首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the role of glutamate in the locus coeruleus (LC) during opioid withdrawal, rats were continuously infused with morphine (a -opioid receptor agonist, 26 nmol/µl/h) or butorphanol (a //-mixed opioid receptor agonist, 26 nmol/µl/h) intracerebroventricularly (i.c.v.) via osmotic minipumps for 3 days. A direct LC injection of glutamate (1 or 10 nmol/5 µl) or naloxone (an opioid receptor antagonist, 24 nmol/5 µl) induced withdrawal signs in morphine- or butorphanol-dependent animals. However, these agents failed to precipitate any withdrawal signs in saline-treated control animals. On the other hand, the expression of withdrawal signs precipitated by the administration of glutamate or naloxone in opioid-dependent animals was completely blocked by concomitant infusion with 1 or 10 nmol/µl/h of an inhibitor of adenosine 3,5-cyclic monophosphate (cAMP)-dependent protein kinase and protein kinase C, H-7 [1-(5-isoquinolinesulfonyl)-2-methylpiperazine]. In animals that had been infused with opioids in the same manner, i.c.v. injection of naloxone (48 nmol/5 µl) precipitated withdrawal signs and increased extracellular fluid levels of glutamate in the LC of morphine- or butorphanol-dependent rats measured by in vivo microdialysis method. However, concomitant infusion with H-7 inhibited the increases of glutamate levels in the LC. These results strongly suggest that an expeditious release of glutamate in the LC region plays an important role in the expression of physical dependence on opioids. Furthermore, the action on glutamate release might be increased by the enhancement of cAMP-dependent protein kinase and/or protein kinase C activity.  相似文献   

2.
Abstract: Primary cultures of rat cortex, conveniently prepared from newborn animals, were used to study opioid effects on 45Ca2+ uptake and glutamate release. 45Ca2+ uptake, induced by treatment with glutamate or NMDA, was largely blocked by the NMDA antagonist MK-801. K+ depolarization-induced 45Ca2+ uptake was also reduced by MK-801, indicating that the effect was mediated by glutamate release. Direct analysis verified that glutamate, and aspartate, were indeed released. Opioid peptides of the prodynorphin system were also released and these, or other peptides, were functionally active, because naloxone treatment increased glutamate release, as well as the 45Ca2+ uptake induced by depolarization. Opioid agonists, selective for μ-, κ-, and δ-receptors, inhibited the 45Ca2+ uptake induced by K+ depolarization. The combination of low concentrations of MK-801 and opioid agonists resulted in additive inhibition of K+- induced 45Ca2+ uptake. The results indicate that this system may be useful as an in vitro CNS model for studying modulation by opioids of glutamate release and Ca2+ uptake under acute, and perhaps also chronic, opiate treatment.  相似文献   

3.
To explore the significance of ventral pallidum (VP) during the amphetamine sensitization, we first investigated if there are neurochemical alterations in the VP during amphetamine withdrawal period. Chronic amphetamine-treated (5 mg/kg x 14 days) rats displayed an apparent locomotion sensitization as compared with saline controls when challenged with 2 mg/kg amphetamine at withdrawal days 10-14. A microdialysis analysis revealed that output of the dopamine metabolites, 3,4-dihydroxyphenylacetic acid and homovanillic acid, in the VP of amphetamine-sensitized rats increased approximately two-fold as compared to controls at both pre- and post-amphetamine challenge period. On the other hand, the in vivo glutamate output in the VP increased upon amphetamine challenge in the behaviorally sensitized rats, but not in the controls. To evaluate if drug manipulation in the VP would affect the behavioral sensitization, we treated both groups of rats with NMDA receptor antagonist, MK-801 (5 microg/microl for 5 days; bilateral) in the VP during withdrawal days 6-10. Animals were challenged with 2 mg/kg amphetamine at withdrawal day 11. The behavioral profile exhibited that MK-801 pre-treatment significantly blocked the locomotion hyperactivity in amphetamine-sensitized rats. Taken together, the current results suggest that the excitatory amino acid in the VP plays a significant role during the expression of behavioral sensitization to amphetamine.  相似文献   

4.
L J Forman 《Life sciences》1999,64(21):1877-1887
Inhibition of nitric oxide synthase (NOS) activity results in opioid-mediated supraspinal analgesia in the rat, as indicated by increased reaction time in the hot plate test. It is documented that a relationship exists between NMDA receptor activation and the activity of NOS. The present investigation sought to determine if inactivation of the NMDA receptor produced antinociception of supraspinal origin, as was observed in response to inhibition of NOS, and if this response was mediated by brain opioids, by activation of receptors for the neurotransmitter, dopamine, or both. Administration of MK-801, a non-competitive antagonist of the NMDA receptor, produced significant antinociception as measured by reaction time in the hot plate test of analgesia. Antinociception resulting from treatment with MK-801 appeared to be mediated by brain opioids, as indicated by the ability of the opioid antagonist, naloxone, to partially reverse the effect of MK-801 administration. This analgesic response was also partially diminished by administration of the dopamine D1 receptor antagonist, SCH 23390 and the dopamine D2 receptor antagonist, sulpiride. The analgesia resulting from NMDA receptor antagonism was found to be only partially attributable to dopamine and brain opioids, since co-administration of naloxone and SCH 23390 or naloxone and sulpiride, were unable to completely reverse the antinociceptive response to MK-801. The present findings suggest that inhibition of NMDA receptor activity produces supraspinal analgesia. Furthermore, it appears that antinociception induced by blockade of the NMDA receptor results, at least in part, from activation of endogenous brain opioids and stimulation of D1 and D2 subtypes of the dopamine receptor.  相似文献   

5.
Although large quantities of glutamate are found in the carotid body, to date this excitatory neurotransmitter has not been assigned a role in chemoreception. To examine the possibility that glutamate and its N-methyl-d-aspartate (NMDA) receptors play a role in acclimatization after exposure to cyclic intermittent hypoxia (CIH), we exposed male Sprague-Dawley rats to cyclic hypoxia or to room air sham (Sham) for 8 h/day for 3 wk. Using RT-PCR, Western blot analysis, and immunohistochemistry, we found that ionotropic NMDA receptors, including NMDAR1, NMDAR2A, NMDAR2A/2B, are strongly expressed in the carotid body and colocalize with tyrosine hydroxylase in glomus cells. CIH exposure enhanced the expression of NMDAR1 and NMDAR2A/2B but did not substantially change the level of NMDAR2A. We assessed in vivo carotid sinus nerve activity (CSNA) at baseline, in response to acute hypoxia, in response to infused NMDA, and in response to infused endothelin-1 (ET-1) with and without MK-801, an NMDA receptor blocker. Infusion of NMDA augmented CSNA in CIH rats (124.61 +/- 2.64% of baseline) but not in sham-exposed rats. Administration of MK-801 did not alter baseline activity or response to acute hypoxia, in either CIH or sham animals but did reduce the effect of ET-1 infusion on CSNA (CSNA after ET-1 = 160.96 +/- 8.05% of baseline; ET-1 after MK-801 = 118.56 +/- 9.12%). We conclude that 3-wk CIH exposure increases expression of NMDA functional receptors in rats, suggesting glutamate and its receptors may play a role in hypoxic acclimatization to CIH.  相似文献   

6.
Acute ammonia toxicity is mediated by the NMDA type of glutamate receptors.   总被引:1,自引:0,他引:1  
Previous experiments in our laboratory suggested that ammonium toxicity could be mediated by the NMDA type of glutamate receptors. To assess this hypothesis we tested if MK-801, a specific antagonist of the NMDA receptor, is able to prevent ammonium toxicity. Mice and rats were injected i.p. with 12 and 7 mmol/kg of ammonium acetate, respectively. 73% of the mice and 70% of the rats died. However, when the animals were injected i.p. with 2 mg/kg of MK-801, 15 min before ammonium injection, only 5% of the mice and 15% of the rats died. The remarkable protection afforded by MK-801 indicates that ammonia toxicity is mediated by the NMDA receptor.  相似文献   

7.
《Life sciences》1994,55(2):PL25-PL31
Extracellular fluid (ECF) levels of glutamate (Glu) and aspartate (Asp) were measured in the locus coeruleus (LC) during morphine withdrawal by using microdialysis in conscious morphine-dependent Sprague-Dawley rats. Guide cannulae were implanted chronically and rats were given intracerebroventricular (i.c.v.) infussions of morphine (26 nmol/1 μl/ht) of saline (1 μl/hr) for 3 days. Microdialysis probes (2 mm tip) were inserted into the LC 24 hr before precipitation of withdrawal by i.c.v. injection of naloxone (12 or 48 nmol/5 μl). Behavioral evidence of withdrawal (teeth-chattering, wet-dog shakes, etc.) was detected following naloxone challenge in morphine, but not in saline-infused rats. Increases (P<0.01) in ECF levels of Glu (and Asp, to a lesser degree) were noted after naloxone-precipitated withdrawal only in the morphine group. The ECF Glu levels in the LC increased from 9.6 ± 2.7 to 15.5 ± 5.0 μM following 12 nmol/5 μl naloxone, and from 9.5 ± 1.9 to 20.5 ± 3.3 μM following 48 nmol/5 μl naloxone, before and in the first 15 min sample after the precipitation of withdrawal in the morphine-dependent rats, respectively. These results provide direct evidence to support the role of excitatory amino acids within the LC in morphine withdrawal.  相似文献   

8.
G A Higgins  P Nguyen  E M Sellers 《Life sciences》1992,50(21):PL167-PL172
The non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine has recently been reported to antagonize certain overt withdrawal signs in morphine dependent rats. The purpose of the present study was to reassess this response and examine the effect of this drug in a model presumably reflective of the motivational impact of withdrawal using the place conditioning technique. Rats were made opiate dependent by the subcutaneous implantation of a 75 mg morphine pellet. Three-4 days later withdrawal was precipitated by naloxone 0.5 mg/kg. Dizocilpine (0.1-0.5 mg/kg) attenuated many of the subsequent behaviours elicited by naloxone, notably diarrhoea, mouth movements, paw shakes and ptosis. In a separate group of morphine dependent rats, naloxone (0.05 mg/kg) precipitated withdrawal produced a clear place aversion. This place aversion was blocked by dizocilpine (0.02-0.1 mg/kg) pre-treatment prior to conditioning. Therefore dizocilpine may modify both motivational and somatic aspects of opioid withdrawal.  相似文献   

9.
《Life sciences》1995,58(4):PL55-PL61
The behavioral effects of MK-801 were compared in morphine-dependent and non-dependent mice. The dose of MK-801 selected for these studies was previously demonstrated to attenuate some of the morphine withdrawal signs. Subjects were repeatedly exposed to morphine (8 days, b.i.d., 10–100 mg/kg, s.c.). Twenty-four hours after last morphine injection mice received naloxone (0.1 mg/kg, s.c.) and the observation was commenced. Animals were pretreated with either MK-801 (0.1 mg/kg, i.p.) or saline 30 min prior to testing. It was found that the behavioral effects of MK-801 (decreased sociability and increased rate of transitions between behavioral elements, locomotion, grooming) were less pronounced in morphine-dependent compared to non-dependent subjects. However, the intensified almost stereotypic eating possibly reflected increased psychotomimetic potency of MK-801 in morphine-withdrawn animals.  相似文献   

10.
Oh S  Kim JI  Chung MW  Ho IK 《Neurochemical research》2000,25(12):1603-1611
The NMDA receptor has been implicated in opioid tolerance and withdrawal. The effects of continuous infusion of butorphanol on the modulation of NMDA receptor subunit NR1, NR2A, NR2B, and NR2C gene expression were investigated by using in situ hybridization technique. Continuous intracerebroventricular (i.c.v.) infusion with butorphanol (26 nmol/l/h) resulted in significant modulations in the NR1, NR2A, and NR2B mRNA levels. The level of NR1 mRNA was significantly decreased in the cerebral cortex, thalamus, and CA1 area of hippocampus in butorphanol tolerant and withdrawal (7 h after stopping the infusion) rats. The NR2A mRNA was significantly decreased in the CA1 and CA3 of hippocampus in tolerant rats and increased in the cerebral cortex and dentate gyrus in butorphanol withdrawal rats. NR2B subunit mRNA was decreased in the cerebral cortex, caudate putamen, thalamus, CA3 of hippocampus in butorphanol withdrawal rats. No changes of NR1, NR2A, NR2C subunit mRNA in the cerebellar granule cell layer were observed in either butorphanol tolerant or withdrawal rats. Using quantitative ligand autoradiography, the binding of NMDA receptor ligand [3H]MK-801 was increased significantly in all brain regions except in the thalamus and hippocampus, at the 7 hr after stopping the butorphanol infusion. These results suggest that region-specific changes of NMDA receptor subunit mRNA (NR 1 and NR2) as well as NMDA receptor binding ([3H]MK-801) are involved in the development of tolerance to and withdrawal from butorphanol.  相似文献   

11.
Liu HF  Zhou WH  Xie XH  Cao JL  Gu J  Yang GD 《生理学报》2004,56(1):95-100
应用鞘内注射反义寡脱氧核苷酸技术和RT—PCR反应,观察毒蕈碱型乙酰胆碱受体(muscarinic acetylcholine receptor,M)对吗啡依赖大鼠脊髓和脑干NMDA受体NR1A和NR2A mRNA表达和中脑导水管周围灰质区(periaqueductal grey,PAG)中谷氨酸释放的影响。结果显示,吗啡依赖大鼠脊髓NR1A和NR2A mRNA表达明显升高,而脑干中NR1A和NR2A mRNA表达没有显著变化;注射纳洛酮后1h,吗啡戒断大鼠脊髓和脑干中NR1A和NR2A表达显著高于依赖组,经NMDA受体拮抗剂MK801(0.125mg/kg,i.p.)、M受体拮抗剂东莨菪碱(0.5mg/kg,i.p.)、M1受体拮抗剂呱伦西平(10mg/kg,i.p.)和NOS抑制剂L-NAME(10mg/kg,i.p.)处理后,脊髓和脑干中NR1A和NR2A基因表达都较戒断组明显减少。在纳洛酮激发前24h鞘内注射NR1A和M2受体的反义寡脱氧核苷酸(4μg/只),戒断症状评分值及脊髓和脑干的NR1A mRNA的表达均较对照组明显减少。吗啡依赖大鼠在纳洛酮注射前24h鞘内注射M2受体反义寡脱氧核苷酸(4μg/只),可以明显减少PAG内透析液中谷氨酸含量。上述结果提示:NMDA受体的基因表达和谷氨酸释放参与吗啡戒断过程,而这种表达受到M受体的调节。  相似文献   

12.
Oh  Seikwan  Hoshi  Katsuji  Ho  I. K. 《Neurochemical research》1997,22(7):767-774
Effects of continuous pentobarbital administration on binding characteristics of [3H]MK-801 in the rat brain were examined by autoradiography. Animals were rendered tolerant to pentobarbital using i.c.v. infusion of pentobarbital (300g/10l/hr for 7 days) by osmotic minipumps and dependent by abrupt withdrawal from pentobarbital. The levels of [3H]MK-801 binding were elevated in rats 24-hr after withdrawal from pentobarbital while there were no changes except in septum and anterior ventral nuclei in tolerant rats. For assessing the role of NMDA receptor in barbiturate action, an NMDA receptor antagonist (MK-801, 2.7 femto g/10l/hr) was co-infused with pentobarbital. The pentobarbital-infused group had a shorter duration of pentobarbital-induced loss of righting reflex (sleeping time) than that of the control group, and MK-801 alone did not affect the righting reflex. However, co-infusion of MK-801 blocked hyperthermia, and prolonged the onset of convulsions induced by t-butylbicyclophosphorothionate (TBPS) in pentobarbital withdrawal rats. In addition, elevated [35S]TBPS binding was significantly attenuated by co-infusion with MK-801. These results suggest the involvement of NMDA receptor up-regulation in pentobarbital withdrawal and that the development of dependence can be attenuated by the treatment of subtoxic dose of MK-801.  相似文献   

13.
Duan CL  Sun XH  Ji M  Yang H 《生理学报》2005,57(1):71-76
采用微透析和高效液相色谱一电化学(HPLC-ECD)技术研究了谷氨酸和MK-801对正常和帕金森模型人鼠纹状体内多巴胺代谢的影响。用微透析技术在大鼠纹状体内分别定位给以左旋多巴、L-谷氨酸和/或MK-801,同时收集透析液,用HPLC-ECD方法测定透析液中多巴胺代谢产物的浓度。微透析和HPL-ECD分析结果表明:纹状体内定位给以序旋多巴,正常大鼠和帕金森模型大鼠纹状体内多巴胺代谢产物的浓度均升高;纹状体内定位给以L-谷氨酸,可使正常大鼠纹状体内多巴胺代谢产物的浓度降低,但对帕金森火鼠模型纹状体内多巴胺代谢产物浓度的降低不显著;纹状体内定位给以MK-801,正常人鼠纹状体内多巴胺代谢产物的浓度升高:但对帕金森人鼠模型纹状体内多巴胺代谢产物浓度的升高不显著:纹状体内同时定位给以MK-80l和L-谷氨酸,可以有效防止L-谷氨酸所致正常人鼠纹状体内多巴胺代谢产物浓度的降低。结果提示,谷氦酸可以通过NMDA受体调节多巴胺的代谢。尽管非竞争性NMDA拈抗剂MK-801可以有效防止L-谷氨酸所敛正常人鼠纹状体内多巴胺代谢产物浓度的降低,但却不能有效地改善帕金森大鼠模型纹状体内多巴胺的代谢水平。因此存正常及帕金森病情况下,谷氮酸一多巴胺相互作用机制和MK-801改善帕金森病的机制还有待进一步研究。  相似文献   

14.
This investigation tested the importance of excitatory amino acids' effects on regional cerebral O2 consumption and the concomitant changes in cerebral blood flow (rCBF) in isoflurane anesthetized rats. In the glutamate or N-methyl-D-aspartate (NMDA) groups, 10–2 M glutamate or NMDA was topically applied to the right cortex and the left cortex was used as a control. One mg/kg dizocilpine maleate (MK-801), a non-competitive NMDA receptor antagonist, was administered (iv) to the MK-801 group and saline was given to the control group. Cortical rCBF was determined using 14C-iodoantipyrine and regional O2 extraction was measured microspectrophotometrically. Cerebral O2 consumption increased 77% after glutamate (contralateral cortex: 9.0 ± 1.1 ml O2/min/100 g, glutamate treated cortex: 15.9 ± 3.9), while a 46% increase was observed with the same concentration of NMDA (contralateral cortex: 9.8 ± 2.0, NMDA treated cortex: 14.3 ± 5.5). After MK-801, the O2 consumption decreased to 37% of the control value (control cortex: 7.0 ± 1.3, MK-801 treated cortex: 2.6 ± 3.9). MK-801 significantly decreased cerebral O2 extraction from 7.1 ± 1.3 ml O2/100 ml (control cortex) to 5.3 ± 0.6 (MK-801 treated cortex). However, there was no significant difference in cerebral O2 extraction between treated and contralateral cortex in either the glutamate or NMDA groups. The increase in O2 consumption caused by glutamate or NMDA was coupled with increased rCBF. Glutamate increased rCBF from 95 ± 5 ml/min/100 g (contralateral cortex) to 165 ± 31 (treated cortex), while NMDA increased rCBF from 114 ± 12 (contralateral cortex) to 178 ± 60 (treated cortex). MK-801 decreased O2 consumption with a lesser decrease of rCBF. The rCBF was 48 ± 9 in the MK-801 treated cortex and 99 ± 22 in the control cortex. Some substances produced by the activation of NMDA receptors may be related to the coupling of cerebral metabolism and blood flow, since after blockade of NMDA receptors with MK-801, this relationship is uncoupled. These findings suggest that glutamatergic processes have a major effect on cerebral O2 consumption and that this is at least partly due to NMDA receptors.  相似文献   

15.
16.
The role of 5-HT7 receptor has been demonstrated in various animal models of mood disorders; however its function in cognition remains largely speculative. This study evaluates the effects of SB-269970, a selective 5-HT7 antagonist, in a translational model of working memory deficit and investigates whether it modulates cortical glutamate and/or dopamine neurotransmission in rats. The effect of SB-269970 was evaluated in the delayed non-matching to position task alone or in combination with MK-801, a non-competitive NMDA receptor antagonist, and, in separate experiments, with scopolamine, a non-selective muscarinic antagonist. SB-269970 (10 mg/kg) significantly reversed the deficits induced by MK-801 (0.1 mg/kg) but augmented the deficit induced by scopolamine (0.06 mg/kg). The ability of SB-269970 to modulate MK-801-induced glutamate and dopamine extracellular levels was separately evaluated using biosensor technology and microdialysis in the prefrontal cortex of freely moving rats. SB-269970 normalized MK-801 -induced glutamate but not dopamine extracellular levels in the prefrontal cortex. Rat plasma and brain concentrations of MK-801 were not affected by co-administration of SB-269970, arguing for a pharmacodynamic rather than a pharmacokinetic mechanism. These results indicate that 5-HT7 receptor antagonists might reverse cognitive deficits associated with NMDA receptor hypofunction by selectively normalizing glutamatergic neurotransmission.  相似文献   

17.
N-methyl-D-aspartate(NMDA) glutamate receptors mediate critical components ofcardiorespiratory control in anesthetized animals. The role of NMDAreceptors in the ventilatory responses to peripheral and centralchemoreceptor stimulation was investigated in conscious, freelybehaving rats. Minute ventilation(E)responses to 10% O2, 5%CO2, and increasing intravenousdoses of sodium cyanide were measured in intact rats before and afterintravenous administration of the NMDA receptor antagonist MK-801 (3 mg/kg). After MK-801, eupcapnic tidal volume(VT) decreased while frequencyincreased, resulting in a modest reduction inE.Inspiratory time (TI) decreased, whereas expiratory time remained unchanged. TheE responsesto hypercapnia were qualitatively similar in control and MK-801conditions, with slight reductions in respiratory drive (VT/TI)after MK-801. In contrast, responses to hypoxia were markedly attenuated after MK-801 and were primarily due to reduced frequency changes, whereas VT wasunaffected. Sodium cyanide doses associated with significantEincreases were 5 and 50 µg/kg before and after MK-801,respectively. Thus 1-log shift to the right of individual dose-responsecurves occurred with MK-801. Selective carotid body denervation reducedE duringhypoxia by 70%, and residual hypoxic ventilatory responses wereabolished after MK-801. These findings suggest that, in conscious rats,carotid and other peripheral chemoreceptor-mediated hypoxic ventilatoryresponses are critically dependent on NMDA receptor activation and thatNMDA receptor mechanisms are only modestly involved during hypercapnia.

  相似文献   

18.
Qi WX  Lu CR 《生理学报》2003,55(1):101-104
本实验用福尔马林试验在动物痛模型上观察了鞘内单纯注射生理盐水 (NS)、NMDA受体阻断剂MK 80 1、阿片受体阻断剂纳洛酮 (naloxone)、强啡肽A [DynA (1 17) ]以及先用MK 80 1或纳洛酮再注射DynA (1 17)对动物的行为痛反应的影响。大鼠后肢脚掌皮下注射福尔马林后出现的行为痛反应显示有 2个时相 ,即首先出现持续较短的第一时相和 3~ 6min后出现的持续较长的第二时相。实验结果显示 ,各组的第一时相无明显差异 ;而第二时相则有差异 :鞘内注射DynA (1 17)组第二时相痛反应持续时间 (489 5± 2 2 5s)明显较单纯鞘内注射NS组(3 44 7± 12 9s)、MK 80 1组 (3 3 1 4± 2 0 7s)和纳洛酮组 (3 5 2 5± 18 4s)长 (均为P <0 0 1) ;而先用NMDA受体阻断剂MK 80 1后再注射DynA (1 17) ,则第二时相行为痛反应的持续时间 (2 85 7± 19 4s)较单纯注射DynA (1 17)组明显缩短 (P <0 0 1) ,但与单纯鞘内注射MK 80 1组相比无明显差异 ;先用阿片受体阻断剂纳洛酮后再注射DynA (1 17) ,则动物的第二时相行为痛反应 (473 8± 17 8s)与单纯注射DynA (1 17)组相比无明显差异 ,而与单纯注射NS组或纳洛酮组相比则明显增强 (分别为P <0 0 1)。因此本实验结果提示 :(1)在脊髓水平的DynA(1 17)具有促进福尔马林所诱导的第二  相似文献   

19.

Chronic administration of opioids produces physical dependence and opioid-induced hyperalgesia. Users claim the Thai traditional tea “kratom” and component alkaloid mitragynine ameliorate opioid withdrawal without increased sensitivity to pain. Testing these claims, we assessed the combined kratom alkaloid extract (KAE) and two individual alkaloids, mitragynine (MG) and the analog mitragynine pseudoindoxyl (MP), evaluating their ability to produce physical dependence and induce hyperalgesia after chronic administration, and as treatments for withdrawal in morphine-dependent subjects. C57BL/6J mice (n?=?10/drug) were administered repeated saline, or graded, escalating doses of morphine (intraperitoneal; i.p.), kratom alkaloid extract (orally, p.o.), mitragynine (p.o.), or MP (subcutaneously, s.c.) for 5 days. Mice treated chronically with morphine, KAE, or mitragynine demonstrated significant drug-induced hyperalgesia by day 5 in a 48 °C warm-water tail-withdrawal test. Mice were then administered naloxone (10 mg/kg, s.c.) and tested for opioid withdrawal signs. Kratom alkaloid extract and the two individual alkaloids demonstrated significantly fewer naloxone-precipitated withdrawal signs than morphine-treated mice. Additional C57BL/6J mice made physically dependent on morphine were then used to test the therapeutic potential of combined KAE, mitragynine, or MP given twice daily over the next 3 days at either a fixed dose or in graded, tapering descending doses. When administered naloxone, mice treated with KAE, mitragynine, or MP under either regimen demonstrated significantly fewer signs of precipitated withdrawal than control mice that continued to receive morphine. In conclusion, while retaining some liabilities, kratom, mitragynine, and mitragynine pseudoindoxyl produced significantly less physical dependence and ameliorated precipitated withdrawal in morphine-dependent animals, suggesting some clinical value.

  相似文献   

20.
The present study investigated the effects of N-methyl-D-aspartic acid.H2O (NMDA) on the dopamine, glutamate and GABA release in the subthalamic nucleus (STN) by using in vivo microdialysis in rats. NMDA (100 micromol/L) perfused through the microdialysis probe evoked an increase in extracellular dopamine in the STN of the intact rat of about 170%. This coincided with significant increases in both extracellular glutamate (350%) and GABA (250%). The effect of NMDA perfusion on neurotransmitter release at the level of the STN was completely abolished by co-perfusion of the selective NMDA-receptor antagonist MK-801 (10 micromol/L), whereas subthalamic perfusion of MK-801 alone had no effect on extracellular neurotransmitter concentrations. Furthermore, NMDA induced increases in glutamate were abolished by both SCH23390 (8 micromol/L), a selective D1 antagonist, and remoxipride (4 micromol/L), a selective D2 antagonist. The NMDA induced increase in GABA was abolished by remoxipride but not by SCH23390. Perfusion of the STN with SCH23390 or remoxipride alone had no effect on extracellular neurotransmitter concentrations. The observed effects in intact animals depend on the nigral dopaminergic innervation, as dopamine denervation, by means of 6-hydroxydopamine lesioning of the substantia nigra, clearly abolished the effects of NMDA on neurotransmitter release at the level of the STN. Our work points to a complex interaction between dopamine, glutamate and GABA with a crucial role for dopamine at the level of the STN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号