首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell-cycle regulation of center initiation in Dictyostelium discoideum   总被引:3,自引:0,他引:3  
The center-initiating behavior of Dictyostelium discoideum amoebae in various cell-cycle phases was investigated. Small populations of synchronized AX-2 cells were seeded 1 in 1000 into cultures of a nonsignaling mutant (NP160) incapable of initiating centers. The ability of the wild-type AX-2 cells to initiate centers among mutant amoebae displayed cell-cycle regulation. Approximately 50% of a population of S-phase cells initiated centers while only 7.5% of a population of late G2-phase cells resulted in center formation. The timing of center formation also varied with cycle position. Synchronous cultures containing only AX-2 S-phase amoebae (no NP160) displayed the initial signs of aggregation after 4.5 hr of starvation and streaming into the aggregate was complete after 6 hr. In contrast, cultures of late G2-phase amoebae initiated aggregation centers after 5.5 hr of starvation and did not complete streaming until 7.5 hr. In addition, the number of aggregates formed by these synchronous cultures of AX-2 cells also varied with cycle position. In general, these results suggest a cell-cycle modulation of the autonomous signaling responsible for center initiation.  相似文献   

2.
Following consumption of the food supply, cells of the cellular slime mould Dictyostelium discoideum aggregate and form a multicellular organism. The mechanism for cell aggregation is chemotaxis. The chemotactic signal in D. discoideum is released periodically from aggregation centers and propagated from cell to cell. cAMP mediates cell aggregation by acting as chemotactic attractant and as propagator of the signal. cAMP signals are measured by cell-surface receptors. Recent evidence indicates a role for cGMP during cAMP-mediated cell aggregation in D. discoideum .
During cell differentiation to aggregation competence, cAMP binding sites appear at the cell surface, and the activity of the enzymes adenylate cyclase and phosphodiesterase increases several-fold. In the present work we investigate the synthesis of cGMP in D. discoideum . Conditions for the assay of guanylate cyclase in cell homogenates are described. Guanylate cyclase activity was followed during cell differentiation to aggregation competence and found to increase fourfold. These results indicate that cGMP is involved in cell differentiation of D. discoideum . In contrast to adenylate cyclase, which is activated by cAMP, guanylate cyclase was under our conditions activated neither by cAMP, nor by folic acid.  相似文献   

3.
When amoebae of Dictyostelium discoideum develop on gels of polyacrylamide that are derivatized with glucosides, they become capable of aggregation at the same time as cells not exposed to glucosides. However, the aggregation centers and streams of adherent cells formed on immobilized glucosides suddenly disintegrate. The cells repeatedly re-aggregate, but never form tight aggregates as they do on other substrata. Tight aggregates formed in the absence of glucosides disperse after their transfer to glucoside gels, and the cells undergo aggregation-disaggregation cycles. The formation of tight aggregates is correlated with the expression of specific post-aggregative poly(A)+ RNAs. These RNAs are not expressed in cells developing on glucoside gels, and the dispersal of tight aggregates on such gels is accompanied by the almost complete loss of these RNAs. A developmentally regulated membrane glycoprotein called contact site A, which is a marker of aggregation-competent cells, is normally expressed on glucoside gels. Cyclic AMP is also produced, indicating that the strong increase of adenylate cyclase activity during the preaggregation phase is not affected. In conclusion, cell contact with immobilized glucosides specifically inhibits postaggregative gene expression and arrests development at the aggregation stage.  相似文献   

4.
Cells of Dictyostelium discoideum become sexually mature under submerged and dark conditions, and fuse with opposite mating-type cells to form zygote giant cells, which gather surrounding cells and finally develop into dormant structures called macrocysts. In the present study, we found that the multinuclear fused cells formed during this process frequently underwent cytokinesis driven by random local movements. The split cells were capable of re-fusion, and repeated cytokinesis. These radical behaviors continued until the extensive cell aggregation started around the giant cells. Thus, gamete fusion and initiation of zygote development do not coincide in the mating of D. discoideum. Analyses by confocal microscopy and flow cytometry indicated that the cessation of the random movement followed pronuclear fusion, and that microtubule organizing centers (MTOC), abundant in the fused cells at the beginning, gradually decreased and only one of them remained within the developed macrocyst. Some of the genes known to control cell movement, such as rasGEFB and rasS, increased shortly before the cessation of repeated fusion-cytokinesis and initiation of phagocytosis. These results suggest that the sequential molecular events are necessary in D. discoideum after gamete fusion to establish a new individuality of zygotes.  相似文献   

5.
One of the key components of the futile xylitol cycle of Lactobacillus casei Cl-16 is a phosphatase which dephosphorylates xylitol 5-phosphate to xylitol prior to the expulsion of the pentitol from cells. This enzyme has been partially purified and characterized. The phosphatase is active against a variety of four-, five-, and six-carbon sugars and sugar alcohols phosphorylated at the terminal 4, 5, and 6 positions, respectively, but exhibits little or no affinity for substrates phosphorylated at the C-1 position. The enzyme has an apparent molecular weight of 62,000 and a pH optimum between 5.5 and 6, and it requires a divalent cation (Mg2+) for maximal activity. A single protein band, exhibiting phosphatase activity, was excised from polyacrylamide gels and used to prepare antiphosphatase sera in rabbits. The antiserum was used to detect the enzyme on polyacrylamide gels and to determine the molecular weight of the monomer on sodium dodecyl sulfate-polyacrylamide gels. With a subunit molecular weight of 32,000, the native enzyme appears to be a dimer. Phosphatase activity and substrate specificity are regulated by some component associated with the cytoplasmic membrane.  相似文献   

6.
The authors summarize data on interaction of protozoan Dictyostelium discoideum with folia acid and cyclic adenozinmonophosphate as chemoattractants. These substances play role of antagonists in the life cycle of Dictyostelium discoideum: one disperses cells in space and another gathers them into groups forming and organism. Analysis of interaction between Dictyostelium discoideum and environment allows to reveal that Deictyosteliceae has unique mechanism of adaptation of shortage of feeding resource--forming of multicellular organism with functional differentiation of cells. This mechanism could be found at different hierarchical levels of living organisms.  相似文献   

7.
Nuclei isolated from myxamoebae and differentiating cells (slug stage) of Dictyostelium discoideum contain similar ratios of DNA, RNA and protein (1:8:29) and acid soluble proteins present in amounts equal in weight to the nuclear DNA can be extracted therefrom. On urea polyacrylamide gels these basic proteins were shown to be very similar with the exception of one band, present in the myxamoebae, which was virtually absent from the differentiating cells.  相似文献   

8.
Growth within the pH range 2 to 8 of a strain of the yeast Torulopsis pintolopesii was tested in media containing various sugars as carbon and energy sources. Of the sugars tested, only D-glucose, D-fructose, and D-mannose supported growth of the yeast. In media containing those sugars, the organism grew over the entire pH range tested.  相似文献   

9.
Cyclic AMP is known to act as a chemotactic agent that directs the movement of aggregating Dictyostelium discoideum cells. Its role in the multicellular organization of this organism was studied with special reference to the polarized movement of the migrating pseudoplasmodium (slug). The results showed that the tip of the slug has the ability to function as an aggregation center, and that slug cells are chemotactically sensitive to cyclic AMP. The addition of calcium or magnesium appeared to enhance formation of cell streams, thus facilitating detection of chemotactic response of slug cells, but this addition was not required for the response itself. These indicate that the polar movement of the slug may be principally controlled by cyclic AMP.  相似文献   

10.
Mitochondrial F1-ATPase from beef heart, forms aggregates when it is depleted of loosely bound nucleotides by repeated precipitation in ammonium sulfate. Polyacrylamide gradient gel electrophoresis, in non dissociating conditions shows that the aggregate formed is a dimer (708,000 daltons). The aggregation is attributed to a conformational change of the protein as a consequence of the elimination of the nucleotides from the low affinity binding sites. This structural alteration seems to be reversible because, after addition of ATP, the aggregation is not observed on polyacrylamide gels but the catalytic properties remain unchanged. This conformational change alters the accessibility of protein sulfhydryl groups to 5,5' - dithiobis(2-nitrobenzoic acid). All these observations emphasize the importance of protein nucleotide interactions to the conformation of the mitochondrial F1-ATPase.  相似文献   

11.
Fluorescein-conjugated and non-conjugated lectins were used to determine which surface sugars are involved in the early events of sexual (macrocyst) development in Dictyostelium discoideum. Only zygote giant cells showed unique binding of FITC-WGA and FITC-PNA while all cell types (amoebae, gametes, binucleates, giant cells) showed identical patterns of FITC-Con A, -Gorse and -RCA II binding. In spite of its non-selective labelling of all cell types, Con A inhibited macrocyst formation. The temporal addition of Con A with and without specific hapten sugars indicates the importance of both D-mannose and D-glucose in phagocytosis and, possibly, cell fusion. WGA also inhibited macrocyst formation. Varying the time of addition of the lectin plus/minus its primary hapten sugar implicates N-acetylglucosamine as being important in cell fusion. Neither Gorse, RCA II nor PNA had any detectable inhibitory effects on macrocyst development leaving the appearance of increased PNA receptors at the giant cell surface as an enigma.  相似文献   

12.
Free minus strands (minus strands not involved in a firm duplex structure) are produced in Escherichia coli infected with the RNA phage Qβ. These minus strands can be extracted from the cells under conditions of mild lysis and low salt concentrations, and can be purified by electrophoresis on polyacrylamide gels.The free minus strands are fully competent as template for the Qβ-replicase in the absence of host factors, directing the synthesis of plus strands.  相似文献   

13.
Proteinases of the cellular slime mould Dictyostelium discoideum have been analysed using electrophoresis on polyacrylamide gels containing gelatin (gelatin/PAGE). Multiple proteinase forms were apparent in vegetative myxamoebae, but the presence of individual enzyme forms depended on the manner in which the cells were grown. Axenic cells had a characteristic A-pattern of proteinases consisting of six bands, the most active enzymes having apparent Mr values of 51,000 and 45,000 (these have been named ddCP51 and ddCP45, respectively). Some of the proteinases were also present in the medium, the major extracellular form was ddCP42, a 42,000-Mr enzyme. Cells grown in association with bacteria had a distinct B-pattern with three main enzymes that had apparent Mr values of 48,000, 43,000 and 38,000. All of the A- and B-pattern proteinases were most active at acid pH in the presence of dithiothreitol and were inhibited by various agents such as trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane (E64), leupeptin and chymostatin, which inactivate cysteine proteinases. One of the enzymes, ddCP30, was identified as cysteine proteinase B which had been purified and characterized previously [North, M.J. & Whyte, A. (1984) J. Gen. Microbiol. 130, 123-134]. During starvation of axenic cells in shaken suspensions some of the vegetative proteinases disappeared, ddCP42 was released from the cells and one new enzyme with an apparent Mr of 48,000 appeared. Addition of cyclic AMP had little effect on these changes. When the axenically grown myxamoebae underwent development on filters, similar changes in band pattern were observed and the aggregation stage was characterized by the presence of three cysteine proteinase bands (apparent Mr values of 48,000, 45,000 and 43,000). Proteinases, especially ddCP42, were released from the cells and could be collected from the buffer-saturated pads which supported the filters. The results demonstrate that cysteine proteinases are present throughout growth and development of D. discoideum and that the forms present are subject to nutritional and developmental regulation.  相似文献   

14.
In chick embryo fibroblast cultures the 15- to 30-fold enhancement of D-glucose uptake observed when cells are starved of glucose for 24 hours is not duplicated for derivatives of glucose that compete effectively for uptake and have generally been considered to use the same carrier. 2-deoxy-D-glucose, D-mannose, D-galactose and D-glucosamine are derepressed progressively less sharply in that order with glucosamine uptake never more than doubled by starvation. D-glucose at a concentration of 5.5 mM in the 24-hour conditioning medium is a strong "repressor" resulting in low "transport" behavior for each of the five sugars cited. D-glucosamine is equally effective at the same concentration. A 10-fold reduction in the concentration of glucosamine (0.55 mM) allows for the escape from repression of mannose, glucose, and deoxyglucose uptake while the others remain repressed. Mannose uptake escapes as well when the glucose concentration in the "conditioning" medium is similarly reduced. Under certain conditions of starvation and cell density dramatic effects of supplemental stimulation by insulin can be achieved. Insulin withdrawal interrupts the supplemental stimulation process. Cycloheximide, actinomycin D and cordycepin block both non-insulin and insulin-induced derepression. Short exposure (15-30 minutes) of 24-hour starved cells to glucose (5.5 mM) reduces glucose sharply but does not affect 3-O-methyl glucose uptake. If the exposure is to 2-deoxyglucose (5.5 mM) further derepression of glucose uptake results.  相似文献   

15.
The cold war of the social amoebae   总被引:2,自引:0,他引:2  
When confronted with starvation, the amoebae of Dictyostelium discoideum initiate a developmental process that begins with cell aggregation and ends with a ball of spores supported on a stalk. Spores live and stalk cells die. Because the multicellular organism is produced by cell aggregation and not by growth and division of a single cell, genetically diverse amoebae may enter an aggregate and, if one lineage has a capacity to avoid the stalk cell fate, it may have a selective advantage. Such cheater mutants have been found among wild isolates and created in laboratory strains. The mutants raise a number of questions--how did such a cooperative system evolve in the face of cheating? What is the basis of self recognition? What genes are involved? How is cheating constrained? This review summarizes the results of studies on the social behavior of Dictyostelium and its relatives, including the familiar asexual developmental cycle and the lesser known, but puzzling, sexual cycle.  相似文献   

16.
The involvement of pulsatile chemoattractant emission and signal relay in aggregation and multicellular morphogenesis of a variety of cellular slime mold species was investigated. The species differ from each other in the developmental stage when pulsatile signaling first becomes evident. In D. discoideum, D. mucoroides, and D. purpureum pulsatile signal emission starts in the preaggregative field. In D. vinaceo-fuscum, D. mexicanum, P. violaceum, and P. pallidum the aggregation centers shifts from continuous to pulsatile secretion of chemoattractant during the aggregation process. In D. minutum pulsatile signaling starts after the completion of aggregation and slightly before the onset of culmination. Tip formation is a consequence of continued attraction of amoebae inside the aggregate to the center of signal emission. The occurrence of pulsatile signaling at an early stage of development is correlated with the capacity of the tip (signaling center) to organize a relatively large number of cells into a single fruiting body. Several lines of evidence suggest that cAMP is probably involved in the coordination of morphogenetic movement in the multicellular stage of all investigated species.  相似文献   

17.
The social amoeba, Dictyostelium discoideum, produces a multicellular fruiting body and has become a model system for cell-cell interactions such as signalling, adhesion and development. However, unlike most multicellular organisms, it forms by aggregation of cells and, in the laboratory, forms genetic chimeras where there may be competition among clones. Here we show that chimera formation is also likely in nature, because different clones commonly co-occur on a very small scale. This suggests that D. discoideum will likely have evolved strategies for competing in chimeras, and that the function of some developmental genes will be competitive. Natural chimerism also makes D. discoideum a good model organism for the investigation of issues relating to coexistence and conflict between cells.  相似文献   

18.
During the sexual cycle of Dictyostelium discoideum, zygote giant cells develop and serve as foci for further development by chemoattracting and cannibalizing hundreds of local amoebae. Previous work has shown that the phagocytic process bears similarities to and differences from asexual endocytosis. In the present study, sexual phagocytosis in D. discoideum was found to be species and developmental stage specific. It was inhibited selectively by glucose and concanavalin A. Although a partial, inhibitory effect of mannose on phagocytosis was not statistically significant, alpha-methylmannosamine, like alpha-methyl-glucose, significantly restored the phagocytic competence of giant cells treated with concanavalin A. Other sugars (N-acetyl-glucosamine, N-acetylgalactosamine, and galactose) and lectins (wheat germ agglutinin, Ulex europus type I, and Ricinis communis agglutinin type I) had no significant effect on sexual phagocytosis. Together these data indicate that a glucose-type receptor is involved in selective uptake of D. discoideum amoebae by giant cells.  相似文献   

19.
Plasma membranes of 6-h differentiated Dictyostelium discoideum cells contain a cAMP-binding protein with the properties ascribed to the chemotaxis receptor present on these cells. We have purified this cAMP-binding protein using DEAE-Sephadex chromatography, hydrophobic chromatography on decylagarose and preparative polyacrylamide gel electrophoresis in nonionic detergent. Photoaffinity labeling of the DEAE-purified material with 8-azido-[32P] cAMP shows that only an Mr = 70,000 species on sodium dodecyl sulfate gels contains a cAMP-binding site. Two-dimensional polyacrylamide gel electrophoresis of material eluted from decyl-agarose and photoaffinity labeled indicates that the cAMP-binding protein is the most acidic of many Mr = 70,000 proteins present. This method is readily scaled up to process up to 10(11) cells which yield from 25 to 100 micrograms of cAMP-binding protein. Nucleotide specificity studies established that the cAMP-binding site of the protein is similar to that of the cAMP receptor assayed on intact cells and membranes. The rates of association and dissociation of the cAMP-binding protein are extremely rapid as found for the receptor, and its affinity for cAMP is comparable. The cAMP-binding protein is a concanavalin A binding glycoprotein, and is resistant to proteolysis by trypsin, but not chymotrypsin. Like the cAMP receptor in membranes and crude detergent extracts, this cAMP-binding protein is inhibited by phenylmethylsulfonyl fluoride. The purified binding protein exists in solution largely as a monomeric species, with some dimer being detected on gel filtration. Based on these criteria, we conclude that this cAMP binding protein represents the binding subunit of the cAMP chemotaxis receptor.  相似文献   

20.
M Homann  W Nedbal    G Sczakiel 《Nucleic acids research》1996,24(22):4395-4400
Hammerhead ribozymes with long antisense flanks (>50 bases) have been used successfully to inhibit replication of human immunodeficiency virus type 1 (HIV-1) in living cells. To explain their increased efficacy versus antisense controls or catalytically inactive derivatives, one can consider dissociation of the ribozyme-product complex to allow a complete catalytic cycle. In this work we investigated the dissociation of a double-stranded RNA with 56 bp in vitro. Dissociation was observed in the presence of single-stranded RNA with sequence complementarity to one of the duplex strands. A displacement reaction between RNA single strands and the duplex, but not simple dissociation, was strongly suggested by the concentration dependence of this process, the influence of additional non-complementary sequences on the single strand and by the unusually low Arrhenius activation energy. The strand displacement reaction was slow in vitro at 37 degrees C and physiological ionic strength, but was increased to k approximately 10(3)-10(4)/M/s (approximately 10(4)-fold) at higher temperatures by cetyltrimethylammonium bromide. This compound is thought to enhance non-sequence-specific association of nucleic acids in a mechanistically similar way to that in which cellular hnRNP proteins are thought to act, indicating that strand displacement can be fast and, more importantly, could be tightly regulated in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号