reduced extracellular K(+) clearance and/or changes in Na(+) gradient-dependent transport processes in neuroglia, a reduced affinity for K(+) or Na(+) is not a general finding with the FHM2 mutants. Six of the FHM2 mutations markedly affect the maximal rate of phosphorylation from ATP leading to inhibition by intracellular K(+), thereby likely compromising pump function under physiological conditions. In mutants R593W, V628M, and M731T, the defective phosphorylation is caused by local perturbations within the Rossmann fold, possibly interfering with the bending of the P-domain during phosphoryl transfer. In mutants V138A, T345A, and R834Q, long range effects reaching from as far away as the M2 transmembrane helix perturb the function of the catalytic site. Mutant E700K exhibits a reduced rate of E(2)P dephosphorylation without effect on phosphorylation from ATP. An extremely reduced vanadate affinity of this mutant indicates that the slow dephosphorylation reflects a destabilization of the phosphoryl transition state. This seems to be caused by insertion of the lysine between two other positively charged residues of the Rossmann fold. In mutants R202Q and T263M, effects on the A-domain structure are responsible for a reduced rate of the E(1)P to E(2)P transition.  相似文献   

9.
As opposed to the common, genetically complex types of migraine, there are a few rare monogenic migraine variants. The prototype is familial hemiplegic migraine (FHM), a severe subtype of migraine with aura, for which three causative genes (FHM1–3), all of which are involved in ion translocation in the CNS, have been identified. This review summarizes the current knowledge about the clinical symptomatology, (differential) diagnosis, treatment, genetics, and pathophysiology of FHM. Clinically and genetically overlapping disorders, such as episodic ataxia type 2 (EA-2), spinocerebellar ataxia type 6 (SCA-6) and alternating hemiplegia of childhood (AHC) are briefly discussed, and novel genes which have been occasionally associated with HM or migraine are critically evaluated. Finally, monogenic (vascular) syndromes, in which migraine is part of the phenotypic spectrum, are discussed.  相似文献   

10.
Migraine is a common neurological disease with a major genetic component. Recently, it has been proposed that a single locus on chromosome 19p13 contributes to the genetic susceptibility of both rare familial hemiplegic migraine (FHM) and more common types of migraine, migraine with aura and migraine without aura. We analyzed 16 families for co-segregation of migraine with aura and chromosome 19p13 markers. Using multipoint model-free linkage analysis, we obtained a lod score of 4.28 near D19S592. Using an affecteds-only model of linkage, we observed a lod score of 4.79 near D19S592. We were able to provide statistical evidence that this locus on chromosome 19p13 is most likely not the gene CACNA1A, mutations in which cause FHM. These data indicate that chromosome 19p13 contains a locus which contributes to the genetic susceptibility of migraine with aura that is distinct from the FHM locus.  相似文献   

11.
Several human channelopathies result from mutations in alpha1A, the pore-forming subunit of P/Q-type Ca2+ channels, conduits of presynaptic Ca2+ entry for evoked neurotransmission. We found that wild-type human alpha1A subunits supported transmission between cultured mouse hippocampal neurons equally well as endogenous mouse alpha1A, whereas introduction of impermeant human alpha1A hampered the effect of endogenous subunits. Thus, presynaptic P/Q-type channels may compete for channel type-preferring "slots" that limit their synaptic effectiveness. The existence of slots generates predictions for how neurotransmission might be affected by changes in Ca2+ channel properties, which we tested by studying alpha1A mutations that are associated with familial hemiplegic migraine type 1 (FHM1). Mutant human P/Q-type channels were impaired in contributing to neurotransmission in precise accord with their deficiency in supporting whole-cell Ca2+ channel activity. Expression of mutant channels in wild-type neurons reduced the synaptic contribution of P/Q-type channels, suggesting that competition for type-preferring slots might support the dominant inheritance of FHM1.  相似文献   

12.
Goadsby PJ 《Neuron》2004,41(5):679-680
Migraine aura is a sometimes disabling disorder of the brain that involves significant neurological symptoms in about 30% of patients. In this issue of Neuron, van den Maagdenberg et al. characterize a mouse with a knockin mutation known to cause familial hemiplegic migraine and provide evidence that a lowered threshold to the triggering of CSD may account for the devastating phenotype of familial hemiplegic migraine.  相似文献   

13.
Genetic isolates are highly useful in analyses of the molecular background of complex diseases since the enrichment of a limited number of predisposing genes can be predicted in representative families or in specific geographical regions. It has been suggested that the pathophysiology and etiology of familial hemiplegic migraine (FHM) and typical migraine with aura are most probably the same. Recent assignment of FHM locus to chromosome 19p in two French families makes it now possible to test this hypothesis. We report here linkage data on four families with multiple cases of migraine disorder originating from the genetically isolated population of Finland. We were interested to discover whether the migraine in these families would also show linkage to the markers on 19p. We could exclude a region of 50 cM, flanking the reported FHM locus, as a site of migraine locus in our four families. It seems evident that locus heterogeneity exists between different diagnostic classes of migraine spectrum of diseases and also between different ethnic groups.  相似文献   

14.
Familial hemiplegic migraine type 1 (FMH-1) is a rare form of migraine with aura, which is characterized by transient hemiparesis, sensory loss and visual disturbances. This monogenic disease shares many common features with classic migraine, suggesting a similar molecular pathophysiology. Migraine is triggered by activation and sensitization of the trigeminovascular system, specifically the trigeminal nociceptive afferents innervating the meninges. Aura migraine is associated with cortical spreading depression (CSD), which is a short-lasting intense wave of neuronal and glial cell depolarization that slowly progresses over the cortex and is followed by long-lasting neuronal activity depression.  相似文献   

15.
Familial hemiplegic migraine type 1 (FMH-1) is a rare form of migraine with aura, which is characterized by transient hemiparesis, sensory loss and visual disturbances. This monogenic disease shares many common features with classic migraine, suggesting a similar molecular pathophysiology. Migraine is triggered by activation and sensitization of the trigeminovascular system, specifically the trigeminal nociceptive afferents innervating the meninges. Aura migraine is associated with cortical spreading depression (CSD), which is a short-lasting intense wave of neuronal and glial cell depolarization that slowly progresses over the cortex and is followed by long-lasting neuronal activity depression.  相似文献   

16.
Mutation S218L in the Ca(V)2.1 alpha(1) subunit of P/Q-type Ca(2+) channels produces a severe clinical phenotype in which typical attacks of familial hemiplegic migraine (FHM) triggered by minor head trauma are followed, after a lucid interval, by deep (even fatal) coma and long lasting severe cerebral edema. We investigated the functional consequences of this mutation on human Ca(V)2.1 channels expressed in human embryonic kidney 293 cells and in neurons from Ca(V)2.1 alpha(1)(-/-) mice by combining single channel and whole cell patch clamp recordings. Mutation S218L produced a shift to lower voltages of the single channel activation curve and a consequent increase of both single channel and whole cell Ba(2+) influx in both neurons and human embryonic kidney 293 cells. Compared with the other FHM-1 mutants, the S218L shows one of the largest gains of function, especially for small depolarizations, which are insufficient to open the wild-type channel. S218L channels open at voltages close to the resting potential of many neurons. Moreover, the S218L mutation has unique effects on the kinetics of inactivation of the channel because it introduces a large component of current that inactivates very slowly, and it increases the rate of recovery from inactivation. During long depolarizations at voltages that are attained during cortical spreading depression, the extent of inactivation of the S218L channel is considerably smaller than that of the wild-type channel. We discuss how the unique combination of a particularly slow inactivation during cortical spreading depression and a particularly low threshold of channel activation might lead to delayed severe cerebral edema and coma after minor head trauma.  相似文献   

17.
Familial hemiplegic migraine (FHM) is a monogenic variant of migraine with aura. One of the three known causative genes, ATP1A2, which encodes the α2 isoform of Na,K-ATPase, causes FHM type 2 (FHM2). Over 50 FHM2 mutations have been reported, but most have not been characterized functionally. Here we study the molecular mechanism of Na,K-ATPase α2 missense mutations. Mutants E700K and P786L inactivate or strongly reduce enzyme activity. Glutamic acid 700 is located in the phosphorylation (P) domain and the mutation most likely disrupts the salt bridge with Lysine 35, thereby destabilizing the interaction with the actuator (A) domain. Mutants G900R and E902K are present in the extracellular loop at the interface of the α and β subunit. Both mutants likely hamper the interaction between these subunits and thereby decrease enzyme activity. Mutants E174K, R548C and R548H reduce the Na+ and increase the K+ affinity. Glutamic acid 174 is present in the A domain and might form a salt bridge with Lysine 432 in the nucleotide binding (N) domain, whereas Arginine 548, which is located in the N domain, forms a salt bridge with Glutamine 219 in the A domain. In the catalytic cycle, the interactions of the A and N domains affect the K+ and Na+ affinities, as observed with these mutants. Functional consequences were not observed for ATP1A2 mutations found in two sporadic hemiplegic migraine cases (Y9N and R879Q) and in migraine without aura (R51H and C702Y).  相似文献   

18.
Dominant mutations of the P/Q-type Ca(2+) channel (CACNA1A) underlie several human neurological disorders, including episodic ataxia type 2, familial hemiplegic migraine 1 (FHM1) and spinocerebellar ataxia 6, but have not been found previously in the mouse. Here we report the first dominant ataxic mouse model of Cacna1a mutation. This Wobbly mutant allele of Cacna1a was identified in an ethylnitrosourea (ENU) mutagenesis dominant behavioral screen. Heterozygotes exhibit ataxia from 3 weeks of age and have a normal life span. Homozygotes have a righting reflex defect from postnatal day 8 and later develop severe ataxia and die prematurely. Both heterozygotes and homozygotes exhibit cerebellar atrophy with focal reduction of the molecular layer. No obvious loss of Purkinje cells or decrease in size of the granule cell layer was observed. Real-time polymerase chain reaction revealed altered expression levels of Cacna1g, Calb2 and Th in Wobbly cerebella, but Cacna1a messenger RNA and protein levels were unchanged. Positional cloning revealed that Wobbly mice have a missense mutation leading to an arginine to leucine (R1255L) substitution, resulting in neutralization of a positively charged amino acid in repeat III of voltage sensor segment S4. The dominance of the Wobbly mutation more closely resembles patterns of CACNA1A mutation in humans than previously described mouse recessive mutants (tottering, leaner, rolling Nagoya and rocker). Positive-charge neutralization in S4 has also been shown to underlie several cases of human dominant FHM1 with ataxia. The Wobbly mutant thus highlights the importance of the voltage sensor and provides a starting point to unravel the neuropathological mechanisms of this disease.  相似文献   

19.
Sporadic hemiplegic migraine type 2 (SHM2) and familial hemiplegic migraine type 2 (FHM2) are rare forms of hemiplegic migraine caused by mutations in the Na+,K+-ATPase α2 gene. Today, more than 70 different mutations have been linked to SHM2/FHM2, randomly dispersed over the gene. For many of these mutations, functional studies have not been performed. Here, we report the functional characterization of nine SHM2/FHM2 linked mutants that were produced in Spodoptera frugiperda (Sf)9 insect cells. We determined ouabain binding characteristics, apparent Na+ and K+ affinities, and maximum ATPase activity. Whereas membranes containing T345A, R834Q or R879W possessed ATPase activity significantly higher than control membranes, P796S, M829R, R834X, del 935–940 ins Ile, R937P and D999H membranes showed significant loss of ATPase activity compared to wild type enzyme. Further analysis revealed that T345A and R879W showed no changes for any of the parameters tested, whereas mutant R834Q possessed significantly decreased Na+ and increased K+ apparent affinities as well as decreased ATPase activity and ouabain binding. We hypothesize that the majority of the mutations studied here influence interdomain interactions by affecting formation of hydrogen bond networks or interference with the C-terminal ion pathway necessary for catalytic activity of Na+,K+-ATPase, resulting in decreased functionality of astrocytes at the synaptic cleft expressing these mutants.  相似文献   

20.
Cortical spreading depression (CSD), a propagation wave of transient neuronal and glial depolarization followed by suppression of spontaneous brain activity, has been hypothesized to be the underlying mechanism of migraine aura and triggers the headache attack. Evidence from various animal models accumulates since its first discovery in 1944 and provides support for this hypothesis. In this paper, alterations of bilateral cortical responses are investigated in a mice migrainous model of CSD using voltage‐sensitive dye imaging under hindlimb and cortical stimulation. After CSD induction in the right hemisphere, bilateral sensory responses evoked by left hindlimb stimulation dramatically decreases, whereas right hindlimb stimulation can still activate bilateral responses with an increased response of the left hemisphere and a well‐preserved response of the right hemisphere. In addition, cortical neural excitability remains after CSD assessed by direct activation of the right hemisphere in spite of the sensory deficit under contralateral hindlimb stimulation. These results depict the sensory disturbance of bilateral hemispheres after CSD, which may be helpful in understanding how sensory disturbance occur during migraine aura.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号