首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
苗圃科学施氮(N)作为提高苗木N贮存水平与质量的核心手段,能否提高干旱立地苗木造林效果仍存在争议;N贮存水平与干旱如何协同作用影响叶片光合N分配及苗木生物量积累尚不明确。阐明上述问题,能够为干旱立地下的森林植被恢复以及造林苗木科学精准施N提供科学依据。选择栓皮栎(Quercus variabilis Blume)为研究对象,对一年生苗木设置2个苗圃木质化期N加载水平(0、24 mg N/株),翌年春苗木移栽后设置2个灌溉水平(85%、40%田间持水量),取样测定苗木生物量、叶片N、叶绿素与脯氨酸水平、以及气体交换参数,计算光合N分配及光合N利用效率(PNUE)。结果表明,叶片发育完成后,干旱抑制N向光合系统分配,但N加载处理提高了干旱下的光合N含量,从而在一定程度上抵消干旱对生物量积累的抑制;无N加载苗木则向光合系统投入更少的N,而提高脯氨酸水平,生物量积累受抑制更为显著。无N加载苗木在遭受干旱后将N向羧化组分分配,而N加载苗木遭遇干旱后则显著抑制叶片将N向羧化系统以及电子传递系统分配,捕光组分N的分配则不受植物体内N贮存或外部水分状况的影响,栓皮栎苗木通过调整不同功能组分光合N含量和...  相似文献   

2.
Forest floor of larch species often provides growth habitat for many kinds of understory species because of relatively sparse structure in a larch canopy. A rich flora of forest understory species may play an essential role in maintaining fertility of a larch stand. An attempt was made to evaluate photosynthetic nitrogen use efficiency (PNUE) of many understory and overstory species according to their Raunkiaer lifeform. By studying 72 perennial deciduous species in a larch plantation in northeast China, marked photosynthetic differences between phanerophytes (Ph) and other three lifeforms of chamaephytes (Ch), hemicryptophytes (He), and cryptophytes (Cr) were found, with marginal differences found among Ch, He, and Cr. Ph species had much lower PNUE, and much lower values of rate of nitrogen allocation to chlorophyll (Chl./N) and nitrogen allocation to carboxylation processes (V cmax/N) were concurrently observed in Ph compared with the other three lifeforms. Ph had much lower leaf nitrogen per unit of projection area (N area) and specific leaf area (SLA, cm2 g–1). At lower SLA, for Ph species the change of PNUE with SLA was small, but these changes became very large at higher SLA for Ch, He, and Cr species. Our findings indicate that leaf morphological change is important for clarifying photosynthesis differences among species with different lifeform.  相似文献   

3.
Dipterocarps dominate the canopy of lowland tropical rain forest in South‐east Asia. Seedlings of these species form diverse assemblages on the forest floor where low irradiance severely limits their growth. Further growth depends largely upon the increased irradiance that can occur with the creation of canopy gaps. However, the response of dipterocarp seedlings to increased irradiance and their subsequent establishment in the canopy may be influenced by the availability of other resources, such as nutrient availability. We investigated the influence of nitrogen supply on aspects of the photosynthetic physiology and growth of seedlings of four dipterocarp species (Shorea leprosula, Shorea johorensis, Shorea oleosa and Dryobalanops lanceolata) growing under low irradiance, during transfer from low to high irradiance, and during subsequent growth at high irradiance. All four species increased growth and photosynthetic capacity in response to N‐supply at high irradiances but not at low irradiance approximating that which can be expected to occur in the forest understorey. When seedlings grown at low irradiances and varying N‐supply were exposed to a large increase in irradiance, all species showed some degree of initial photodamage (measured through chlorophyll fluorescence), the extent of which was similar between species but differed markedly depending on the pre‐exposure growth irradiance and N‐supply. Greater photodamage occurred in seedlings grown at lower compared with higher N‐supply and irradiance. Despite these initial difference in the extent of this photodamage, all seedlings demonstrated a similar capacity to recover from damage. However, the alterations in the photosynthetic physiology of leaves during this recovery differed between species and depended on N‐supply. Under high N‐supply all species apart from S. oleosa increased photosynthetic capacity per unit chlorophyll following exposure to high irradiance by increasing photosynthetic capacity per unit leaf area while, under low N‐supply, an increase in photosynthetic capacity per unit leaf only occurred in D. lanceolata. Our results suggest that variations in N‐availability may have a much greater impact on the relative competitiveness of dipterocarp seedlings during the regenerative phase following canopy gap formation than physiological differences between seedlings. Our results demonstrate a potentially significant role for N‐availability in the regeneration dynamics and distribution of canopy‐dominating dipterocarp species.  相似文献   

4.
Seasonal changes in photosynthetic capacity, leaf nitrogen (N) content, leaf chlorophyll (Chl) content and leaf N allocation patterns in leaves of different ages in the evergreen understory shrub, Daphniphyllum humile Maxim, growing at a forest border and an understory site were studied. In current-year leaves at the understory site, the N and Rubisco contents increased from spring to autumn although their light-saturated photosynthetic rate at 22°C (P max22) remained stable, indicating that their mesophyll conductance rates declined as they completed their development and/or that they invested increasing amounts of their resources in photosynthetic enzymes during this period. In contrast, seasonal changes in P max22 in current-year leaves at the forest border site were correlated with changes in Rubisco content. In 1-year old leaves at the understory site, P max22 and contents of Chl, leaf N, and Rubisco remained stable from spring to autumn, while these parameters decreased in 1-year-old forest border leaves, indicating that N may have been remobilized from shaded 1-year-old leaves to sunlit current-year leaves. When leaves senesced at the forest border site the Rubisco content decreased more rapidly than that of light-harvesting proteins such as LHCII, suggesting that N remobilization from Rubisco may be more efficient, possibly because Rubisco has greater N costs and is soluble, whereas the light-harvesting proteins are membrane components.  相似文献   

5.
雾凉季研究了西双版纳热带雨林4种植物幼苗对生长光环境的适应,其中两个树种幼苗喜光(团花和滇南插柚紫),两个树种幼苗耐荫(滇南红厚壳和玉蕊)发现弱光环境中生长的4种植物比叶重、光合能力、光饱和点、光补偿点暗呼吸速度、叶绿素a/b比较低,叶绿素含量较高。玉蕊和滇南红厚壳幼苗的光合能力和呼吸速度 于团花树和滇南插柚紫。团花树和滇南插机紫的比叶重和光合作用的可塑性大于玉蕊和滇南红厚壳。高光强下生长的团花树和滇南插机紫增加叶氮分配给羧化酶的比较。减少分配给叶绿素的比例。滇南红厚壳和玉蕊适应弱光环境的能力略强于团花树和滇南插机紫,但适应强光的能力较差。研究结果支持树种的生理生态特性决定了其演替状况和生境选择的假说,单位干重叶的光合能力和呼吸速率并未表现出利于光适应的可塑性,表明4种植物生理适应能力较差,形态学上的适应在4种热带雨林树种幼苗光适应方面起到了重要的作用,叶氮分配也是它们光适应的策略之一。  相似文献   

6.
When two tree species co-occur, decomposition and nitrogen (N) release from the foliage litter depend on two factors: the forest floor conditions under each canopy type and the species composition of the litter. We conducted an experiment using fir and oak to answer several questions regarding decomposition beneath canopies of the two species and the effects of litter species composition on decomposition. We compared the rates of decomposition and N release from three different litters (fir needle, oak leaf, and a mixture of the two) in 1-mm-mesh litterbags on the forest floor under three different canopies (a 40-year-old fir plantation, large oak trees, and mixed fir and oak trees) in Hokkaido, Japan, over a 2-year period. Beneath each of these canopy types, the litter decomposition rate and percentage of N remaining in the litterbags containing a mixture of fir and oak litter were not significantly different from the expected values calculated for litterbags containing litter from a single tree species. Oak leaf litter decomposed significantly faster than fir needle litter beneath each canopy type. The litter decomposition rate was significantly higher beneath the fir canopy than under the oak canopy, and was intermediate under the mixed canopy of fir and oak. No net N release, that is, a decrease in the total N compared to the original amount, was detected from fir litter under each canopy type or from oak leaf litter beneath the oak canopy. N increased over the original amount in the fir litter beneath the oak canopy and the mixed canopy of fir and oak, but N was released from the oak litter under the fir canopy and the mixed canopy of fir and oak. These results suggest that oak leaf litter blown onto fir forest floor enhances nutrient cycling, and this might be a positive effect of a mixed stand of conifer and broad-leaved trees.  相似文献   

7.
Photosynthetic capacity is known to vary considerably among species. Its physiological cause and ecological significance have been one of the most fundamental questions in plant ecophysiology. We studied the contents of Rubisco (a key enzyme of photosynthesis) and cell walls in leaves of 26 species with a large variation in photosynthetic rates. We focused on photosynthetic nitrogen-use efficiency (PNUE, photosynthetic rate per nitrogen), which can be expressed as the product of Rubisco-use efficiency (RBUE, photosynthetic rate per Rubisco) and Rubisco nitrogen fraction (RNF, Rubisco nitrogen per total leaf nitrogen). RBUE accounted for 70% of the interspecific variation in PNUE. The variation in RBUE was ascribed partly to stomatal conductance, and other factors such as mesophyll conductance and Rubisco kinetics might also be involved. RNF was also significantly related to PNUE but the correlation was relatively weak. Cell wall nitrogen fraction (WNF, cell wall nitrogen per total leaf nitrogen) increased with increasing leaf mass per area, but there was no correlation between RNF and WNF. These results suggest that nitrogen allocation to cell walls does not explain the variation in PNUE. The difference in PNUE was not caused by a sole factor that was markedly different among species but by several factors each of which was slightly disadvantageous in low PNUE species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
We measured rates of leaf senescence and leaf level gas exchange during autumnal senescence for seedlings of five temperate forest tree species under current and elevated atmospheric CO2 concentrations and low- and high-nutrient regimes. Relative indices of whole canopy carbon gain, water loss and water use efficiency through the senescent period were calculated based on a simple integrative model combining gas exchange per unit leaf area and standing canopy area per unit time. Seedlings grown under elevated [CO2] generally had smaller canopies than their current [CO2]-grown counterparts throughout most of the senescent period. This was a result of smaller pre-senescent canopies or accelerated rates of leaf drop. Leaf-level photosynthetic rates were higher under elevated [CO2] for grey birch canopies and for low-nutrient red maple and high-nutrient ash canopies, but declined rapidly to values below those of their current [CO2] counterparts by midway through the senescent period. CO2 enrichment reduced photosynthetic rates for the remaining species throughout some or all of the senescent period. As a result of smaller canopy sizes and reduced photosynthetic rates, elevated [CO2]-grown seedlings had lower indices of whole canopy end-of-season carbon gain with few exceptions. Leaf level transpiration rates were highly variable during autumnal senescence and neither [CO2] nor nutrient regime had consistent effects on water loss per unit leaf area or integrated whole canopy water loss throughout the senescent period. Indices of whole canopy, end-of-season estimates of water use efficiency, however, were consistently lower under CO2 enrichment, with few exceptions. These results suggest that whole canopy end-of-season gas exchange may be altered significantly in an elevated [CO2] world, resulting in reduced carbon gain and water use efficiency for many temperate forest tree seedlings. Seedling growth and survivorship, and ultimately temperate forest regeneration, could be reduced in CO2-enriched forests of the future.  相似文献   

9.
Photosynthetic rate (Pn) and the partitioning of noncyclic photosynthetic electron transport to photorespiration (Jo) in seedlings of four subtropical woody plants growing at three light intensities were studied in the summer time by measurements of chlorophyll fluorescence and CO2 exchange. Except Schima superba, an upper canopy tree species, the tree species Castanopsis fissa and two understory shrubs Psychotria rubra, Ardisia quinquegona had the highest Pn at 36% of sunlight intensity. The total photosynthetic electron transport rate (JF) and the ratio of Jo/JF were elevated in leaves under full sunlight. Jo/JF ratio reached 0.5-0.6 and coincided with the increasing of oxygenation rate of Rubisco (Vo), the activity of glycolate oxidase and photorespiration rate at full sunlight. It is suggested that an increasing partitioning proportion of photosynthetic electron transport to photorespiration might be one of the protective regulation mechanisms in forest plant under strong summer light and high tempe  相似文献   

10.
The rain forest canopy hosts a large percentage of the world's plant biodiversity, which is maintained, in large part, by internal nutrient cycling. This is the first study to examine the effects of site (canopy, forest floor) and tree species (Dipteryx panamensis, Lecythis ampla, Hyeronima alchorneoides) on decay rates of a common substrate and in situ leaf litter in a tropical forest in Costa Rica. Decay rates were slower for both substrates within the canopy than on the forest floor. The slower rate of mass loss of the common substrate in the canopy was due to differences in microclimate between sites. Canopy litter decay rates were negatively correlated with litter lignin:P ratios, while forest floor decay rates were negatively correlated with lignin concentrations, indicating that the control of litter decay rates in the canopy is P availability while that of the forest floor is carbon quality. The slower cycling rates within the canopy are consistent with lower foliar nutrient concentrations of epiphytes compared with forest floor-rooted plants. Litter decay rates, but not common substrate decay rates, varied among tree species. The lack of variation in common substrate decay among tree species eliminated microclimatic variation as a possible cause for differences in litter decay and points to variation in litter quality, nutrient availability and decomposer community of tree species as the causal factors. The host tree contribution to canopy nutrient cycling via litter quality and inputs may influence the quality and quantity of canopy soil resources.  相似文献   

11.
While foliar photosynthetic relationships with light, nitrogen, and water availability have been well described, environmental factors driving vertical gradients of foliar traits within forest canopies are still not well understood. We, therefore, examined how light availability and vapour pressure deficit (VPD) co-determine vertical gradients (between 12 and 42 m and in the understorey) of foliar photosynthetic capacity (Amax), 13C fractionation (∆), specific leaf area (SLA), chlorophyll (Chl), and nitrogen (N) concentrations in canopies of Fagus sylvatica and Abies alba growing in a mixed forest in Switzerland in spring and summer 2017. Both species showed lower Chl/N and lower SLA with higher light availability and VPD at the top canopy. Despite these biochemical and morphological acclimations, Amax during summer remained relatively constant and the photosynthetic N-use efficiency (PNUE) decreased with higher light availability for both species, suggesting suboptimal N allocation within the canopy. ∆ of both species were lower at the canopy top compared to the bottom, indicating high water-use efficiency (WUE). VPD gradients strongly co-determined the vertical distribution of Chl, N, and PNUE in F. sylvatica, suggesting stomatal limitation of photosynthesis in the top canopy, whereas these traits were only related to light availability in A. alba. Lower PNUE in F. sylvatica with higher WUE clearly indicated a trade-off in water vs. N use, limiting foliar acclimation to high light and VPD at the top canopy. Species-specific trade-offs in foliar acclimation to environmental canopy gradients may thus be considered for scaling photosynthesis from leaf to canopy to landscape levels.  相似文献   

12.
Light is a key resource for plant growth and is of particular importance in forest ecosystems, because of the strong vertical structure leading to successive light interception from canopy to forest floor. Tree species differ in the quantity and heterogeneity of light they transmit. We expect decreases in both the quantity and spatial heterogeneity of light transmittance in mixed stands relative to monocultures, due to complementarity effects and niche filling. We tested the degree to which tree species identity and diversity affected, via differences in tree and shrub cover, the spatiotemporal variation in light availability before, during, and after leaf expansion. Plots with different combinations of three tree species with contrasting light transmittance were selected to obtain a diversity gradient from monocultures to three species mixtures. Light transmittance to the forest floor was measured with hemispherical photography. Increased tree diversity led to increased canopy packing and decreased spatial light heterogeneity at the forest floor in all of the time periods. During leaf expansion, light transmittance did differ between the different tree species and timing of leaf expansion might thus be an important source of variation in light regimes for understory plant species. Although light transmittance at the canopy level after leaf expansion was not measured directly, it most likely differed between tree species and decreased in mixtures due to canopy packing. A complementary shrub layer led, however, to similar light levels at the forest floor in all species combinations in our plots. Synthesis. We find that a complementary shrub layer exploits the higher light availability in particular tree species combinations. Resources at the forest floor are thus ultimately determined by the combined effect of the tree and shrub layer. Mixing species led to less heterogeneity in the amount of light, reducing abiotic niche variability.  相似文献   

13.
Wang M  Shi S  Lin F  Hao Z  Jiang P  Dai G 《PloS one》2012,7(2):e30754

Background

Soil water and nitrogen (N) are considered to be the main environmental factors limiting plant growth and photosynthetic capacity. However, less is known about the interactive effects of soil water and N on tree growth and photosynthetic response in the temperate ecosystem.

Methods/Principal Findings

We applied N and water, alone and in combination, and investigated the combined effect of different water and N regimes on growth and photosynthetic responses of Fraxinus mandshurica seedlings. The seedlings were exposed to three water regimes including natural precipitation (CK), higher precipitation (HW) (CK +30%) and lower precipitation (LW) (CK −30%), and both with and without N addition for two growing seasons. We demonstrated that water and N supply led to a significant increase in the growth and biomass production of the seedlings. LW treatment significantly decreased biomass production and leaf N content, but they showed marked increases in N addition. N addition could enhance the photosynthetic capability under HW and CK conditions. Leaf chlorophyll content and the initial activity of Rubisco were dramatically increased by N addition regardless of soil water condition. The positive relationships were found between photosynthetic capacity, leaf N content, and SLA in response to water and N supply in the seedling. Rubisco expression was up-regulated by N addition with decreasing soil water content. Immunofluorescent staining showed that the labeling for Rubisco was relatively low in leaves of the seedlings under LW condition. The accumulation of Rubisco was increased in leaf tissues of LW by N addition.

Conclusions/Significance

Our study has presented better understanding of the interactions between soil water and N on the growth and photosynthetic response in F. mandschurica seedlings, which may provide novel insights on the potential responses of the forest ecosystem to climate change associated with increasing N deposition.  相似文献   

14.
《植物生态学报》1958,44(7):730
分析不同树种叶片性状的变化有助于了解植物群落结构。该文通过对典型阔叶红松(Pinus koraiensis)林15种阔叶树种的比叶质量、叶片厚度、叶干物质含量、叶绿素含量指数、叶片碳、氮、磷含量的测定, 分析了冠层高度对叶性状及叶性状间相关关系的影响。结果表明, 水曲柳(Fraxinus mandshurica)和大青杨(Populus ussuriensis)上层的比叶质量显著大于下层, 而其他树种冠层间的比叶质量无显著变化; 叶绿素含量指数在白桦(Betula platyphylla)和春榆(Ulmus japonica)冠层间的分布分别为上层显著大于下层和上层显著大于中层; 单位质量氮含量在水曲柳的中层显著大于上层。叶片性状间存在着广泛的相关性, 比叶质量与叶片厚度、干物质含量在三层间均呈显著正相关关系, 而有些性状, 只在一或二个冠层中存在一定的相关性。山杨(Populus davidiana)和大青杨的叶片倾向于选择光合能力较低、营养浓度较低、呼吸速率较慢的一端, 而黄檗(Phellodendron amurense)和山槐(Maackia amurensis)叶片更倾向于光合能力强、营养物质浓度高的一端。不同树种对光照响应的差异可能会改变不同冠层中叶片的形态和化学性状, 从而有助于群落构建和物种共存。  相似文献   

15.
分析不同树种叶片性状的变化有助于了解植物群落结构。该文通过对典型阔叶红松(Pinus koraiensis)林15种阔叶树种的比叶质量、叶片厚度、叶干物质含量、叶绿素含量指数、叶片碳、氮、磷含量的测定, 分析了冠层高度对叶性状及叶性状间相关关系的影响。结果表明, 水曲柳(Fraxinus mandshurica)和大青杨(Populus ussuriensis)上层的比叶质量显著大于下层, 而其他树种冠层间的比叶质量无显著变化; 叶绿素含量指数在白桦(Betula platyphylla)和春榆(Ulmus japonica)冠层间的分布分别为上层显著大于下层和上层显著大于中层; 单位质量氮含量在水曲柳的中层显著大于上层。叶片性状间存在着广泛的相关性, 比叶质量与叶片厚度、干物质含量在三层间均呈显著正相关关系, 而有些性状, 只在一或二个冠层中存在一定的相关性。山杨(Populus davidiana)和大青杨的叶片倾向于选择光合能力较低、营养浓度较低、呼吸速率较慢的一端, 而黄檗(Phellodendron amurense)和山槐(Maackia amurensis)叶片更倾向于光合能力强、营养物质浓度高的一端。不同树种对光照响应的差异可能会改变不同冠层中叶片的形态和化学性状, 从而有助于群落构建和物种共存。  相似文献   

16.
The present study examined the effect of nutrient supply on acclimation potential and photoinhibitory susceptibility in one-year-old foliage of shade-grown Norway spruce ( Picea abies Karst.) seedlings transferred to high-light, as compared to seedlings grown in shade or in high-light. After the transfer, the photosynthetic response to intercellular CO2 and chlorophyll fluorescence parameters were measured, and the allocation of leaf N within the photosynthetic apparatus was estimated. The effects of light and nutrient supply markedly differed. Light availability positively affected both photosynthetic capacity on an area basis (but not on a mass basis) and leaf N allocation to ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco), thereby increasing photosynthetic capacity per unit nitrogen. By contrast, nutrient supply in high-light affected photosynthetic capacity both on an area and a mass basis, but did not affect the allocation of N within the photosynthetic apparatus. Fluorescence parameters indicated that shade-grown seedlings transferred to high-light with low-nutrient supply, underwent prolonged photoinhibition. By contrast, transferred seedlings with high-nutrient supply were able to avoid photoinhibition, increasing their photosynthetic capacity on an area basis. On the whole, nutrient shortage was found to prevent the acclimation response and to increase the photoinhibitory susceptibility to changing light conditions in P. abies mature needles.  相似文献   

17.
Naidu  Shawna L.  DeLucia  Evan H. 《Plant Ecology》1998,138(1):27-40
Because acclimation to canopy gaps may involve coordination of new leaf production with morphological or physiological changes in existing, shade-developed leaves, we examined both new leaf production and photosynthesis of existing leaves on shade-grown seedlings after exposure to a late-season canopy gap. Midway through the summer, we transferred potted, shade-grown seedlings of four co-occurring temperate deciduous tree species representing a range of shade-tolerance categories and leaf production strategies to gaps. Shade-tolerant Acer saccharum was the least responsive to gap conditions. It produced few new, high-light acclimated leaves and increases in photosynthetic rates of shade-developed leaves appeared stomatally limited. Intermediately shade-tolerant Fraxinus americana and Quercus rubra responded most, by producing new leaves and increasing photosynthetic rates of existing shade-developed leaves to levels not significantly different from gap-grown controls within four weeks of gap exposure. Shade-intolerant Liriodendron tulipifera was intermediate in response. In these species, the degree of shoot-level morphological acclimation (new leaf production) and leaf-level physiological acclimation (photosynthetic increases in existing leaves) appear coupled. Mechanisms of acclimation also appear related to intrinsic patterns of nitrogen use and mobilization, the ability to adjust stomatal conductance, and shade tolerance.  相似文献   

18.
Trees growing in natural systems undergo seasonal changes in environmental factors that generate seasonal differences in net photosynthetic rates. To examine how seasonal changes in the environment affect the response of net photosynthetic rates to elevated CO2, we grew Pinus taeda L. seedlings for three growing seasons in open-top chambers continuously maintained at either ambient or ambient + 30 Pa CO2. Seedlings were grown in the ground, under natural conditions of light, temperature nd nutrient and water availability. Photosynthetic capacity was measured bimonthly using net photosynthetic rate vs. intercellular CO2 partial pressure (A-Ci) curves. Maximum Rubisco activity (Vcmax) and ribulose 1,5-bisphosphate regeneration capacity mediated by electron transport (Jmax) and phosphate regeneration (PiRC) were calculated from A-Ci curves using a biochemically based model. Rubisco activity, activation state and content, and leaf carbohydrate, chlorophyll and nitrogen concentrations were measured concurrently with photosynthesis measurements. This paper presents results from the second and third years of treatment. Mean leaf nitrogen concentrations ranged from 13.7 to 23.8 mg g?1, indicating that seedlings were not nitrogen deficient. Relative to ambient CO2 seedlings, elevated CO2 increased light-saturated net photosynthetic rates 60–110% during the summer, but < 30% during the winter. A relatively strong correlation between leaf temperature and the relative response of net photosynthetic rates to elevated CO2 suggests a strong effect of leaf temperature. During the third growing season, elevated CO2 reduced Rubisco activity 30% relative to ambient CO2 seedlings, nearly completely balancing Rubisco and RuBP-regeneration regulation of photosynthesis. However, reductions in Rubisco activity did not eliminate the seasonal pattern in the relative response of net photosynthetic rates to elevated CO2. These results indicate that seasonal differences in the relative response of net photosynthetic rates to elevated CO2 are likely to occur in natural systems.  相似文献   

19.
 We evaluated the hypothesis that photosynthetic traits differ between leaves produced at the beginning (May) and the end (November–December) of the rainy season in the canopy of a seasonally dry forest in Panama. Leaves produced at the end of the wet season were predicted to have higher photosynthetic capacities and higher water-use efficiencies than leaves produced during the early rainy season. Such seasonal phenotypic differentiation may be adaptive, since leaves produced immediately preceding the dry season are likely to experience greater light availability during their lifetime due to reduced cloud cover during the dry season. We used a construction crane for access to the upper canopy and sampled 1- to 2-month-old leaves marked in monthly censuses for six common tree species with various ecological habits and leaf phenologies. Photosynthetic capacity was quantified as light- and CO2-saturated oxygen evolution rates with a leaf-disk oxygen electrode in the laboratory (O2max) and as light-saturated CO2 assimilation rates of intact leaves under ambient CO2 (Amax). In four species, pre-dry season leaves had significantly higher leaf mass per unit area. In these four species, O2max and Amax per unit area and maximum stomatal conductances were significantly greater in pre-dry season leaves than in early wet season leaves. In two species, Amax for a given stomatal conductance was greater in pre-dry season leaves than in early wet season leaves, suggesting a higher photosynthetic water-use efficiency in the former. Photosynthetic capacity per unit mass was not significantly different between seasons of leaf production in any species. In both early wet season and pre-dry season leaves, mean photosynthetic capacity per unit mass was positively correlated with nitrogen content per unit mass both within and among species. Seasonal phenotypic differentiation observed in canopy tree species is achieved through changes in leaf mass per unit area and increased maximum stomatal conductance rather than by changes in nitrogen allocation patterns. Received: 7 March 1996 / Accepted: 1 August 1996  相似文献   

20.
Efforts to reforest tropical pasture with native tree species have increased in recent years, yet little is known about the physiology of most tropical trees. The goal of this study was to assess the effect of habitat on photosynthetic responses to light for seedlings of four native rainforest species (Calophyllum brasiliense, Ocotea glaucosericea, Ocotea whitei, and Sideroxylon portoricense) planted to facilitate tropical rainforest recovery in southern Costa Rica. Seedlings were planted in primary forest, in open abandoned pasture, and in the shade of remnant trees within the pasture. Growth, morphology, photosynthetic gas exchange responses to light, and chlorophyll fluorescence (an indication of the integrity of photosynthetic processes) were measured in the three habitats. Height and leaf area were generally greater for seedlings in tree shade compared to those in the forest and open pasture. Photosynthetic rates were higher for plants in open pasture and tree shade compared to those in the forest for two of the four species. Chlorophyll fluorescence results indicated flexibility in the photosynthetic processing of light energy that may help plants tolerate the bright light of the pasture. This study demonstrates that, for certain species, seedlings under remnant pasture trees do not exhibit the level of photosynthetic stress experienced in open abandoned pasture. Seedling responses to light, in combination with other factors such as increased nutrient input through litterfall, help explain the enhanced growth of seedlings under remnant pasture trees. Planting seedlings under remnant trees may increase the success of future efforts to restore tropical forest in abandoned agricultural land.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号