首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we examined several physiological properties of two near-isogenic lines of durum wheat (Triticum turgidum var. durum) that differ in grain cadmium accumulation, to identify the function of a gene locus that confers differential grain Cd concentrations. Time- and concentration-dependent uptake and translocation studies using 109Cd were conducted on nutrient solution-grown seedlings. Root extracts were analysed by inductively coupled plasma emission spectrometry, gel filtration and capillary electrophoresis to determine the interaction between Cd and phytochelatins (PCs) in storage of Cd in roots. The two isolines did not differ in time- or concentration-dependent root Cd uptake, but the low grain-Cd-accumulating isoline showed decreased movement of Cd from roots to shoots. All buffer-soluble Cd extracted from roots of both isolines was in the form of a low-molecular-weight PC-containing complex. The data suggest that PC synthesis is not a limiting factor in the differential storage of Cd in roots, and that movement of Cd through the root and into the transpiration stream may be the cause of differential Cd partitioning in the two isolines.  相似文献   

2.
In response to Cd stress, higher plants utilise a number of defence systems, such as retention in cell walls, binding by organic molecules in the cytosol and sequestration in the vacuole. White lupin is a Cd-resistant legume that is of interest for phytoremediation of acidified and Cd-contaminated soils. The aim of this research was to evaluate the contributions of various mechanisms of Cd detoxification used by this species, focusing on cell-wall retention and binding by thiol-rich compounds. Retention of Cd by the cell wall of white lupin was well described by a Langmuir isotherm model. The percentage of total Cd adsorbed by the cell wall ranged from 29 to 47% in leaves, from 38 to 51% in stems and from 26 to 42% in roots depending on the Cd supply. Cadmium induced the synthesis of high levels of phytochelatins (PCs) in lupin plants, mainly in roots, with PC3 being the major PC. The amount of Cd complexed by thiols accounted for approximately 20% of the total Cd in leaves, 40% in stems and 20% in roots. Therefore, cell-wall retention could account for more than twice the amount of Cd complexed by PCs in leaves and roots. In stems, both mechanisms contributed equally to Cd detoxification. These studies indicate that white lupin plants use cell-wall binding and, secondarily, the production of PCs, as effective mechanisms of Cd detoxification.  相似文献   

3.
Glutathione and phytochelatin contents in tomato plants exposed to cadmium   总被引:1,自引:0,他引:1  
The effect of cadmium on growth and contents of glutathione (GSH) and phytochelatins (PCs) were investigated in roots and leaves of tomato plants (Lycopersicon esculentum Mill. cv. 63/5 F1). The accumulation of Cd increased with external Cd concentrations and was considerably higher in roots than in leaves. Dry mass production decreased under Cd treatment especially in leaves. In both roots and leaves, exposure to Cd caused an appreciable decline in GSH contents and increase in PCs synthesis proportional to Cd concentrations in the growth medium. At the same Cd concentration, PCs production was higher in roots than in leaves. The implication of glutathione in PC synthesis was strongly suggested by the use of buthionine sulfoximine (BSO). The major fraction of Cd accumulated by tomato roots was in the form of a Cd-PCs complex.  相似文献   

4.
The effect of cadmium on growth parameters of seedlings of maize, rye and wheat as well as the role of phytochelatins in Cd detoxication in these species were studied. Cadmium was found to inhibit root growth and decrease fresh weight and water content in roots and shoots of the studied plants. Although a considerably lower Cd accumulation was shown in maize seedlings than in other species, they were characterized by the highest sensitivity to cadmium. Among γ-Glu-Cys peptides synthetized by plant species, phytochelatins — glutathione derivatives predominated. In maize they were synthetized in amounts sufficient for binding the total pool of the metal taken up, and the detoxication mechanism was localized in their roots. Larger amounts of cadmium were accumulated in roots of wheat and rye, but the quantity of the formed γ-Glu-Cys peptides seems insufficient for detoxication of the metal.  相似文献   

5.
In this study, enzymatic hydrolysis of two floating aquatic plants which are suitable for water purification, water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes L.), was performed to produce sugars. Twenty chemical pretreatments were comparatively examined in order to improve the efficiency of enzymatic hydrolysis. As a result, the alkaline/oxidative (A/O) pretreatment, in which sodium hydroxide and hydrogen peroxide were used, was the most effective pretreatment in terms of improving enzymatic hydrolysis of the leaves of water hyacinth and water lettuce. The amount of reducing sugars in enzymatic hydrolysate of water lettuce leaves was 1.8 times higher than that of water hyacinth leaves, therefore water lettuce seems to be more attractive as a biomass resource than water hyacinth. Although roots of these plants contained large amounts of polysaccharides such as cellulose and hemicellulose, they generated less monosaccharides than from leaves, no matter which chemical pretreatment was tested.  相似文献   

6.
孙琴  王晓蓉  袁信芳  丁士明 《生态学报》2004,24(12):2804-2809
采用溶液培养方式 ,研究了有机酸存在下小麦体内 Cd的生物毒性和植物络合素 (PCs)合成的相关关系 ,试图寻求一种与小麦体内 Cd的生物毒性高度相关的评价指标。结果显示 ,Cd胁迫对小麦产生明显的毒害效应并诱导小麦根系内 PCs的大量合成。EDTA、DTPA、柠檬酸、苹果酸和草酸的适量供应可不同程度减轻或消除 Cd的生物毒性 ,其强弱顺序为 EDTA >DTPA 柠檬酸 >苹果酸≈草酸。与此同时 ,小麦根系内 PCs的诱导量也有明显下降 ,与 Cd的生物毒性保持一定的线性关系 ,且在EDTA、DTPA和柠檬酸供应下尤为显著。表明 PCs可以作为一项敏感的生化指标 (biochem ical indicator)用来评价和预测环境中 Cd的污染 ,并有望成为重金属生物有效性评价系统中一种新的补充方法  相似文献   

7.
Water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes) were analyzed to determine their effectiveness in aquaculture wastewater treatment in Malaysia. Wastewater from fish farm in Semanggol Perak, Malaysia was sampled and the parameters determined included, the pH, turbidity, dissolved oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand (BOD), nitrite phosphate (PO4(3-)), nitrate (NO(3-)), nitrite (NO(-2)), ammonia (NH3), and total kjedahl nitrogen (TKN). Also, hydroponics system was set up and was added with fresh plants weights of 150 +/- 20 grams Eichhornia crassipes and 50 +/- 10 grams Pistia stratiotes during the 30 days experiment. The phytoremediation treatment with Eichhornia crassipes had pH ranging from 5.52 to 5.59 and from 4.45 to 5.5 while Pistia stratiotes had its pH value from 5.76 to 6.49 and from 6.24 to 7.07. Considerable percentage reduction was observed in all the parameters treated with the phytoremediators. Percentage reduction of turbidity for Eichhornia crassipes were 85.26% and 87.05% while Pistia stratiotes were 92.70% and 93.69% respectively. Similar reductions were observed in COD, TKN, NO(3-), NH3, and PO4(3-). The capability of these plants in removing nutrients was established from the study. Removal of aquatic macrophytes from water bodies is recommended for efficient water purification.  相似文献   

8.
Carrier P  Baryla A  Havaux M 《Planta》2003,216(6):939-950
Brassica napus (L.) was grown from seeds on a reconstituted soil contaminated with 100 mg Cd kg(-1). Compared with roots and stems, leaves accumulated high amounts of Cd. Although the Cd concentration in the leaves remained high throughout plant growth and no appreciable change was noticed in the total, extractable or soluble Cd in the soil adhering to the roots, the symptoms of Cd toxicity (leaf chlorosis, growth retardation) decreased with time. Cd induced a noticeable accumulation of phytochelatins in young plants (aged 22 days), which decreased in parallel to the disappearance of the symptoms of Cd intoxication. The subcellular distribution of Cd in leaves of Cd-acclimated plants was determined using biochemical, microscopic and metal-imaging techniques. Leaf fractionation by differential centrifugations showed that Cd was present predominantly in the 'soluble' fraction corresponding to the vacuoles and the cytoplasm. Transmission electron microscopic analyses revealed that those cell compartments contained electron-dense granules associated with needle-like structures. Cd, and also high amounts of sulfur, was detected in those structures by electron-spectroscopic imaging. This technique also showed Cd binding to cell walls by a mechanism that does not involve sulfur atoms. In contrast, very little Cd was found in chloroplasts, and this is consistent with the preservation of photosynthesis in plants grown on Cd-polluted soil. The microanalytical results presented here confirm that long-term growth of B. napus on Cd-contaminated soil is accompanied by preferential storage of Cd in the vacuoles and the cell walls. This phenomenon diverted Cd ions from metabolically active compartments (cytosol, chloroplasts, mitochondria), resulting in a reduction of Cd toxicity in the leaves.  相似文献   

9.
The phytotoxicity imposed by cadmium (Cd) and its detoxifying responses of Bacopa monnieri L. have been investigated. Effect on biomass, photosynthetic pigments and protein level were evaluated as gross effect, while lipid peroxidation and electrolyte leakage reflected oxidative stress. Induction of phytochelatins and enzymatic and non-enzymatic antioxidants were monitored as plants primary and secondary metal detoxifying responses, respectively. Plants accumulated substantial amount of Cd in different plant parts (root, stem and leaf), the maximum being in roots (9240.11 microg g(-1) dw after 7 d at 100 microM). Cadmium induced oxidative stress, which was indicated by increase in lipid peroxidation and electrical conductivity with increase in metal concentration and exposure duration. Photosynthetic pigments showed progressive decline while protein showed slight increase at lower concentrations. Enzymes viz., superoxide dismutase (SOD, EC 1.15.1.1), guaiacol peroxidase (GPX, EC 1.11.1.7) ascorbate peroxidase (APX, EC 1.11.1.11) and glutathione reductase (GR, EC 1.6.4.2) showed stimulation except catalase (CAT, EC 1.11.1.6) which showed declining trend. Initially, an enhanced level of cysteine, glutathione and non-protein thiols was observed, which depleted with increase in exposure concentration and duration. Phytochelatins induced significantly at 10 microM Cd in roots and at 50 microM Cd in leaves. The phytochelatins decreased in roots at 50 microM Cd, which may be correlated with reduced level of GSH, probably due to reduced GR activity, which exerted increased oxidative stress as also evident by the phenotypic changes in the plant like browning of roots and slight yellowing of leaves. Thus, besides synthesis of phytochelatins, availability of GSH and concerted activity of GR seem to play a central role for Bacopa plants to combat oxidative stress caused by metal and to detoxify it. Plants ability to accumulate and tolerate high amount of Cd through enhanced level of PCs and various antioxidants suggest it to be a suitable candidate for phytoremediation.  相似文献   

10.
Cadmium (Cd)-induced oxidative stress and antioxidant defense mechanisms were analyzed in roots and leaves of Vigna mungo L. Seeds were germinated in perlite-vermiculite and irrigated with Hoagland nutrient solution. At day 6, seedlings were exposed to 40 μM Cd under semi-hydroponic conditions for a period of 12 days. Growth anomalies and abnormal chromatin condensation were observed in Cd-treated plants, in comparison with control ones. Cd accumulation was observed in roots of treated plants. The analyses of antioxidative defense and oxidative parameters in roots, stems and leaves showed different tissue-specific responses. Superoxide dismutase (SOD) and guaiacol peroxidase (GPx) activities and the level of lipid peroxidation (MDA content) decreased in roots. However, they increased in leaves. Catalase activity and chlorophyll content, on the other hand, decreased over exposure to Cd stress. Total glutathione, non-protein thiols, reduced glutathione (GSH) and phytochelatins increased significantly, while oxidized glutathione (GSSG) decreased, as compared with control plants. The present data suggest that the presence of Cd in soil and water can cause oxidative damage that may be detrimental for optimum production of nutritional mung.  相似文献   

11.
12.
Regulation of Glutathione Synthesis by Cadmium in Pisum sativum L   总被引:4,自引:1,他引:3       下载免费PDF全文
In roots and shoots of pea plants (Pisum sativum L.) cultivated with CdCl2 concentrations up to 50 micromolar, growth, the content of total acid soluble thiols, and the activity of glutathione synthetase (EC 6.3.2.3) and of adenosine 5′-phosphosulfate sulfotransferase were measured. In addition, the occurrence of Cd-binding peptides (phytochelatins) and the contents of glutathione and cysteine were determined in roots of plants exposed to 20 micromolar Cd and/or 1 millimolar buthionine sulfoximine, an inhibitor of glutathione synthesis. An appreciable increase in activity of glutathione synthetase at 20 and 50 micromolar Cd and of adenosine 5′-phosphosulfate sulfotransferase at 5 micromolar and higher Cd concentrations was detected in the roots. Most of the additional thiols formed due to Cd treatment were eluted from a gel filtration HPLC column together with Cd, indicating the presence of phytochelatins. In plants treated with buthionine sulfoximine and Cd, no phytochelatins could be detected but the cysteine content increased 21-fold. Additionally, a larger increase in both enzyme activities occurred than with Cd alone. Taken together, our results are consistent with the hypothesis that glutathione is a precursor for phytochelatin synthesis.  相似文献   

13.
芦苇抗镉污染机理研究   总被引:41,自引:1,他引:41  
研究了芦苇幼苗体内 Cd的积累、亚细胞微区分布、存在形态和其诱导蛋白以及植物络合素合成抑制剂 (BSO)对芦苇光合作用和生长的影响。在 Cd污染条件下 ,芦苇幼苗植株和根皮层细胞中可积累大量的Cd,但 Cd在芦苇各器官和根皮层细胞亚细胞结构中的分布显著不均 ;Cd在芦苇幼苗体内的分配为 :根 >叶片 >茎 >地下茎 ,在根皮层细胞中的分布为 :细胞间隙 >细胞壁 >液泡 >细胞质。受 Cd污染的芦苇幼苗体内的 Cd以不同化学形态存在 ,其中 Na Cl提取态的 Cd在根和叶片中占的比例均为最大 ,其次为根内的醋酸提取态 ;在叶片中以水提取态为主 ,其它形态的含量相对较低。层析结果表明 ,根和叶片中各存在一种Cd结合蛋白 ,其中根内的 Cd结合蛋白可能是一种植物络合素聚合体。受 Cd诱导 ,芦苇幼苗根中还新合成了一种小分子蛋白或多肽 ,但另有一种蛋白因 Cd影响而消失。此外 ,BSO实验证明了植物络合素对 Cd的解毒作用。可见 ,芦苇的抗 Cd机理与以下几个方面有关 :根部截留 ,细胞间隙积累 ,细胞壁沉淀 ,液泡区域化 ,形成活性较低的难溶化合物 ,形成 Cd结合蛋白  相似文献   

14.
Cadmium (Cd) is an inorganic mineral in the earth's crust. Cadmium entry into the environment occurs through geogenic and anthropogenic sources. Industrial activities including mining, electroplating, iron and steel plants, and battery production employ Cd during their processes and often release Cd into the environment. When disseminated into soil, Cd can be detrimental to agro-ecosystems because it is relatively mobile and phytotoxic even at low concentrations. Cadmium's phytotoxicity is due to reductions in the rate of transpiration and photosynthesis and chlorophyll concentration resulting in retardation of plant growth, and an alteration in the nutrient concentration in roots and leaves. In response to Cd toxicity, plants have developed protective cellular mechanisms such as synthesis of phytochelatins and metallothioneins, metal compartmentalization in vacuoles, and the increased activity of antioxidant enzymes to neutralize Cd-induced toxicity. While these direct protective mechanisms can help alleviate Cd toxicity, other indirect mechanisms such as microelements (zinc, iron, manganese, and selenium) interfering with Cd uptake may decrease Cd concentration in plants. This comprehensive review encompasses the significance of Cd, portals of contamination and toxicity to plants, and implications for crop production. Various mitigation strategies with the beneficial effects of zinc, iron, manganese, and selenium in activating defence mechanisms against Cd stress are discussed. Furthermore, this review systematically identifies and summarises suitable strategies for mitigating Cd-induced toxicity in plants.  相似文献   

15.
Phytolacca americana L. can accumulate large amounts of heavy metals in its aerial tissues, especially cadmium (Cd) and manganese (Mn). It has great potential for use in phytoextraction of metals from multi-metal-contaminated soils. This study was conducted to further investigate the Cd- and Mn-tolerance strategies of this plant. Concentrations of non-protein thiols (NPTs) and phytochelatins (PCs) in leaves and roots increased significantly as the concentration of Cd in solution increased. The molar ratios of PCs:soluble Cd ranged from 1.8 to 3.6 in roots and 8.1 to 31.6 in leaves, suggesting that the cellular response involving PC synthesis was sufficient to complex Cd ions in the cytosol, especially that of leaves. In contrast, excess Mn treatments did not result in a significant increase in NPT or PC concentrations in leaves or roots. Oxalic acid concentrations in leaves of plants exposed to 2 or 20 mM Mn reached 69.4 to 89.3 mg (0.771 to 0.992 mmol) g–1 dry weight, respectively, which was approximately 3.7- to 8.6-fold higher than the Mn level in the 0.6 M HCl extract. Thus, oxalic acid may play an important role in the detoxification of Mn.  相似文献   

16.
Water hyacinth (Eichhornia crassipes (Mart.) Solms) and salvinia (Salvinia auriculata Aubl.) were exposed to toxic levels of Cd with the objective of evaluating its effect on sulphate uptake and metabolism. Plants were treated with 0 and 5 μmol L−1 Cd for 3 days and, then sulphate uptake, ATP sulfurylase activity, soluble thiol content and Cd-binding complexes were determined. Water hyacinth showed a lower sulphate uptake, but its kinetic parameters were not affected by Cd. In salvinia, however, both Vmax and affinity to sulphate (1/Km) decreased with Cd treatment. The ATP sulfurylase activity increased in Cd-treated plant of both species, except in the roots of salvinia. In the presence of Cd water hyacinth always exhibited higher activity of this enzyme. The total soluble thiol content was always higher in water hyacinth. In Cd treated plants it increased in the leaves of water hyacinth, but decreased in salvinia. Cysteine content increased only in water hyacinth leaves, while γ-glutamylcysteine content increased in the two parts of the plants of both species after Cd treatment, especially in water hyacinth. Glutathione contents, on the contrary, after Cd treatment, reduced in both parts of the plants of water hyacinth but only in the leaves of salvinia. The unidentified thiol fraction content increased with Cd treatment in both species, especially in water hyacinth. Root and leaf extracts of both species showed peaks with maxima at A265/A280. In treated plants these peaks coincided with Cd content peaks indicating the formation of Cd-binding peptides. It was estimated that in the presence of Cd about 97% of Cd was associated with these complexes and water hyacinth had 28% more Cd-binding peptides than salvinia. Despite its lower sulphate uptake, water hyacinth showed higher rates of sulfur reduction and assimilation into soluble thiols. Possibly, glutathione is used in water hyacinth roots to synthesize hitherto unidentified Cd-binding peptides.  相似文献   

17.
18.
Extended x-ray absorption fine structure measurements were performed on frozen hydrated samples of the cadmium (Cd)/zinc (Zn) hyperaccumulator Thlaspi caerulescens (Ganges ecotype) after 6 months of Zn(2+) treatment with and without addition of Cd(2+). Ligands depended on the metal and the function and age of the plant tissue. In mature and senescent leaves, oxygen ligands dominated. This result combined with earlier knowledge about metal compartmentation indicates that the plants prefer to detoxify hyperaccumulated metals by pumping them into vacuoles rather than to synthesize metal specific ligands. In young and mature tissues (leaves, petioles, and stems), a higher percentage of Cd was bound by sulfur (S) ligands (e.g. phytochelatins) than in senescent tissues. This may indicate that young tissues require strong ligands for metal detoxification in addition to the detoxification by sequestration in the epidermal vacuoles. Alternatively, it may reflect the known smaller proportion of epidermal metal sequestration in younger tissues, combined with a constant and high proportion of S ligands in the mesophyll. In stems, a higher proportion of Cd was coordinated by S ligands and of Zn by histidine, compared with leaves of the same age. This may suggest that metals are transported as stable complexes or that the vacuolar oxygen coordination of the metals is, like in leaves, mainly found in the epidermis. The epidermis constitutes a larger percentage of the total volume in leaves than in stems and petioles. Zn-S interaction was never observed, confirming earlier results that S ligands are not involved in Zn resistance of hyperaccumulator plants.  相似文献   

19.
The use of natural chelates to enhance risk element mobility combined with rhizofiltration by free floating macrophytes have not been thoroughly studied in recent years. The aim of this study was to investigate the efficiency of organic acids in soil by conducting flushing experiments to enhance the mobility of Cd, Pb, and Zn from soil to solution. In addition, the bioaccumulation of Cd, Pb, and Zn, in water lettuce (Pistia stratiotes L.) will be studied as they affect the biomass in the rhizofiltration process. The results revealed that citric and tartaric acids mobilised the highest amount of all risk elements. In comparison to control, citric acid mobilised 71%, 181%, and 112% of Cd, Pb, and Zn while tartaric acid mobilised 70%, 155%, and 135% of Cd, Pb, and Zn respectively. The bioconcentration factor was approximately 2-5 times higher for juvenile plants than mature plants for all treatments as well as for both parts (leaves and roots). The risk element translocation into aerial parts decreased with increased time. Juvenile and mature plants proved a high accumulation potential and a 3 week growth period was observed as a sufficient time period to remove more than 80% of Cd, Pb, and Zn.  相似文献   

20.
Durum wheat plants (Triticum durum cv Creso) were grown in thepresence of cadmium (0–40 µM) and analysed after3 and 7 d for their growth, oxidative stress markers, phytochelatins,and enzymes and metabolites of the ascorbate (ASC)–glutathione(GSH) cycle. Cd exposure produced a dose-dependent inhibitionof growth in both roots and leaves. Lipid peroxidation, proteinoxidation and the decrease in the ascorbate redox state indicatethe presence of oxidative stress in the roots, where H2O2 overproductionand phytochelatin synthesis also occurred. The activity of theASC–GSH cycle enzymes significantly increased in roots.Consistently, a dose-dependent accumulation of Cd was evidentin these organs. On the other hand, no oxidative stress symptomsor phytochelatin synthesis occurred in the leaves; where, atleast during the time of our analysis, the levels of Cd remainedirrelevant. In spite of this, enzymes of the ASC–GSH cyclesignificantly increased their activity in the leaves. When ASCbiosynthesis was enhanced, by feeding plants with its last precursor,L-galactono--lactone (GL), Cd uptake was not affected. On theother hand, the oxidative stress induced in the roots by theheavy metal was alleviated. GL treatment also inhibited theCd-dependent phytochelatin biosynthesis. These results suggestthat different strategies can successfully cope with heavy metaltoxicity. The changes that occurred in the ASC–GSH cycleenzymes of the leaves also suggest that the whole plant improvedits antioxidant defense, even in those parts which had not yetbeen reached by Cd. This precocious increase in the enzymesof the ASC–GSH cycle further highlight the tight regulationand the relevance of this cycle in the defense against heavymetals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号